intel_pm.c 266.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61 62 63 64 65 66 67 68 69 70 71 72 73
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
		 * Display WA#0390: skl,kbl
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

74
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75 76 77
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

78
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
79 80
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
81

82 83
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
84 85 86
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
87

88
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
89 90
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
91 92 93 94 95 96

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
97 98
}

99
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
100
{
101
	gen9_init_clock_gating(dev_priv);
102

103 104 105 106
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

107 108
	/*
	 * FIXME:
109
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
110 111
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
112
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
113 114 115 116 117

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
118 119
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
120 121
}

122 123
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
124
	u32 val;
125 126 127 128 129 130 131 132 133
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
134 135 136 137 138 139 140 141 142 143

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

144 145 146 147 148
	/* Display WA #1133: WaFbcSkipSegments:glk */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
149 150
}

151
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

189
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

216
	dev_priv->ips.r_t = dev_priv->mem_freq;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
248
		dev_priv->ips.c_m = 0;
249
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
250
		dev_priv->ips.c_m = 1;
251
	} else {
252
		dev_priv->ips.c_m = 2;
253 254 255
	}
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

294 295
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

318 319 320 321
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

322
	mutex_lock(&dev_priv->pcu_lock);
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

337
	mutex_unlock(&dev_priv->pcu_lock);
338 339
}

340 341 342 343
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

344
	mutex_lock(&dev_priv->pcu_lock);
345 346 347 348 349 350 351 352

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

353
	mutex_unlock(&dev_priv->pcu_lock);
354 355
}

356 357 358
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

359
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
360
{
361
	bool was_enabled;
362
	u32 val;
363

364
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
365
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
366
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
367
		POSTING_READ(FW_BLC_SELF_VLV);
368
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
369
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
370
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
371
		POSTING_READ(FW_BLC_SELF);
372
	} else if (IS_PINEVIEW(dev_priv)) {
373 374 375 376 377 378
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
379
		I915_WRITE(DSPFW3, val);
380
		POSTING_READ(DSPFW3);
381
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
382
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
383 384 385
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
386
		POSTING_READ(FW_BLC_SELF);
387
	} else if (IS_I915GM(dev_priv)) {
388 389 390 391 392
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
393
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
394 395 396
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
397
		POSTING_READ(INSTPM);
398
	} else {
399
		return false;
400
	}
401

402 403
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

404 405 406 407 408
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
409 410
}

V
Ville Syrjälä 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
448
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
449
{
450 451
	bool ret;

452
	mutex_lock(&dev_priv->wm.wm_mutex);
453
	ret = _intel_set_memory_cxsr(dev_priv, enable);
454 455 456 457
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
458
	mutex_unlock(&dev_priv->wm.wm_mutex);
459 460

	return ret;
461
}
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
477
static const int pessimal_latency_ns = 5000;
478

479 480 481
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

482
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
483
{
484
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
485
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
486
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
487 488
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
489

490
	switch (pipe) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
511 512
		MISSING_CASE(pipe);
		return;
513 514
	}

515 516 517 518
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
519 520
}

521
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
522 523 524 525 526 527 528 529 530 531 532 533 534 535
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

536
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

552
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 575
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 582
};
static const struct intel_watermark_params pineview_cursor_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 589
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
590 591 592 593 594
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 596
};
static const struct intel_watermark_params i965_cursor_wm_info = {
597 598 599 600 601
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
602 603
};
static const struct intel_watermark_params i945_wm_info = {
604 605 606 607 608
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
609 610
};
static const struct intel_watermark_params i915_wm_info = {
611 612 613 614 615
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
616
};
617
static const struct intel_watermark_params i830_a_wm_info = {
618 619 620 621 622
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
623
};
624 625 626 627 628 629 630
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
631
static const struct intel_watermark_params i845_wm_info = {
632 633 634 635 636
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
637 638
};

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

735 736
/**
 * intel_calculate_wm - calculate watermark level
737
 * @pixel_rate: pixel clock
738
 * @wm: chip FIFO params
739
 * @cpp: bytes per pixel
740 741 742 743 744 745 746 747 748 749 750 751 752
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
753 754 755 756
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
757
{
758
	int entries, wm_size;
759 760 761 762 763 764 765

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
766 767 768 769 770
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
771

772 773
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
774 775

	/* Don't promote wm_size to unsigned... */
776
	if (wm_size > wm->max_wm)
777 778 779
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
780 781 782 783 784 785 786 787 788 789 790

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

791 792 793
	return wm_size;
}

794 795 796 797 798 799 800 801 802 803
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

804 805 806 807 808
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

832
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
833
{
834
	struct intel_crtc *crtc, *enabled = NULL;
835

836
	for_each_intel_crtc(&dev_priv->drm, crtc) {
837
		if (intel_crtc_active(crtc)) {
838 839 840 841 842 843 844 845 846
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

847
static void pineview_update_wm(struct intel_crtc *unused_crtc)
848
{
849
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
850
	struct intel_crtc *crtc;
851 852
	const struct cxsr_latency *latency;
	u32 reg;
853
	unsigned int wm;
854

855 856 857 858
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
859 860
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
861
		intel_set_memory_cxsr(dev_priv, false);
862 863 864
		return;
	}

865
	crtc = single_enabled_crtc(dev_priv);
866
	if (crtc) {
867 868 869 870
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
871
		int cpp = fb->format->cpp[0];
872
		int clock = adjusted_mode->crtc_clock;
873 874 875 876

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
877
					cpp, latency->display_sr);
878 879
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
880
		reg |= FW_WM(wm, SR);
881 882 883 884 885 886
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
887
					4, latency->cursor_sr);
888 889
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
890
		reg |= FW_WM(wm, CURSOR_SR);
891 892 893 894 895
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
896
					cpp, latency->display_hpll_disable);
897 898
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
899
		reg |= FW_WM(wm, HPLL_SR);
900 901 902 903 904
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
905
					4, latency->cursor_hpll_disable);
906 907
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
908
		reg |= FW_WM(wm, HPLL_CURSOR);
909 910 911
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

912
		intel_set_memory_cxsr(dev_priv, true);
913
	} else {
914
		intel_set_memory_cxsr(dev_priv, false);
915 916 917
	}
}

918 919 920 921 922 923 924 925 926 927
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
928
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
929 930 931 932 933 934
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

935 936
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
937
{
938 939 940 941 942
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
960

961
	POSTING_READ(DSPFW1);
962 963
}

964 965 966
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

967
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
968 969
				const struct vlv_wm_values *wm)
{
970 971 972
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
973 974
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

975 976 977 978 979 980
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
981

982 983 984 985 986 987 988 989 990 991 992
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

993
	I915_WRITE(DSPFW1,
994
		   FW_WM(wm->sr.plane, SR) |
995 996 997
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
998
	I915_WRITE(DSPFW2,
999 1000 1001
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1002
	I915_WRITE(DSPFW3,
1003
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1004 1005 1006

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1007 1008
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1009
		I915_WRITE(DSPFW8_CHV,
1010 1011
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1012
		I915_WRITE(DSPFW9_CHV,
1013 1014
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1015
		I915_WRITE(DSPHOWM,
1016
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1017 1018 1019 1020 1021 1022 1023 1024 1025
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1026 1027
	} else {
		I915_WRITE(DSPFW7,
1028 1029
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1030
		I915_WRITE(DSPHOWM,
1031
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1032 1033 1034 1035 1036 1037
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1038 1039 1040
	}

	POSTING_READ(DSPFW1);
1041 1042
}

1043 1044
#undef FW_WM_VLV

1045 1046 1047 1048 1049
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1050
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1051

1052
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1105 1106
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1145
		unsigned int small, large;
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1158
	return min_t(unsigned int, wm, USHRT_MAX);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1327 1328
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1329 1330 1331 1332 1333
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1334 1335 1336 1337
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1338 1339 1340
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1341
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1563 1564
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1565 1566
				   unsigned int htotal,
				   unsigned int width,
1567
				   unsigned int cpp,
1568 1569 1570 1571
				   unsigned int latency)
{
	unsigned int ret;

1572 1573
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1574 1575 1576 1577 1578
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1579
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1580 1581 1582 1583
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1584 1585
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1586 1587 1588
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1589 1590

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1591 1592 1593
	}
}

1594 1595
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1596 1597
				     int level)
{
1598
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1599
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1600 1601
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1602
	unsigned int clock, htotal, cpp, width, wm;
1603 1604 1605 1606

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1607
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1608 1609
		return 0;

1610
	cpp = plane_state->base.fb->format->cpp[0];
1611 1612 1613
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1614

1615
	if (plane->id == PLANE_CURSOR) {
1616 1617 1618 1619 1620 1621 1622 1623
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1624
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1625 1626 1627
				    dev_priv->wm.pri_latency[level] * 10);
	}

1628
	return min_t(unsigned int, wm, USHRT_MAX);
1629 1630
}

1631 1632 1633 1634 1635 1636
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1637
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1638
{
1639
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1640
	const struct g4x_pipe_wm *raw =
1641
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1642
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1643 1644 1645
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1646
	int fifo_extra, fifo_left = fifo_size;
1647
	int sprite0_fifo_extra = 0;
1648 1649
	unsigned int total_rate;
	enum plane_id plane_id;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1662 1663
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1664 1665
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1666

1667 1668
	if (total_rate > fifo_size)
		return -EINVAL;
1669

1670 1671
	if (total_rate == 0)
		total_rate = 1;
1672

1673
	for_each_plane_id_on_crtc(crtc, plane_id) {
1674 1675
		unsigned int rate;

1676 1677
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1678 1679 1680
			continue;
		}

1681 1682 1683
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1684 1685
	}

1686 1687 1688
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1689 1690 1691
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1692 1693

	/* spread the remainder evenly */
1694
	for_each_plane_id_on_crtc(crtc, plane_id) {
1695 1696 1697 1698 1699
		int plane_extra;

		if (fifo_left == 0)
			break;

1700
		if ((active_planes & BIT(plane_id)) == 0)
1701 1702 1703
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1704
		fifo_state->plane[plane_id] += plane_extra;
1705 1706 1707
		fifo_left -= plane_extra;
	}

1708 1709 1710 1711 1712 1713 1714 1715 1716
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1717 1718
}

1719 1720 1721 1722 1723 1724
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1725
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1736 1737 1738 1739 1740 1741 1742 1743
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1744 1745 1746 1747
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1748
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1749
				 int level, enum plane_id plane_id, u16 value)
1750
{
1751
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1752
	int num_levels = intel_wm_num_levels(dev_priv);
1753
	bool dirty = false;
1754

1755
	for (; level < num_levels; level++) {
1756
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1757

1758
		dirty |= raw->plane[plane_id] != value;
1759
		raw->plane[plane_id] = value;
1760
	}
1761 1762

	return dirty;
1763 1764
}

1765 1766
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1767
{
1768 1769
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1770
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1771
	int level;
1772
	bool dirty = false;
1773

1774
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1775 1776
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1777
	}
1778

1779
	for (level = 0; level < num_levels; level++) {
1780
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1781 1782
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1783

1784 1785
		if (wm > max_wm)
			break;
1786

1787
		dirty |= raw->plane[plane_id] != wm;
1788 1789
		raw->plane[plane_id] = wm;
	}
1790

1791
	/* mark all higher levels as invalid */
1792
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1793

1794 1795
out:
	if (dirty)
1796
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1797 1798 1799 1800 1801 1802
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1803
}
1804

1805 1806
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1807
{
1808
	const struct g4x_pipe_wm *raw =
1809 1810 1811
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1812

1813 1814
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1815

1816
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1817
{
1818 1819 1820 1821
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1835
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1836 1837
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1838 1839 1840
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1841
	unsigned int dirty = 0;
1842

1843 1844 1845 1846
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1847 1848
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1849

1850
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1869
			intel_atomic_get_old_crtc_state(state, crtc);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1881
	}
1882

1883
	/* initially allow all levels */
1884
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1885 1886 1887 1888 1889
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1890
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1891

1892
	for (level = 0; level < wm_state->num_levels; level++) {
1893
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1894
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1895

1896
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1897
			break;
1898

1899 1900 1901 1902 1903 1904 1905 1906
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1907
						 raw->plane[PLANE_SPRITE0],
1908 1909
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1910

1911 1912 1913
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1914 1915
	}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1926 1927
}

1928 1929 1930
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1931 1932
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1933
{
1934
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1935
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1936 1937
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1938
	int sprite0_start, sprite1_start, fifo_size;
1939

1940 1941 1942
	if (!crtc_state->fifo_changed)
		return;

1943 1944 1945
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1946

1947 1948
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1949

1950 1951
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1962

1963 1964 1965
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1966 1967
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1979 1980
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1981 1982
		break;
	case PIPE_B:
1983 1984
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1996 1997
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1998 1999
		break;
	case PIPE_C:
2000 2001
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2013 2014
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2015 2016 2017 2018
		break;
	default:
		break;
	}
2019

2020
	POSTING_READ_FW(DSPARB);
2021

2022
	spin_unlock(&dev_priv->uncore.lock);
2023 2024 2025 2026
}

#undef VLV_FIFO

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2037 2038
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2061 2062
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2063 2064 2065 2066

	return 0;
}

2067
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2068 2069 2070 2071 2072
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2073
	wm->level = dev_priv->wm.max_level;
2074 2075
	wm->cxsr = true;

2076
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2077
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2092 2093 2094
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2095
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2096
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097 2098 2099
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2100
		if (crtc->active && wm->cxsr)
2101 2102
			wm->sr = wm_state->sr[wm->level];

2103 2104 2105 2106
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2107 2108 2109
	}
}

2110
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2111
{
2112 2113
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2114

2115
	vlv_merge_wm(dev_priv, &new_wm);
2116

2117
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2118 2119
		return;

2120
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2121 2122
		chv_set_memory_dvfs(dev_priv, false);

2123
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2124 2125
		chv_set_memory_pm5(dev_priv, false);

2126
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2127
		_intel_set_memory_cxsr(dev_priv, false);
2128

2129
	vlv_write_wm_values(dev_priv, &new_wm);
2130

2131
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2132
		_intel_set_memory_cxsr(dev_priv, true);
2133

2134
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2135 2136
		chv_set_memory_pm5(dev_priv, true);

2137
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2138 2139
		chv_set_memory_dvfs(dev_priv, true);

2140
	*old_wm = new_wm;
2141 2142
}

2143 2144 2145 2146 2147 2148 2149
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2166 2167 2168 2169
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2170
static void i965_update_wm(struct intel_crtc *unused_crtc)
2171
{
2172
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2173
	struct intel_crtc *crtc;
2174 2175
	int srwm = 1;
	int cursor_sr = 16;
2176
	bool cxsr_enabled;
2177 2178

	/* Calc sr entries for one plane configs */
2179
	crtc = single_enabled_crtc(dev_priv);
2180 2181 2182
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2183 2184 2185 2186
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2187
		int clock = adjusted_mode->crtc_clock;
2188
		int htotal = adjusted_mode->crtc_htotal;
2189
		int hdisplay = crtc->config->pipe_src_w;
2190
		int cpp = fb->format->cpp[0];
2191 2192
		int entries;

2193 2194
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2195 2196 2197 2198 2199 2200 2201 2202
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2203 2204 2205
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2206
		entries = DIV_ROUND_UP(entries,
2207 2208
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2209

2210
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2211 2212 2213 2214 2215 2216
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2217
		cxsr_enabled = true;
2218
	} else {
2219
		cxsr_enabled = false;
2220
		/* Turn off self refresh if both pipes are enabled */
2221
		intel_set_memory_cxsr(dev_priv, false);
2222 2223 2224 2225 2226 2227
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2228 2229 2230 2231 2232 2233
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2234
	/* update cursor SR watermark */
2235
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2236 2237 2238

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2239 2240
}

2241 2242
#undef FW_WM

2243
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2244
{
2245
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2246 2247 2248 2249 2250 2251
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2252
	struct intel_crtc *crtc, *enabled = NULL;
2253

2254
	if (IS_I945GM(dev_priv))
2255
		wm_info = &i945_wm_info;
2256
	else if (!IS_GEN2(dev_priv))
2257 2258
		wm_info = &i915_wm_info;
	else
2259
		wm_info = &i830_a_wm_info;
2260

2261
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2262
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2263 2264 2265 2266 2267 2268 2269
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2270
		if (IS_GEN2(dev_priv))
2271
			cpp = 4;
2272
		else
2273
			cpp = fb->format->cpp[0];
2274

2275
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2276
					       wm_info, fifo_size, cpp,
2277
					       pessimal_latency_ns);
2278
		enabled = crtc;
2279
	} else {
2280
		planea_wm = fifo_size - wm_info->guard_size;
2281 2282 2283 2284
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2285
	if (IS_GEN2(dev_priv))
2286
		wm_info = &i830_bc_wm_info;
2287

2288
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2289
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2290 2291 2292 2293 2294 2295 2296
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2297
		if (IS_GEN2(dev_priv))
2298
			cpp = 4;
2299
		else
2300
			cpp = fb->format->cpp[0];
2301

2302
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2303
					       wm_info, fifo_size, cpp,
2304
					       pessimal_latency_ns);
2305 2306 2307 2308
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2309
	} else {
2310
		planeb_wm = fifo_size - wm_info->guard_size;
2311 2312 2313
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2314 2315 2316

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2317
	if (IS_I915GM(dev_priv) && enabled) {
2318
		struct drm_i915_gem_object *obj;
2319

2320
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2321 2322

		/* self-refresh seems busted with untiled */
2323
		if (!i915_gem_object_is_tiled(obj))
2324 2325 2326
			enabled = NULL;
	}

2327 2328 2329 2330 2331 2332
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2333
	intel_set_memory_cxsr(dev_priv, false);
2334 2335

	/* Calc sr entries for one plane configs */
2336
	if (HAS_FW_BLC(dev_priv) && enabled) {
2337 2338
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2339 2340 2341 2342
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2343
		int clock = adjusted_mode->crtc_clock;
2344
		int htotal = adjusted_mode->crtc_htotal;
2345 2346
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2347 2348
		int entries;

2349
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2350
			cpp = 4;
2351
		else
2352
			cpp = fb->format->cpp[0];
2353

2354 2355
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2356 2357 2358 2359 2360 2361
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2362
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2363 2364
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2365
		else
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2382 2383
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2384 2385
}

2386
static void i845_update_wm(struct intel_crtc *unused_crtc)
2387
{
2388
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2389
	struct intel_crtc *crtc;
2390
	const struct drm_display_mode *adjusted_mode;
2391 2392 2393
	uint32_t fwater_lo;
	int planea_wm;

2394
	crtc = single_enabled_crtc(dev_priv);
2395 2396 2397
	if (crtc == NULL)
		return;

2398
	adjusted_mode = &crtc->config->base.adjusted_mode;
2399
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2400
				       &i845_wm_info,
2401
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2402
				       4, pessimal_latency_ns);
2403 2404 2405 2406 2407 2408 2409 2410
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2411
/* latency must be in 0.1us units. */
2412 2413 2414
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2415
{
2416
	unsigned int ret;
2417

2418 2419
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2420 2421 2422 2423

	return ret;
}

2424
/* latency must be in 0.1us units. */
2425 2426 2427 2428 2429
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2430
{
2431
	unsigned int ret;
2432

2433 2434
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2435
	ret = DIV_ROUND_UP(ret, 64) + 2;
2436

2437 2438 2439
	return ret;
}

2440
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2441
			   uint8_t cpp)
2442
{
2443 2444 2445 2446 2447 2448
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2449
	if (WARN_ON(!cpp))
2450 2451 2452 2453
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2454
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2455 2456
}

2457
struct ilk_wm_maximums {
2458 2459 2460 2461 2462 2463
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2464 2465 2466 2467
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2468
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2469
				   const struct intel_plane_state *pstate,
2470 2471
				   uint32_t mem_value,
				   bool is_lp)
2472
{
2473
	uint32_t method1, method2;
2474
	int cpp;
2475

2476
	if (!intel_wm_plane_visible(cstate, pstate))
2477 2478
		return 0;

2479
	cpp = pstate->base.fb->format->cpp[0];
2480

2481
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2482 2483 2484 2485

	if (!is_lp)
		return method1;

2486
	method2 = ilk_wm_method2(cstate->pixel_rate,
2487
				 cstate->base.adjusted_mode.crtc_htotal,
2488
				 drm_rect_width(&pstate->base.dst),
2489
				 cpp, mem_value);
2490 2491

	return min(method1, method2);
2492 2493
}

2494 2495 2496 2497
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2498
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2499
				   const struct intel_plane_state *pstate,
2500 2501 2502
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2503
	int cpp;
2504

2505
	if (!intel_wm_plane_visible(cstate, pstate))
2506 2507
		return 0;

2508
	cpp = pstate->base.fb->format->cpp[0];
2509

2510 2511
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2512
				 cstate->base.adjusted_mode.crtc_htotal,
2513
				 drm_rect_width(&pstate->base.dst),
2514
				 cpp, mem_value);
2515 2516 2517
	return min(method1, method2);
}

2518 2519 2520 2521
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2522
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2523
				   const struct intel_plane_state *pstate,
2524 2525
				   uint32_t mem_value)
{
2526 2527
	int cpp;

2528
	if (!intel_wm_plane_visible(cstate, pstate))
2529 2530
		return 0;

2531 2532
	cpp = pstate->base.fb->format->cpp[0];

2533
	return ilk_wm_method2(cstate->pixel_rate,
2534
			      cstate->base.adjusted_mode.crtc_htotal,
2535
			      pstate->base.crtc_w, cpp, mem_value);
2536 2537
}

2538
/* Only for WM_LP. */
2539
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2540
				   const struct intel_plane_state *pstate,
2541
				   uint32_t pri_val)
2542
{
2543
	int cpp;
2544

2545
	if (!intel_wm_plane_visible(cstate, pstate))
2546 2547
		return 0;

2548
	cpp = pstate->base.fb->format->cpp[0];
2549

2550
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2551 2552
}

2553 2554
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2555
{
2556
	if (INTEL_GEN(dev_priv) >= 8)
2557
		return 3072;
2558
	else if (INTEL_GEN(dev_priv) >= 7)
2559 2560 2561 2562 2563
		return 768;
	else
		return 512;
}

2564 2565 2566
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2567
{
2568
	if (INTEL_GEN(dev_priv) >= 8)
2569 2570
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2571
	else if (INTEL_GEN(dev_priv) >= 7)
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2582 2583
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2584
{
2585
	if (INTEL_GEN(dev_priv) >= 7)
2586 2587 2588 2589 2590
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2591
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2592
{
2593
	if (INTEL_GEN(dev_priv) >= 8)
2594 2595 2596 2597 2598
		return 31;
	else
		return 15;
}

2599 2600 2601
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2602
				     const struct intel_wm_config *config,
2603 2604 2605
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2606 2607
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2608 2609

	/* if sprites aren't enabled, sprites get nothing */
2610
	if (is_sprite && !config->sprites_enabled)
2611 2612 2613
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2614
	if (level == 0 || config->num_pipes_active > 1) {
2615
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2616 2617 2618 2619 2620 2621

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2622
		if (INTEL_GEN(dev_priv) <= 6)
2623 2624 2625
			fifo_size /= 2;
	}

2626
	if (config->sprites_enabled) {
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2638
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2639 2640 2641 2642
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2643 2644
				      int level,
				      const struct intel_wm_config *config)
2645 2646
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2647
	if (level > 0 && config->num_pipes_active > 1)
2648 2649 2650
		return 64;

	/* otherwise just report max that registers can hold */
2651
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2652 2653
}

2654
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2655 2656 2657
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2658
				    struct ilk_wm_maximums *max)
2659
{
2660 2661 2662
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2663
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2664 2665
}

2666
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2667 2668 2669
					int level,
					struct ilk_wm_maximums *max)
{
2670 2671 2672 2673
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2674 2675
}

2676
static bool ilk_validate_wm_level(int level,
2677
				  const struct ilk_wm_maximums *max,
2678
				  struct intel_wm_level *result)
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2717
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2718
				 const struct intel_crtc *intel_crtc,
2719
				 int level,
2720
				 struct intel_crtc_state *cstate,
2721 2722 2723
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2724
				 struct intel_wm_level *result)
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2749 2750 2751
	result->enable = true;
}

2752
static uint32_t
2753
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2754
{
2755 2756
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2757 2758
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2759
	u32 linetime, ips_linetime;
2760

2761 2762 2763 2764
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2765
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2766
		return 0;
2767

2768 2769 2770
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2771 2772 2773
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2774
					 intel_state->cdclk.logical.cdclk);
2775

2776 2777
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2778 2779
}

2780 2781
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2782
{
2783
	if (INTEL_GEN(dev_priv) >= 9) {
2784
		uint32_t val;
2785
		int ret, i;
2786
		int level, max_level = ilk_wm_max_level(dev_priv);
2787 2788 2789

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2790
		mutex_lock(&dev_priv->pcu_lock);
2791 2792 2793
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2794
		mutex_unlock(&dev_priv->pcu_lock);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2811
		mutex_lock(&dev_priv->pcu_lock);
2812 2813 2814
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2815
		mutex_unlock(&dev_priv->pcu_lock);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2842
		/*
2843
		 * WaWmMemoryReadLatency:skl+,glk
2844
		 *
2845
		 * punit doesn't take into account the read latency so we need
2846 2847
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2848
		 */
2849 2850 2851 2852 2853
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2854
				wm[level] += 2;
2855
			}
2856 2857
		}

2858
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2859 2860 2861 2862 2863
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2864 2865 2866 2867
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2868
	} else if (INTEL_GEN(dev_priv) >= 6) {
2869 2870 2871 2872 2873 2874
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2875
	} else if (INTEL_GEN(dev_priv) >= 5) {
2876 2877 2878 2879 2880 2881
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2882 2883
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2884 2885 2886
	}
}

2887 2888
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2889 2890
{
	/* ILK sprite LP0 latency is 1300 ns */
2891
	if (IS_GEN5(dev_priv))
2892 2893 2894
		wm[0] = 13;
}

2895 2896
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2897 2898
{
	/* ILK cursor LP0 latency is 1300 ns */
2899
	if (IS_GEN5(dev_priv))
2900 2901 2902
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2903
	if (IS_IVYBRIDGE(dev_priv))
2904 2905 2906
		wm[3] *= 2;
}

2907
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2908 2909
{
	/* how many WM levels are we expecting */
2910
	if (INTEL_GEN(dev_priv) >= 9)
2911
		return 7;
2912
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2913
		return 4;
2914
	else if (INTEL_GEN(dev_priv) >= 6)
2915
		return 3;
2916
	else
2917 2918
		return 2;
}
2919

2920
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2921
				   const char *name,
2922
				   const uint16_t wm[8])
2923
{
2924
	int level, max_level = ilk_wm_max_level(dev_priv);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2935 2936 2937 2938
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2939
		if (INTEL_GEN(dev_priv) >= 9)
2940 2941
			latency *= 10;
		else if (level > 0)
2942 2943 2944 2945 2946 2947 2948 2949
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2950 2951 2952
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2953
	int level, max_level = ilk_wm_max_level(dev_priv);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2965
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2981 2982 2983
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2984 2985
}

2986
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2987
{
2988
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2989 2990 2991 2992 2993 2994

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2995
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2996
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2997

2998 2999 3000
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3001

3002
	if (IS_GEN6(dev_priv))
3003
		snb_wm_latency_quirk(dev_priv);
3004 3005
}

3006
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3007
{
3008
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3009
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3010 3011
}

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3035
/* Compute new watermarks for the pipe */
3036
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3037
{
3038 3039
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3040
	struct intel_pipe_wm *pipe_wm;
3041
	struct drm_device *dev = state->dev;
3042
	const struct drm_i915_private *dev_priv = to_i915(dev);
3043 3044 3045 3046 3047
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3048
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3049
	struct ilk_wm_maximums max;
3050

3051
	pipe_wm = &cstate->wm.ilk.optimal;
3052

3053 3054
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3055

3056
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3057
			pristate = ps;
3058
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3059
			sprstate = ps;
3060
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3061
			curstate = ps;
3062 3063
	}

3064
	pipe_wm->pipe_enabled = cstate->base.active;
3065
	if (sprstate) {
3066 3067 3068 3069
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3070 3071
	}

3072 3073
	usable_level = max_level;

3074
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3075
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3076
		usable_level = 1;
3077 3078

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3079
	if (pipe_wm->sprites_scaled)
3080
		usable_level = 0;
3081

3082
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3083 3084
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3085

3086
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3087
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3088

3089
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3090
		return -EINVAL;
3091

3092
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3093

3094 3095
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3096

3097
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3098
				     pristate, sprstate, curstate, wm);
3099 3100 3101 3102 3103 3104

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3105 3106 3107 3108
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3109 3110
	}

3111
	return 0;
3112 3113
}

3114 3115 3116 3117 3118 3119 3120 3121 3122
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3123
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3124 3125 3126 3127 3128
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3129
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3130 3131 3132 3133 3134 3135

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3136
	*a = newstate->wm.ilk.optimal;
3137 3138 3139
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3168 3169
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3170 3171 3172 3173

	return 0;
}

3174 3175 3176 3177 3178 3179 3180 3181 3182
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3183 3184
	ret_wm->enable = true;

3185
	for_each_intel_crtc(dev, intel_crtc) {
3186
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3187 3188 3189 3190
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3191

3192 3193 3194 3195 3196
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3197
		if (!wm->enable)
3198
			ret_wm->enable = false;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3211
			 const struct intel_wm_config *config,
3212
			 const struct ilk_wm_maximums *max,
3213 3214
			 struct intel_pipe_wm *merged)
{
3215
	struct drm_i915_private *dev_priv = to_i915(dev);
3216
	int level, max_level = ilk_wm_max_level(dev_priv);
3217
	int last_enabled_level = max_level;
3218

3219
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3220
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3221
	    config->num_pipes_active > 1)
3222
		last_enabled_level = 0;
3223

3224
	/* ILK: FBC WM must be disabled always */
3225
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3226 3227 3228 3229 3230 3231 3232

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3233 3234 3235 3236 3237
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3238 3239 3240 3241 3242 3243

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3244 3245
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3246 3247 3248
			wm->fbc_val = 0;
		}
	}
3249 3250 3251 3252 3253 3254 3255

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3256
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3257
	    intel_fbc_is_active(dev_priv)) {
3258 3259 3260 3261 3262 3263
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3264 3265
}

3266 3267 3268 3269 3270 3271
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3272 3273 3274
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3275
	struct drm_i915_private *dev_priv = to_i915(dev);
3276

3277
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3278 3279 3280 3281 3282
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3283
static void ilk_compute_wm_results(struct drm_device *dev,
3284
				   const struct intel_pipe_wm *merged,
3285
				   enum intel_ddb_partitioning partitioning,
3286
				   struct ilk_wm_values *results)
3287
{
3288
	struct drm_i915_private *dev_priv = to_i915(dev);
3289 3290
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3291

3292
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3293
	results->partitioning = partitioning;
3294

3295
	/* LP1+ register values */
3296
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3297
		const struct intel_wm_level *r;
3298

3299
		level = ilk_wm_lp_to_level(wm_lp, merged);
3300

3301
		r = &merged->wm[level];
3302

3303 3304 3305 3306 3307
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3308
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3309 3310 3311
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3312 3313 3314
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3315
		if (INTEL_GEN(dev_priv) >= 8)
3316 3317 3318 3319 3320 3321
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3322 3323 3324 3325
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3326
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3327 3328 3329 3330
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3331
	}
3332

3333
	/* LP0 register values */
3334
	for_each_intel_crtc(dev, intel_crtc) {
3335
		enum pipe pipe = intel_crtc->pipe;
3336 3337
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3338 3339 3340 3341

		if (WARN_ON(!r->enable))
			continue;

3342
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3343

3344 3345 3346 3347
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3348 3349 3350
	}
}

3351 3352
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3353
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3354 3355
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3356
{
3357
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3358
	int level1 = 0, level2 = 0;
3359

3360 3361 3362 3363 3364
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3365 3366
	}

3367 3368
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3369 3370 3371
			return r2;
		else
			return r1;
3372
	} else if (level1 > level2) {
3373 3374 3375 3376 3377 3378
		return r1;
	} else {
		return r2;
	}
}

3379 3380 3381 3382 3383 3384 3385 3386
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3387
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3388 3389
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3390 3391 3392 3393 3394
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3395
	for_each_pipe(dev_priv, pipe) {
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3439 3440
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3441
{
3442
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3443
	bool changed = false;
3444

3445 3446 3447
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3448
		changed = true;
3449 3450 3451 3452
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3453
		changed = true;
3454 3455 3456 3457
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3458
		changed = true;
3459
	}
3460

3461 3462 3463 3464
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3465

3466 3467 3468 3469 3470 3471 3472
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3473 3474
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3475
{
3476
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3477 3478 3479
	unsigned int dirty;
	uint32_t val;

3480
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3481 3482 3483 3484 3485
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3486
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3487
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3488
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3489
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3490
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3491 3492
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3493
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3494
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3495
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3496
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3497
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3498 3499
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3500
	if (dirty & WM_DIRTY_DDB) {
3501
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3516 3517
	}

3518
	if (dirty & WM_DIRTY_FBC) {
3519 3520 3521 3522 3523 3524 3525 3526
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3527 3528 3529 3530
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3531
	if (INTEL_GEN(dev_priv) >= 7) {
3532 3533 3534 3535 3536
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3537

3538
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3539
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3540
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3541
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3542
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3543
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3544 3545

	dev_priv->wm.hw = *results;
3546 3547
}

3548
bool ilk_disable_lp_wm(struct drm_device *dev)
3549
{
3550
	struct drm_i915_private *dev_priv = to_i915(dev);
3551 3552 3553 3554

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3555 3556 3557 3558 3559 3560 3561 3562
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3563
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3564 3565 3566 3567 3568
		return true;

	return false;
}

3569 3570 3571
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3572 3573
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3574 3575 3576 3577 3578 3579 3580
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3581 3582
}

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3595
intel_enable_sagv(struct drm_i915_private *dev_priv)
3596 3597 3598
{
	int ret;

3599 3600 3601 3602
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3603 3604 3605
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3606
	mutex_lock(&dev_priv->pcu_lock);
3607 3608 3609 3610 3611

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3612
	mutex_unlock(&dev_priv->pcu_lock);
3613 3614 3615 3616 3617

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3618
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3619
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3620
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3621 3622 3623 3624 3625 3626
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3627
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3628 3629 3630 3631
	return 0;
}

int
3632
intel_disable_sagv(struct drm_i915_private *dev_priv)
3633
{
3634
	int ret;
3635

3636 3637 3638 3639
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3640 3641 3642
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3643
	mutex_lock(&dev_priv->pcu_lock);
3644 3645

	/* bspec says to keep retrying for at least 1 ms */
3646 3647 3648 3649
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3650
	mutex_unlock(&dev_priv->pcu_lock);
3651 3652 3653 3654 3655

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3656
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3657
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3658
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3659
		return 0;
3660 3661 3662
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3663 3664
	}

3665
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3666 3667 3668
	return 0;
}

3669
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3670 3671 3672 3673
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3674 3675
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3676
	struct intel_crtc_state *cstate;
3677
	enum pipe pipe;
3678
	int level, latency;
3679
	int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3680

3681 3682 3683
	if (!intel_has_sagv(dev_priv))
		return false;

3684
	/*
3685
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3697
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3698
	cstate = to_intel_crtc_state(crtc->base.state);
3699

3700
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3701 3702
		return false;

3703
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3704 3705
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3706

3707
		/* Skip this plane if it's not enabled */
3708
		if (!wm->wm[0].plane_en)
3709 3710 3711
			continue;

		/* Find the highest enabled wm level for this plane */
3712
		for (level = ilk_wm_max_level(dev_priv);
3713
		     !wm->wm[level].plane_en; --level)
3714 3715
		     { }

3716 3717 3718
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3719
		    plane->base.state->fb->modifier ==
3720 3721 3722
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3723
		/*
3724 3725 3726
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3727
		 */
3728
		if (latency < sagv_block_time_us)
3729 3730 3731 3732 3733 3734
			return false;
	}

	return true;
}

3735 3736
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3737
				   const struct intel_crtc_state *cstate,
3738 3739
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3740
{
3741 3742 3743
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3744
	struct drm_crtc *for_crtc = cstate->base.crtc;
3745 3746
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3747

3748
	if (WARN_ON(!state) || !cstate->base.active) {
3749 3750
		alloc->start = 0;
		alloc->end = 0;
3751
		*num_active = hweight32(dev_priv->active_crtcs);
3752 3753 3754
		return;
	}

3755 3756 3757 3758 3759
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3760 3761
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3762 3763 3764

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3765
	/*
3766 3767 3768 3769 3770 3771
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3772
	 */
3773
	if (!intel_state->active_pipe_changes) {
3774 3775 3776 3777 3778
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3779
		return;
3780
	}
3781 3782 3783 3784 3785 3786

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3787 3788
}

3789
static unsigned int skl_cursor_allocation(int num_active)
3790
{
3791
	if (num_active == 1)
3792 3793 3794 3795 3796
		return 32;

	return 8;
}

3797 3798 3799 3800
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3801 3802
	if (entry->end)
		entry->end += 1;
3803 3804
}

3805 3806
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3807
{
3808
	struct intel_crtc *crtc;
3809

3810 3811
	memset(ddb, 0, sizeof(*ddb));

3812
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3813
		enum intel_display_power_domain power_domain;
3814 3815
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3816 3817 3818

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3819 3820
			continue;

3821 3822 3823 3824 3825 3826 3827
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3828

3829 3830
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3831 3832

		intel_display_power_put(dev_priv, power_domain);
3833 3834 3835
	}
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3852
static uint_fixed_16_16_t
3853 3854
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3855
{
3856
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3857
	uint32_t src_w, src_h, dst_w, dst_h;
3858 3859
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3860

3861
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3862
		return u32_to_fixed16(0);
3863 3864

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3865
	if (plane->id == PLANE_CURSOR) {
3866 3867 3868 3869
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3870 3871
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3872 3873 3874
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3875 3876 3877 3878 3879
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3880 3881
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3882 3883 3884 3885
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3886 3887 3888 3889
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3890

3891
	return mul_fixed16(downscale_w, downscale_h);
3892 3893
}

3894 3895 3896
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3897
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3916 3917 3918 3919
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
3930
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3931 3932 3933 3934 3935
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3936
	int crtc_clock, dotclk;
3937 3938
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3939
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3940 3941 3942 3943 3944 3945

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3946
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3964
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3965 3966 3967 3968 3969 3970
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3971 3972
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

3973
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3974 3975 3976
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3977 3978

	if (pipe_max_pixel_rate < crtc_clock) {
3979
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3980 3981 3982 3983 3984 3985
		return -EINVAL;
	}

	return 0;
}

3986
static unsigned int
3987 3988 3989
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3990
{
3991
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3992
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3993
	uint32_t data_rate;
3994
	uint32_t width = 0, height = 0;
3995 3996
	struct drm_framebuffer *fb;
	u32 format;
3997
	uint_fixed_16_16_t down_scale_amount;
3998

3999
	if (!intel_pstate->base.visible)
4000
		return 0;
4001 4002

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4003
	format = fb->format->format;
4004

4005
	if (plane->id == PLANE_CURSOR)
4006 4007 4008
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4009

4010 4011 4012 4013 4014
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4015 4016
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4017

4018
	/* for planar format */
4019
	if (format == DRM_FORMAT_NV12) {
4020
		if (y)  /* y-plane data rate */
4021
			data_rate = width * height *
4022
				fb->format->cpp[0];
4023
		else    /* uv-plane data rate */
4024
			data_rate = (width / 2) * (height / 2) *
4025
				fb->format->cpp[1];
4026 4027
	} else {
		/* for packed formats */
4028
		data_rate = width * height * fb->format->cpp[0];
4029 4030
	}

4031
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4032

4033
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4034 4035 4036 4037 4038 4039 4040 4041
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4042 4043 4044
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4045
{
4046 4047
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4048 4049
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4050
	unsigned int total_data_rate = 0;
4051 4052 4053

	if (WARN_ON(!state))
		return 0;
4054

4055
	/* Calculate and cache data rate for each plane */
4056
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4057 4058
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4059 4060 4061 4062

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4063
		plane_data_rate[plane_id] = rate;
4064 4065

		total_data_rate += rate;
4066 4067 4068 4069

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4070
		plane_y_data_rate[plane_id] = rate;
4071

4072
		total_data_rate += rate;
4073 4074 4075 4076 4077
	}

	return total_data_rate;
}

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4092
	if (y && fb->format->format != DRM_FORMAT_NV12)
4093 4094 4095
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4096
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4097 4098 4099
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4100 4101
		return 8;

4102 4103 4104 4105 4106
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4107 4108
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4109 4110

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4111
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4112 4113 4114 4115
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4116
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4117
		plane_bpp = fb->format->cpp[1];
4118
	else
4119
		plane_bpp = fb->format->cpp[0];
4120

4121
	if (drm_rotation_90_or_270(pstate->rotation)) {
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4145 4146 4147 4148 4149 4150 4151 4152
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4153
		enum plane_id plane_id = to_intel_plane(plane)->id;
4154

4155
		if (plane_id == PLANE_CURSOR)
4156 4157 4158 4159 4160
			continue;

		if (!pstate->visible)
			continue;

4161 4162
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4163 4164 4165 4166 4167
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4168
static int
4169
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4170 4171
		      struct skl_ddb_allocation *ddb /* out */)
{
4172
	struct drm_atomic_state *state = cstate->base.state;
4173
	struct drm_crtc *crtc = cstate->base.crtc;
4174 4175 4176
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4177
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4178
	uint16_t alloc_size, start;
4179 4180
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4181
	unsigned int total_data_rate;
4182
	enum plane_id plane_id;
4183
	int num_active;
4184 4185
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4186
	uint16_t total_min_blocks = 0;
4187

4188 4189 4190 4191
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4192 4193 4194
	if (WARN_ON(!state))
		return 0;

4195
	if (!cstate->base.active) {
4196
		alloc->start = alloc->end = 0;
4197 4198 4199
		return 0;
	}

4200
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4201
	alloc_size = skl_ddb_entry_size(alloc);
4202
	if (alloc_size == 0)
4203
		return 0;
4204

4205
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4206

4207 4208 4209 4210 4211
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4212

4213
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4214 4215
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4216 4217
	}

4218 4219 4220 4221 4222 4223 4224
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4225 4226
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4227 4228
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4229
	/*
4230 4231
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4232 4233 4234
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4235 4236 4237
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4238
	if (total_data_rate == 0)
4239
		return 0;
4240

4241
	start = alloc->start;
4242
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4243
		unsigned int data_rate, y_data_rate;
4244
		uint16_t plane_blocks, y_plane_blocks = 0;
4245

4246
		if (plane_id == PLANE_CURSOR)
4247 4248
			continue;

4249
		data_rate = plane_data_rate[plane_id];
4250 4251

		/*
4252
		 * allocation for (packed formats) or (uv-plane part of planar format):
4253 4254 4255
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4256 4257 4258
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4259

4260 4261
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4262 4263
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4264
		}
4265

4266 4267
		start += plane_blocks;

4268 4269 4270
		/*
		 * allocation for y_plane part of planar format:
		 */
4271
		y_data_rate = plane_y_data_rate[plane_id];
4272

4273 4274 4275 4276
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4277
		if (y_data_rate) {
4278 4279
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4280
		}
4281 4282

		start += y_plane_blocks;
4283 4284
	}

4285
	return 0;
4286 4287
}

4288 4289
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4290
 * for the read latency) and cpp should always be <= 8, so that
4291 4292 4293
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4294 4295 4296
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
	       uint8_t cpp, uint32_t latency)
4297
{
4298 4299
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4300 4301

	if (latency == 0)
4302
		return FP_16_16_MAX;
4303

4304
	wm_intermediate_val = latency * pixel_rate * cpp;
4305
	ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4306 4307 4308 4309

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4310 4311 4312
	return ret;
}

4313 4314 4315 4316
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4317
{
4318
	uint32_t wm_intermediate_val;
4319
	uint_fixed_16_16_t ret;
4320 4321

	if (latency == 0)
4322
		return FP_16_16_MAX;
4323 4324

	wm_intermediate_val = latency * pixel_rate;
4325 4326
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4327
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4328 4329 4330
	return ret;
}

4331 4332 4333 4334 4335 4336 4337 4338
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4339
		return u32_to_fixed16(0);
4340 4341 4342 4343

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4344
		return u32_to_fixed16(0);
4345 4346

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4347
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4348 4349 4350 4351

	return linetime_us;
}

4352 4353 4354
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4355 4356
{
	uint64_t adjusted_pixel_rate;
4357
	uint_fixed_16_16_t downscale_amount;
4358 4359

	/* Shouldn't reach here on disabled planes... */
4360
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4361 4362 4363 4364 4365 4366
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4367
	adjusted_pixel_rate = cstate->pixel_rate;
4368
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4369

4370 4371
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4372 4373
}

4374 4375 4376 4377 4378
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
			    struct skl_wm_params *wp)
4379
{
4380
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4381 4382
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4383
	uint32_t interm_pbpl;
4384 4385 4386
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4387

4388
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4389
		return 0;
4390

4391 4392 4393 4394 4395 4396 4397
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4398

4399
	if (plane->id == PLANE_CURSOR) {
4400
		wp->width = intel_pstate->base.crtc_w;
4401
	} else {
4402 4403 4404 4405 4406
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4407
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4408
	}
4409

4410 4411 4412 4413
	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							    fb->format->cpp[0];
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4414

4415
	if (drm_rotation_90_or_270(pstate->rotation)) {
4416

4417
		switch (wp->cpp) {
4418
		case 1:
4419
			wp->y_min_scanlines = 16;
4420 4421
			break;
		case 2:
4422
			wp->y_min_scanlines = 8;
4423 4424
			break;
		case 4:
4425
			wp->y_min_scanlines = 4;
4426
			break;
4427
		default:
4428
			MISSING_CASE(wp->cpp);
4429
			return -EINVAL;
4430 4431
		}
	} else {
4432
		wp->y_min_scanlines = 4;
4433 4434
	}

4435
	if (apply_memory_bw_wa)
4436
		wp->y_min_scanlines *= 2;
4437

4438 4439 4440 4441
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
					   wp->y_min_scanlines, 512);
4442 4443 4444 4445

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4446 4447 4448 4449 4450
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4451
	} else {
4452 4453
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4454 4455
	}

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4490 4491
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4492 4493 4494 4495 4496 4497 4498 4499 4500
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
				 wp->cpp, latency);
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4501
				 cstate->base.adjusted_mode.crtc_htotal,
4502
				 latency,
4503
				 wp->plane_blocks_per_line);
4504

4505 4506
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4507
	} else {
4508 4509
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
		     512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4510
			selected_result = method2;
4511
		else if (ddb_allocation >=
4512
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4513
			selected_result = min_fixed16(method1, method2);
4514
		else if (latency >= wp->linetime_us)
4515
			selected_result = min_fixed16(method1, method2);
4516 4517 4518
		else
			selected_result = method1;
	}
4519

4520
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4521
	res_lines = div_round_up_fixed16(selected_result,
4522
					 wp->plane_blocks_per_line);
4523

4524
	/* Display WA #1125: skl,bxt,kbl,glk */
4525 4526
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4527 4528

	/* Display WA #1126: skl,bxt,kbl,glk */
4529
	if (level >= 1 && level <= 7) {
4530 4531 4532 4533
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4534
		} else {
4535
			res_blocks++;
4536
		}
4537
	}
4538

4539 4540
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4557
	}
4558 4559 4560

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4561
	*enabled = true;
4562

4563
	return 0;
4564 4565
}

4566
static int
4567
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4568
		      struct skl_ddb_allocation *ddb,
4569 4570
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4571
		      const struct skl_wm_params *wm_params,
4572
		      struct skl_plane_wm *wm)
4573
{
4574 4575 4576 4577 4578
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4579
	int level, max_level = ilk_wm_max_level(dev_priv);
4580
	int ret;
L
Lyude 已提交
4581

4582 4583
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4584

4585 4586
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4587 4588 4589 4590 4591 4592
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4593
					   ddb_blocks,
4594
					   level,
4595
					   wm_params,
4596
					   &result->plane_res_b,
4597 4598
					   &result->plane_res_l,
					   &result->plane_en);
4599 4600 4601
		if (ret)
			return ret;
	}
4602 4603

	return 0;
4604 4605
}

4606
static uint32_t
4607
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4608
{
M
Mahesh Kumar 已提交
4609 4610
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4611
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4612
	uint32_t linetime_wm;
4613

4614
	linetime_us = intel_get_linetime_us(cstate);
4615

4616
	if (is_fixed16_zero(linetime_us))
4617
		return 0;
4618

4619
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4620

4621 4622 4623 4624
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4625 4626

	return linetime_wm;
4627 4628
}

4629
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4630 4631 4632
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4633
				      struct skl_wm_level *trans_wm /* out */)
4634
{
4635 4636 4637 4638 4639 4640
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4641
	if (!cstate->base.active)
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4676
		return;
4677
	}
4678

4679
exit:
L
Lyude 已提交
4680
	trans_wm->plane_en = false;
4681 4682
}

4683 4684 4685
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4686
{
4687
	struct drm_device *dev = cstate->base.crtc->dev;
4688
	struct drm_crtc_state *crtc_state = &cstate->base;
4689
	const struct drm_i915_private *dev_priv = to_i915(dev);
4690 4691
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4692
	struct skl_plane_wm *wm;
4693
	int ret;
4694

L
Lyude 已提交
4695 4696 4697 4698 4699 4700
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4701 4702 4703 4704
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4705
		struct skl_wm_params wm_params;
4706 4707
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4708 4709

		wm = &pipe_wm->planes[plane_id];
4710
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4711 4712 4713 4714 4715 4716
		memset(&wm_params, 0, sizeof(struct skl_wm_params));

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
						  intel_pstate, &wm_params);
		if (ret)
			return ret;
L
Lyude 已提交
4717

4718
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4719
					    intel_pstate, &wm_params, wm);
4720 4721
		if (ret)
			return ret;
4722 4723
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4724
	}
4725
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4726

4727
	return 0;
4728 4729
}

4730 4731
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4732 4733 4734 4735 4736 4737 4738 4739
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4755 4756 4757
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4758
			       enum plane_id plane_id)
4759 4760 4761 4762
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4763
	int level, max_level = ilk_wm_max_level(dev_priv);
4764 4765 4766
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4767
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4768
				   &wm->wm[level]);
4769
	}
4770
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4771
			   &wm->trans_wm);
4772

4773 4774 4775 4776
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4777 4778
}

4779 4780 4781
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4782 4783 4784 4785
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4786
	int level, max_level = ilk_wm_max_level(dev_priv);
4787 4788 4789
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4790 4791
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4792
	}
4793
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4794

4795
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4796
			    &ddb->plane[pipe][PLANE_CURSOR]);
4797 4798
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4813 4814
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4815
{
4816
	return a->start < b->end && b->start < a->end;
4817 4818
}

4819 4820
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
4821 4822
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4823
{
4824
	enum pipe pipe;
4825

4826 4827 4828
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
4829
			return true;
4830
	}
4831

4832
	return false;
4833 4834
}

4835
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4836
			      const struct skl_pipe_wm *old_pipe_wm,
4837
			      struct skl_pipe_wm *pipe_wm, /* out */
4838
			      struct skl_ddb_allocation *ddb, /* out */
4839
			      bool *changed /* out */)
4840
{
4841
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4842
	int ret;
4843

4844 4845 4846
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4847

4848
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4849 4850 4851
		*changed = false;
	else
		*changed = true;
4852

4853
	return 0;
4854 4855
}

4856 4857 4858 4859 4860 4861 4862
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4863
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4864 4865 4866 4867 4868
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4869
static int
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4905 4906 4907 4908 4909
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4910
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4911
	uint32_t realloc_pipes = pipes_modified(state);
4912 4913 4914 4915 4916 4917 4918 4919
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4920 4921 4922 4923 4924 4925
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4926 4927
		intel_state->active_pipe_changes = ~0;

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4951
	if (intel_state->active_pipe_changes) {
4952
		realloc_pipes = ~0;
4953 4954
		intel_state->wm_results.dirty_pipes = ~0;
	}
4955

4956 4957 4958 4959 4960 4961
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4962 4963 4964 4965 4966 4967
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
4968 4969 4970 4971 4972 4973 4974 4975

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
4976 4977 4978 4979 4980
	}

	return 0;
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5004
	int i;
5005

5006
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5007 5008
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5009

5010
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5011
			enum plane_id plane_id = intel_plane->id;
5012 5013
			const struct skl_ddb_entry *old, *new;

5014 5015
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5016 5017 5018 5019

			if (skl_ddb_entry_equal(old, new))
				continue;

5020 5021 5022 5023 5024
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5025 5026 5027 5028
		}
	}
}

5029 5030 5031 5032 5033
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
5034 5035
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
5036
	struct drm_device *dev = state->dev;
5037
	struct skl_pipe_wm *pipe_wm;
5038
	bool changed = false;
5039
	int ret, i;
5040

5041 5042 5043 5044 5045 5046 5047
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

5048 5049 5050 5051 5052 5053 5054 5055
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5056
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5057
		changed = true;
5058

5059 5060 5061
	if (!changed)
		return 0;

5062 5063 5064
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5065
	ret = skl_compute_ddb(state);
5066 5067 5068
	if (ret)
		return ret;

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5079
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5080 5081
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5082 5083
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5084 5085

		pipe_wm = &intel_cstate->wm.skl.optimal;
5086 5087
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5101 5102
	skl_print_wm_changes(state);

5103 5104 5105
	return 0;
}

5106 5107 5108 5109 5110 5111
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5112
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5113
	enum pipe pipe = crtc->pipe;
5114
	enum plane_id plane_id;
5115 5116 5117

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5118 5119

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5120

5121 5122 5123 5124 5125 5126 5127 5128
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5129 5130
}

5131 5132
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5133
{
5134
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5135
	struct drm_device *dev = intel_crtc->base.dev;
5136
	struct drm_i915_private *dev_priv = to_i915(dev);
5137
	struct skl_wm_values *results = &state->wm_results;
5138
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5139
	enum pipe pipe = intel_crtc->pipe;
5140

5141
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5142 5143
		return;

5144
	mutex_lock(&dev_priv->wm.wm_mutex);
5145

5146 5147
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5148 5149

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5150 5151

	mutex_unlock(&dev_priv->wm.wm_mutex);
5152 5153
}

5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5172
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5173
{
5174
	struct drm_device *dev = &dev_priv->drm;
5175
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5176
	struct ilk_wm_maximums max;
5177
	struct intel_wm_config config = {};
5178
	struct ilk_wm_values results = {};
5179
	enum intel_ddb_partitioning partitioning;
5180

5181 5182 5183 5184
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5185 5186

	/* 5/6 split only in single pipe config on IVB+ */
5187
	if (INTEL_GEN(dev_priv) >= 7 &&
5188 5189 5190
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5191

5192
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5193
	} else {
5194
		best_lp_wm = &lp_wm_1_2;
5195 5196
	}

5197
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5198
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5199

5200
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5201

5202
	ilk_write_wm_values(dev_priv, &results);
5203 5204
}

5205 5206
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5207
{
5208 5209
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5210

5211
	mutex_lock(&dev_priv->wm.wm_mutex);
5212
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5213 5214 5215
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5216

5217 5218
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5219 5220 5221
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5222

5223 5224
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5225
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5226 5227 5228
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5229 5230
}

5231 5232
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5233
{
5234 5235 5236 5237
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5238 5239
}

5240 5241
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5242
{
5243
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5244 5245
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5246 5247
	int level, max_level;
	enum plane_id plane_id;
5248
	uint32_t val;
5249

5250
	max_level = ilk_wm_max_level(dev_priv);
5251

5252 5253
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5254

5255
		for (level = 0; level <= max_level; level++) {
5256 5257
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5258 5259
			else
				val = I915_READ(CUR_WM(pipe, level));
5260

5261
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5262 5263
		}

5264 5265
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5266 5267 5268 5269
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5270 5271
	}

5272 5273
	if (!intel_crtc->active)
		return;
5274

5275
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5276 5277 5278 5279
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5280
	struct drm_i915_private *dev_priv = to_i915(dev);
5281
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5282
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5283
	struct drm_crtc *crtc;
5284 5285
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5286

5287
	skl_ddb_get_hw_state(dev_priv, ddb);
5288 5289 5290 5291 5292 5293
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5294
		if (intel_crtc->active)
5295 5296
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5297

5298 5299 5300 5301 5302 5303 5304
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5305 5306
}

5307 5308 5309
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5310
	struct drm_i915_private *dev_priv = to_i915(dev);
5311
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5312
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5314
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5315
	enum pipe pipe = intel_crtc->pipe;
5316
	static const i915_reg_t wm0_pipe_reg[] = {
5317 5318 5319 5320 5321 5322
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5323
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5324
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5325

5326 5327
	memset(active, 0, sizeof(*active));

5328
	active->pipe_enabled = intel_crtc->active;
5329 5330

	if (active->pipe_enabled) {
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5345
		int level, max_level = ilk_wm_max_level(dev_priv);
5346 5347 5348 5349 5350 5351 5352 5353 5354

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5355 5356

	intel_crtc->wm.active.ilk = *active;
5357 5358
}

5359 5360 5361 5362 5363
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5390 5391 5392 5393 5394 5395 5396 5397 5398
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5399
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5400
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5401
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5402
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5403
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5404
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5405
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5406 5407 5408 5409 5410
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5411 5412 5413
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5414 5415

	tmp = I915_READ(DSPFW2);
5416 5417 5418
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5419 5420 5421 5422 5423 5424

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5425 5426
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5427 5428

		tmp = I915_READ(DSPFW8_CHV);
5429 5430
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5431 5432

		tmp = I915_READ(DSPFW9_CHV);
5433 5434
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5435 5436 5437

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5438 5439 5440 5441 5442 5443 5444 5445 5446
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5447 5448
	} else {
		tmp = I915_READ(DSPFW7);
5449 5450
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5451 5452 5453

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5454 5455 5456 5457 5458 5459
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5460 5461 5462 5463 5464 5465
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5607 5608 5609 5610
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5611
	struct intel_crtc *crtc;
5612 5613 5614 5615 5616 5617 5618 5619
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5620
		mutex_lock(&dev_priv->pcu_lock);
5621 5622 5623 5624 5625

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5626 5627 5628 5629 5630 5631 5632 5633 5634
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5635
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5649

5650
		mutex_unlock(&dev_priv->pcu_lock);
5651 5652
	}

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5669
			struct g4x_pipe_wm *raw =
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5691
		crtc_state->wm.vlv.intermediate = *active;
5692

5693
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5694 5695 5696 5697 5698
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5699
	}
5700 5701 5702 5703 5704

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5729
			struct g4x_pipe_wm *raw =
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5770 5771
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5772
	struct drm_i915_private *dev_priv = to_i915(dev);
5773
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5774 5775
	struct drm_crtc *crtc;

5776 5777
	ilk_init_lp_watermarks(dev_priv);

5778
	for_each_crtc(dev, crtc)
5779 5780 5781 5782 5783 5784 5785
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5786
	if (INTEL_GEN(dev_priv) >= 7) {
5787 5788 5789
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5790

5791
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5792 5793
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5794
	else if (IS_IVYBRIDGE(dev_priv))
5795 5796
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5797 5798 5799 5800 5801

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5834
void intel_update_watermarks(struct intel_crtc *crtc)
5835
{
5836
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5837 5838

	if (dev_priv->display.update_wm)
5839
		dev_priv->display.update_wm(crtc);
5840 5841
}

5842 5843 5844 5845
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

5846 5847 5848 5849 5850 5851
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

5872
/*
5873 5874 5875 5876 5877 5878 5879 5880
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5881
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5882 5883 5884
{
	u16 rgvswctl;

5885
	lockdep_assert_held(&mchdev_lock);
5886

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5904
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5905
{
5906
	u32 rgvmodectl;
5907 5908
	u8 fmax, fmin, fstart, vstart;

5909 5910
	spin_lock_irq(&mchdev_lock);

5911 5912
	rgvmodectl = I915_READ(MEMMODECTL);

5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5933
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5934 5935
		PXVFREQ_PX_SHIFT;

5936 5937
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5938

5939 5940 5941
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5958
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5959
		DRM_ERROR("stuck trying to change perf mode\n");
5960
	mdelay(1);
5961

5962
	ironlake_set_drps(dev_priv, fstart);
5963

5964 5965
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5966
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5967
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5968
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5969 5970

	spin_unlock_irq(&mchdev_lock);
5971 5972
}

5973
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5974
{
5975 5976 5977 5978 5979
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5980 5981 5982 5983 5984 5985 5986 5987 5988

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5989
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5990
	mdelay(1);
5991 5992
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5993
	mdelay(1);
5994

5995
	spin_unlock_irq(&mchdev_lock);
5996 5997
}

5998 5999 6000 6001 6002
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6003
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6004
{
6005
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6006
	u32 limits;
6007

6008 6009 6010 6011 6012 6013
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6014
	if (INTEL_GEN(dev_priv) >= 9) {
6015 6016 6017
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6018
	} else {
6019 6020 6021
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6022
	}
6023 6024 6025 6026

	return limits;
}

6027 6028
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
6029
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6030
	int new_power;
6031 6032
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6033

6034 6035
	new_power = rps->power;
	switch (rps->power) {
6036
	case LOW_POWER:
6037 6038
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
6039 6040 6041 6042
			new_power = BETWEEN;
		break;

	case BETWEEN:
6043 6044
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
6045
			new_power = LOW_POWER;
6046 6047
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
6048 6049 6050 6051
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6052 6053
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
6054 6055 6056 6057
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6058
	if (val <= rps->min_freq_softlimit)
6059
		new_power = LOW_POWER;
6060
	if (val >= rps->max_freq_softlimit)
6061
		new_power = HIGH_POWER;
6062
	if (new_power == rps->power)
6063 6064 6065 6066 6067 6068
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6069 6070
		ei_up = 16000;
		threshold_up = 95;
6071 6072

		/* Downclock if less than 85% busy over 32ms */
6073 6074
		ei_down = 32000;
		threshold_down = 85;
6075 6076 6077 6078
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6079 6080
		ei_up = 13000;
		threshold_up = 90;
6081 6082

		/* Downclock if less than 75% busy over 32ms */
6083 6084
		ei_down = 32000;
		threshold_down = 75;
6085 6086 6087 6088
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6089 6090
		ei_up = 10000;
		threshold_up = 85;
6091 6092

		/* Downclock if less than 60% busy over 32ms */
6093 6094
		ei_down = 32000;
		threshold_down = 60;
6095 6096 6097
		break;
	}

6098 6099 6100 6101 6102 6103
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6104
	I915_WRITE(GEN6_RP_UP_EI,
6105
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6106
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6107 6108
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6109 6110

	I915_WRITE(GEN6_RP_DOWN_EI,
6111
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6112
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6123

6124
skip_hw_write:
6125 6126 6127 6128
	rps->power = new_power;
	rps->up_threshold = threshold_up;
	rps->down_threshold = threshold_down;
	rps->last_adj = 0;
6129 6130
}

6131 6132
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6133
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6134 6135
	u32 mask = 0;

6136
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6137
	if (val > rps->min_freq_softlimit)
6138
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6139
	if (val < rps->max_freq_softlimit)
6140
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6141

6142 6143
	mask &= dev_priv->pm_rps_events;

6144
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6145 6146
}

6147 6148 6149
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6150
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6151
{
6152 6153
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6154 6155 6156
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6157
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6158
		gen6_set_rps_thresholds(dev_priv, val);
6159

6160
		if (INTEL_GEN(dev_priv) >= 9)
6161 6162
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6163
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6164 6165 6166 6167 6168 6169 6170
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6171
	}
6172 6173 6174 6175

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6176
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6177
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6178

6179
	rps->cur_freq = val;
6180
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6181 6182

	return 0;
6183 6184
}

6185
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6186
{
6187 6188
	int err;

6189
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6190 6191 6192
		      "Odd GPU freq value\n"))
		val &= ~1;

6193 6194
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6195
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6196 6197 6198 6199
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6200
		gen6_set_rps_thresholds(dev_priv, val);
6201
	}
6202

6203
	dev_priv->gt_pm.rps.cur_freq = val;
6204
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6205 6206

	return 0;
6207 6208
}

6209
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6210 6211
 *
 * * If Gfx is Idle, then
6212 6213 6214
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6215 6216 6217
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6218 6219
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6220
	int err;
6221

6222
	if (rps->cur_freq <= val)
6223 6224
		return;

6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6237
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6238
	err = valleyview_set_rps(dev_priv, val);
6239
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6240 6241 6242

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6243 6244
}

6245 6246
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6247 6248
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6249
	mutex_lock(&dev_priv->pcu_lock);
6250
	if (rps->enabled) {
6251 6252
		u8 freq;

6253
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6254 6255
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6256
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6257

6258 6259
		gen6_enable_rps_interrupts(dev_priv);

6260 6261 6262
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6263 6264
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6265

6266
		if (intel_set_rps(dev_priv,
6267
				  clamp(freq,
6268 6269
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6270
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6271
	}
6272
	mutex_unlock(&dev_priv->pcu_lock);
6273 6274
}

6275 6276
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6277 6278
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6279 6280 6281 6282 6283 6284 6285
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6286
	mutex_lock(&dev_priv->pcu_lock);
6287
	if (rps->enabled) {
6288
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6289
			vlv_set_rps_idle(dev_priv);
6290
		else
6291 6292
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6293 6294
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6295
	}
6296
	mutex_unlock(&dev_priv->pcu_lock);
6297 6298
}

6299
void gen6_rps_boost(struct drm_i915_gem_request *rq,
6300
		    struct intel_rps_client *rps_client)
6301
{
6302
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6303
	unsigned long flags;
6304 6305
	bool boost;

6306 6307 6308
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6309
	if (!rps->enabled)
6310
		return;
6311

6312
	boost = false;
6313
	spin_lock_irqsave(&rq->lock, flags);
6314
	if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6315
		atomic_inc(&rps->num_waiters);
6316 6317
		rq->waitboost = true;
		boost = true;
6318
	}
6319
	spin_unlock_irqrestore(&rq->lock, flags);
6320 6321 6322
	if (!boost)
		return;

6323 6324
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6325

6326
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6327 6328
}

6329
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6330
{
6331
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6332 6333
	int err;

6334
	lockdep_assert_held(&dev_priv->pcu_lock);
6335 6336
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6337

6338 6339
	if (!rps->enabled) {
		rps->cur_freq = val;
6340 6341 6342
		return 0;
	}

6343
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6344
		err = valleyview_set_rps(dev_priv, val);
6345
	else
6346 6347 6348
		err = gen6_set_rps(dev_priv, val);

	return err;
6349 6350
}

6351
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6352 6353
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6354
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6355 6356
}

6357
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6358 6359 6360 6361
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6362
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6363 6364
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6365 6366 6367 6368
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6369
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6370
	I915_WRITE(GEN6_RP_CONTROL, 0);
6371 6372
}

6373
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6374 6375 6376 6377
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6378 6379 6380 6381 6382
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6383
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6384
{
6385
	/* We're doing forcewake before Disabling RC6,
6386
	 * This what the BIOS expects when going into suspend */
6387
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6388

6389
	I915_WRITE(GEN6_RC_CONTROL, 0);
6390

6391
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6392 6393
}

6394 6395 6396 6397 6398
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6399
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6400
{
6401
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6402 6403 6404 6405 6406
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6407
	if (HAS_RC6p(dev_priv))
6408 6409 6410 6411 6412
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6413 6414

	else
6415 6416
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6417 6418
}

6419
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6420
{
6421
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6422 6423
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6435 6436

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6437
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6438 6439 6440 6441 6442 6443 6444 6445
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6446 6447 6448
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6449
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6450 6451 6452 6453 6454 6455 6456
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6457
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6458 6459 6460
		enable_rc6 = false;
	}

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6475 6476 6477 6478 6479 6480
		enable_rc6 = false;
	}

	return enable_rc6;
}

6481
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6482
{
6483
	/* No RC6 before Ironlake and code is gone for ilk. */
6484
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6485 6486
		return 0;

6487 6488 6489
	if (!enable_rc6)
		return 0;

6490
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6491 6492 6493 6494
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6495
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6496 6497 6498
	if (enable_rc6 >= 0) {
		int mask;

6499
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6500 6501 6502 6503 6504 6505
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6506 6507 6508
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6509 6510 6511

		return enable_rc6 & mask;
	}
6512

6513
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6514
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6515 6516

	return INTEL_RC6_ENABLE;
6517 6518
}

6519
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6520
{
6521 6522
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6523
	/* All of these values are in units of 50MHz */
6524

6525
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6526
	if (IS_GEN9_LP(dev_priv)) {
6527
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6528 6529 6530
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6531
	} else {
6532
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6533 6534 6535
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6536
	}
6537
	/* hw_max = RP0 until we check for overclocking */
6538
	rps->max_freq = rps->rp0_freq;
6539

6540
	rps->efficient_freq = rps->rp1_freq;
6541
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6542
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6543 6544 6545 6546 6547
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6548
			rps->efficient_freq =
6549 6550
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6551 6552
					rps->min_freq,
					rps->max_freq);
6553 6554
	}

6555
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6556
		/* Store the frequency values in 16.66 MHZ units, which is
6557 6558
		 * the natural hardware unit for SKL
		 */
6559 6560 6561 6562 6563
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6564
	}
6565 6566
}

6567
static void reset_rps(struct drm_i915_private *dev_priv,
6568
		      int (*set)(struct drm_i915_private *, u8))
6569
{
6570 6571
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6572 6573

	/* force a reset */
6574 6575
	rps->power = -1;
	rps->cur_freq = -1;
6576

6577 6578
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6579 6580
}

J
Jesse Barnes 已提交
6581
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6582
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6583 6584 6585
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6586 6587
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6588
		GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6589 6590 6591 6592 6593

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6594 6595
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6596 6597 6598
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6599
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6600 6601 6602 6603

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6604
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6605
{
6606
	struct intel_engine_cs *engine;
6607
	enum intel_engine_id id;
R
Rodrigo Vivi 已提交
6608
	u32 rc6_mode, rc6_mask = 0;
Z
Zhe Wang 已提交
6609 6610 6611 6612 6613 6614

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6615
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6616 6617 6618 6619 6620

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6621 6622 6623 6624 6625 6626 6627 6628
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6629
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6630
	} else {
6631
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6632 6633
	}

Z
Zhe Wang 已提交
6634 6635
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6636
	for_each_engine(engine, dev_priv, id)
6637
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6638

6639
	if (HAS_GUC(dev_priv))
6640 6641
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6642 6643
	I915_WRITE(GEN6_RC_SLEEP, 0);

6644 6645 6646 6647
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6648
	/* 3a: Enable RC6 */
6649
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6650
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6651
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6652
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6653 6654 6655 6656 6657 6658 6659

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6660
	I915_WRITE(GEN6_RC_CONTROL,
R
Rodrigo Vivi 已提交
6661
		   GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
Z
Zhe Wang 已提交
6662

6663 6664
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6665
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6666
	 */
6667
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6668 6669 6670 6671
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6672

6673
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6674 6675
}

6676
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6677
{
6678
	struct intel_engine_cs *engine;
6679
	enum intel_engine_id id;
6680
	uint32_t rc6_mask = 0;
6681 6682 6683 6684

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6685
	/* 1b: Get forcewake during program sequence. Although the driver
6686
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6687
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6688 6689 6690 6691 6692 6693 6694 6695

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6696
	for_each_engine(engine, dev_priv, id)
6697
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6698
	I915_WRITE(GEN6_RC_SLEEP, 0);
6699
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6700 6701

	/* 3: Enable RC6 */
6702
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6703
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6704
	intel_print_rc6_info(dev_priv, rc6_mask);
6705 6706 6707 6708

	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			GEN7_RC_CTL_TO_MODE |
			rc6_mask);
6709

6710 6711 6712 6713 6714
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6715 6716
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6717 6718 6719
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
6720
	I915_WRITE(GEN6_RPNSWREQ,
6721
		   HSW_FREQUENCY(rps->rp1_freq));
6722
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6723
		   HSW_FREQUENCY(rps->rp1_freq));
6724 6725 6726 6727 6728
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6729 6730
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6731 6732 6733 6734 6735 6736 6737

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6738

6739
	/* 2: Enable RPS */
6740 6741 6742 6743 6744 6745 6746 6747
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6748
	reset_rps(dev_priv, gen6_set_rps);
6749

6750
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6751 6752
}

6753
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6754
{
6755
	struct intel_engine_cs *engine;
6756
	enum intel_engine_id id;
6757
	u32 rc6vids, rc6_mask = 0;
6758 6759
	u32 gtfifodbg;
	int rc6_mode;
6760
	int ret;
6761 6762 6763 6764

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6765 6766
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6767 6768 6769 6770
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6771
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6782
	for_each_engine(engine, dev_priv, id)
6783
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6784 6785 6786

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6787
	if (IS_IVYBRIDGE(dev_priv))
6788 6789 6790
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6791
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6792 6793
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6794
	/* Check if we are enabling RC6 */
6795
	rc6_mode = intel_rc6_enabled();
6796 6797 6798
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6799
	/* We don't use those on Haswell */
6800
	if (!IS_HASWELL(dev_priv)) {
6801 6802
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6803

6804 6805 6806
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6807

6808
	intel_print_rc6_info(dev_priv, rc6_mask);
6809 6810 6811 6812 6813 6814

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6815 6816
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6817
	if (IS_GEN6(dev_priv) && ret) {
6818
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6819
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6820 6821 6822 6823 6824 6825 6826 6827 6828
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6829
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6830 6831
}

6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6851
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6852
{
6853
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6854
	int min_freq = 15;
6855 6856
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6857
	unsigned int max_gpu_freq, min_gpu_freq;
6858
	int scaling_factor = 180;
6859
	struct cpufreq_policy *policy;
6860

6861
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6862

6863 6864 6865 6866 6867 6868 6869 6870 6871
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6872
		max_ia_freq = tsc_khz;
6873
	}
6874 6875 6876 6877

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6878
	min_ring_freq = I915_READ(DCLK) & 0xf;
6879 6880
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6881

6882
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6883
		/* Convert GT frequency to 50 HZ units */
6884 6885
		min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6886
	} else {
6887 6888
		min_gpu_freq = rps->min_freq;
		max_gpu_freq = rps->max_freq;
6889 6890
	}

6891 6892 6893 6894 6895
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6896 6897
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6898 6899
		unsigned int ia_freq = 0, ring_freq = 0;

6900
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6901 6902 6903 6904 6905
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6906
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6907 6908
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6909
		} else if (IS_HASWELL(dev_priv)) {
6910
			ring_freq = mult_frac(gpu_freq, 5, 4);
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6927

B
Ben Widawsky 已提交
6928 6929
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6930 6931 6932
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6933 6934 6935
	}
}

6936
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6937 6938 6939
{
	u32 val, rp0;

6940
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6941

6942
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6957
	}
6958 6959 6960

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6974 6975 6976 6977
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6978 6979 6980
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6981 6982 6983
	return rp1;
}

6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7006
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7007 7008 7009
{
	u32 val, rp0;

7010
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7023
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7024
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7025
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7026 7027 7028 7029 7030
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7031
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7032
{
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7044 7045
}

7046 7047 7048 7049 7050 7051 7052 7053 7054
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

7055 7056 7057 7058 7059 7060 7061 7062 7063

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7064
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7065
{
7066
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
7067
	unsigned long pctx_paddr, paddr;
7068 7069 7070 7071 7072
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7073
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7074
		paddr = (dev_priv->mm.stolen_base +
7075
			 (ggtt->stolen_size - pctx_size));
7076 7077 7078 7079

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7080 7081

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7082 7083
}

7084
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7097
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7098
								      pcbr_offset,
7099
								      I915_GTT_OFFSET_NONE,
7100 7101 7102 7103
								      pctx_size);
		goto out;
	}

7104 7105
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7106 7107 7108 7109 7110 7111 7112 7113
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7114
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7115 7116
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7117
		goto out;
7118 7119 7120 7121 7122 7123
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7124
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7125 7126 7127
	dev_priv->vlv_pctx = pctx;
}

7128
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7129 7130 7131 7132
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7133
	i915_gem_object_put(dev_priv->vlv_pctx);
7134 7135 7136
	dev_priv->vlv_pctx = NULL;
}

7137 7138
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7139
	dev_priv->gt_pm.rps.gpll_ref_freq =
7140 7141 7142 7143 7144
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7145
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7146 7147
}

7148
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7149
{
7150
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7151
	u32 val;
7152

7153
	valleyview_setup_pctx(dev_priv);
7154

7155 7156
	vlv_init_gpll_ref_freq(dev_priv);

7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7170
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7171

7172 7173
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7174
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7175 7176
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7177

7178
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7179
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7180 7181
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7182

7183
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7184
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7185 7186
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7187

7188
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7189
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7190 7191
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7192 7193
}

7194
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7195
{
7196
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7197
	u32 val;
7198

7199
	cherryview_setup_pctx(dev_priv);
7200

7201 7202
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7203
	mutex_lock(&dev_priv->sb_lock);
7204
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7205
	mutex_unlock(&dev_priv->sb_lock);
7206

7207 7208 7209 7210
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7211
	default:
7212 7213 7214
		dev_priv->mem_freq = 1600;
		break;
	}
7215
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7216

7217 7218
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7219
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7220 7221
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7222

7223
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7224
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7225 7226
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7227

7228
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7229
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7230 7231
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7232

7233
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7234
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7235 7236
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7237

7238 7239
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7240
		  "Odd GPU freq values\n");
7241 7242
}

7243
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7244
{
7245
	valleyview_cleanup_pctx(dev_priv);
7246 7247
}

7248
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7249
{
7250
	struct intel_engine_cs *engine;
7251
	enum intel_engine_id id;
7252
	u32 gtfifodbg, rc6_mode = 0, pcbr;
7253

7254 7255
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7266
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7267

7268 7269 7270
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7271 7272 7273 7274 7275
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7276
	for_each_engine(engine, dev_priv, id)
7277
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7278 7279
	I915_WRITE(GEN6_RC_SLEEP, 0);

7280 7281
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7282

7283
	/* Allows RC6 residency counter to work */
7284 7285 7286 7287 7288 7289 7290 7291 7292
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7293
	if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7294
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7295
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7296 7297 7298

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7309
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7310 7311 7312 7313 7314 7315 7316
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7317
	/* 2: Enable RPS */
7318 7319
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7320
		   GEN6_RP_MEDIA_IS_GFX |
7321 7322 7323 7324
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7325 7326 7327 7328 7329 7330
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7331 7332
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7333 7334 7335
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7336
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7337 7338
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7339
	reset_rps(dev_priv, valleyview_set_rps);
7340

7341
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7342 7343
}

7344
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7345
{
7346
	struct intel_engine_cs *engine;
7347
	enum intel_engine_id id;
7348
	u32 gtfifodbg, rc6_mode = 0;
7349

7350 7351
	valleyview_check_pctx(dev_priv);

7352 7353
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7354 7355
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7356 7357 7358
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7359
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7360

7361 7362 7363
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7364 7365 7366 7367
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7368
	for_each_engine(engine, dev_priv, id)
7369
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7370

7371
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7372

7373
	/* Allows RC6 residency counter to work */
7374
	I915_WRITE(VLV_COUNTER_CONTROL,
7375 7376
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7377
				      VLV_RENDER_RC0_COUNT_EN |
7378 7379
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7380

7381
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7382
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7383

7384
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7385

7386
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7387

7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7413 7414 7415 7416 7417 7418
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7419
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7420

7421 7422 7423
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7424
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7425 7426
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7427
	reset_rps(dev_priv, valleyview_set_rps);
7428

7429
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7430 7431
}

7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7461
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7462 7463 7464 7465 7466 7467
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7468
	lockdep_assert_held(&mchdev_lock);
7469

7470
	diff1 = now - dev_priv->ips.last_time1;
7471 7472 7473 7474 7475 7476 7477

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7478
		return dev_priv->ips.chipset_power;
7479 7480 7481 7482 7483 7484 7485 7486

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7487 7488
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7489 7490
		diff += total_count;
	} else {
7491
		diff = total_count - dev_priv->ips.last_count1;
7492 7493 7494
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7495 7496
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7507 7508
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7509

7510
	dev_priv->ips.chipset_power = ret;
7511 7512 7513 7514

	return ret;
}

7515 7516 7517 7518
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7519
	if (INTEL_INFO(dev_priv)->gen != 5)
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7558
{
7559 7560 7561
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7562
	if (INTEL_INFO(dev_priv)->is_mobile)
7563 7564 7565
		return vm > 0 ? vm : 0;

	return vd;
7566 7567
}

7568
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7569
{
7570
	u64 now, diff, diffms;
7571 7572
	u32 count;

7573
	lockdep_assert_held(&mchdev_lock);
7574

7575 7576 7577
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7578 7579 7580 7581 7582 7583 7584

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7585 7586
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7587 7588
		diff += count;
	} else {
7589
		diff = count - dev_priv->ips.last_count2;
7590 7591
	}

7592 7593
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7594 7595 7596 7597

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7598
	dev_priv->ips.gfx_power = diff;
7599 7600
}

7601 7602
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7603
	if (INTEL_INFO(dev_priv)->gen != 5)
7604 7605
		return;

7606
	spin_lock_irq(&mchdev_lock);
7607 7608 7609

	__i915_update_gfx_val(dev_priv);

7610
	spin_unlock_irq(&mchdev_lock);
7611 7612
}

7613
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7614 7615 7616 7617
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7618
	lockdep_assert_held(&mchdev_lock);
7619

7620
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7640
	corr2 = (corr * dev_priv->ips.corr);
7641 7642 7643 7644

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7645
	__i915_update_gfx_val(dev_priv);
7646

7647
	return dev_priv->ips.gfx_power + state2;
7648 7649
}

7650 7651 7652 7653
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7654
	if (INTEL_INFO(dev_priv)->gen != 5)
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7677
	spin_lock_irq(&mchdev_lock);
7678 7679 7680 7681
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7682 7683
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7684 7685 7686 7687

	ret = chipset_val + graphics_val;

out_unlock:
7688
	spin_unlock_irq(&mchdev_lock);
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7704
	spin_lock_irq(&mchdev_lock);
7705 7706 7707 7708 7709 7710
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7711 7712
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7713 7714

out_unlock:
7715
	spin_unlock_irq(&mchdev_lock);
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7732
	spin_lock_irq(&mchdev_lock);
7733 7734 7735 7736 7737 7738
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7739 7740
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7741 7742

out_unlock:
7743
	spin_unlock_irq(&mchdev_lock);
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7758
	spin_lock_irq(&mchdev_lock);
7759 7760
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7761
	spin_unlock_irq(&mchdev_lock);
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7778
	spin_lock_irq(&mchdev_lock);
7779 7780 7781 7782 7783 7784
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7785
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7786

7787
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7788 7789 7790
		ret = false;

out_unlock:
7791
	spin_unlock_irq(&mchdev_lock);
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7819 7820
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7821
	spin_lock_irq(&mchdev_lock);
7822
	i915_mch_dev = dev_priv;
7823
	spin_unlock_irq(&mchdev_lock);
7824 7825 7826 7827 7828 7829

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7830
	spin_lock_irq(&mchdev_lock);
7831
	i915_mch_dev = NULL;
7832
	spin_unlock_irq(&mchdev_lock);
7833
}
7834

7835
static void intel_init_emon(struct drm_i915_private *dev_priv)
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7852
		I915_WRITE(PEW(i), 0);
7853
	for (i = 0; i < 3; i++)
7854
		I915_WRITE(DEW(i), 0);
7855 7856 7857

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7858
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7879
		I915_WRITE(PXW(i), val);
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7895
		I915_WRITE(PXWL(i), 0);
7896 7897 7898 7899 7900 7901

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7902
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7903 7904
}

7905
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7906
{
7907 7908
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7909 7910 7911 7912
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
7913
	if (!i915_modparams.enable_rc6) {
7914 7915 7916
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7917

7918
	mutex_lock(&dev_priv->pcu_lock);
7919 7920

	/* Initialize RPS limits (for userspace) */
7921 7922 7923 7924
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7925
	else if (INTEL_GEN(dev_priv) >= 6)
7926 7927 7928
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7929 7930
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7931

7932 7933
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7934 7935

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7936
		rps->min_freq_softlimit =
7937
			max_t(int,
7938
			      rps->efficient_freq,
7939 7940
			      intel_freq_opcode(dev_priv, 450));

7941 7942 7943 7944 7945 7946 7947 7948
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7949
					 (rps->max_freq & 0xff) * 50,
7950
					 (params & 0xff) * 50);
7951
			rps->max_freq = params & 0xff;
7952 7953 7954
		}
	}

7955
	/* Finally allow us to boost to max by default */
7956
	rps->boost_freq = rps->max_freq;
7957

7958
	mutex_unlock(&dev_priv->pcu_lock);
7959 7960
}

7961
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7962
{
7963
	if (IS_VALLEYVIEW(dev_priv))
7964
		valleyview_cleanup_gt_powersave(dev_priv);
7965

7966
	if (!i915_modparams.enable_rc6)
7967
		intel_runtime_pm_put(dev_priv);
7968 7969
}

7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7986 7987
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
7988 7989
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7990
	intel_disable_gt_powersave(dev_priv);
7991 7992

	gen6_reset_rps_interrupts(dev_priv);
7993 7994
}

7995 7996 7997 7998
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

7999 8000 8001
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8002
	/* Currently there is no HW configuration to be done to disable. */
8003 8004

	i915->gt_pm.llc_pstate.enabled = false;
8005 8006
}

8007
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8008
{
8009
	lockdep_assert_held(&dev_priv->pcu_lock);
8010

8011 8012 8013
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8014 8015 8016 8017 8018 8019 8020 8021
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8022 8023

	dev_priv->gt_pm.rc6.enabled = false;
8024
}
8025

8026 8027 8028
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8029

8030 8031 8032
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8033
	if (INTEL_GEN(dev_priv) >= 9)
8034
		gen9_disable_rps(dev_priv);
8035
	else if (IS_CHERRYVIEW(dev_priv))
8036
		cherryview_disable_rps(dev_priv);
8037
	else if (IS_VALLEYVIEW(dev_priv))
8038
		valleyview_disable_rps(dev_priv);
8039
	else if (INTEL_GEN(dev_priv) >= 6)
8040
		gen6_disable_rps(dev_priv);
8041
	else if (IS_IRONLAKE_M(dev_priv))
8042
		ironlake_disable_drps(dev_priv);
8043 8044

	dev_priv->gt_pm.rps.enabled = false;
8045 8046 8047 8048 8049
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8050

8051 8052
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8053 8054 8055
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8056
	mutex_unlock(&dev_priv->pcu_lock);
8057 8058
}

8059 8060 8061 8062
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8063 8064 8065
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8066
	gen6_update_ring_freq(i915);
8067 8068

	i915->gt_pm.llc_pstate.enabled = true;
8069 8070
}

8071
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8072
{
8073
	lockdep_assert_held(&dev_priv->pcu_lock);
8074

8075 8076 8077
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8078 8079 8080 8081 8082 8083 8084 8085 8086 8087
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8088 8089

	dev_priv->gt_pm.rc6.enabled = true;
8090
}
8091

8092 8093 8094
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8095

8096
	lockdep_assert_held(&dev_priv->pcu_lock);
8097

8098 8099 8100
	if (rps->enabled)
		return;

8101 8102 8103 8104
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8105
	} else if (INTEL_GEN(dev_priv) >= 9) {
8106 8107 8108
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8109
	} else if (INTEL_GEN(dev_priv) >= 6) {
8110
		gen6_enable_rps(dev_priv);
8111 8112 8113
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8114
	}
8115

8116 8117
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8118

8119 8120
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8121 8122

	rps->enabled = true;
8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

	intel_enable_rc6(dev_priv);
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8137

8138
	mutex_unlock(&dev_priv->pcu_lock);
8139
}
I
Imre Deak 已提交
8140

8141
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8142 8143 8144 8145 8146 8147 8148 8149 8150
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8151
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8152
{
8153
	enum pipe pipe;
8154

8155
	for_each_pipe(dev_priv, pipe) {
8156 8157 8158
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8159 8160 8161

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8162 8163 8164
	}
}

8165
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8166
{
8167
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8168

8169 8170 8171 8172
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8173 8174 8175
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8193
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8194 8195 8196
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8197

8198 8199 8200 8201 8202 8203 8204
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8205
	if (IS_IRONLAKE_M(dev_priv)) {
8206
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8207 8208 8209 8210 8211 8212 8213 8214
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8215 8216
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8217 8218 8219 8220 8221 8222
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8223

8224
	/* WaDisableRenderCachePipelinedFlush:ilk */
8225 8226
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8227

8228 8229 8230
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8231
	g4x_disable_trickle_feed(dev_priv);
8232

8233
	ibx_init_clock_gating(dev_priv);
8234 8235
}

8236
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8237 8238
{
	int pipe;
8239
	uint32_t val;
8240 8241 8242 8243 8244 8245

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8246 8247 8248
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8249 8250
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8251 8252 8253
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8254
	for_each_pipe(dev_priv, pipe) {
8255 8256 8257
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8258
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8259
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8260 8261 8262
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8263 8264
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8265
	/* WADP0ClockGatingDisable */
8266
	for_each_pipe(dev_priv, pipe) {
8267 8268 8269
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8270 8271
}

8272
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8273 8274 8275 8276
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8277 8278 8279
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8280 8281
}

8282
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8283
{
8284
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8285

8286
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8287 8288 8289 8290 8291

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8292
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8293 8294 8295
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8296 8297 8298
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8299 8300 8301
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8302 8303 8304 8305
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8306 8307
	 */
	I915_WRITE(GEN6_GT_MODE,
8308
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8309

8310
	I915_WRITE(CACHE_MODE_0,
8311
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8327
	 *
8328 8329
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8330 8331 8332 8333 8334
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8335
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8336 8337
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8338

8339 8340 8341 8342 8343 8344 8345 8346
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8347 8348 8349 8350 8351 8352 8353 8354
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8355 8356
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8357 8358 8359 8360 8361 8362 8363
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8364 8365 8366 8367
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8368

8369
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8370

8371
	cpt_init_clock_gating(dev_priv);
8372

8373
	gen6_check_mch_setup(dev_priv);
8374 8375 8376 8377 8378 8379
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8380
	/*
8381
	 * WaVSThreadDispatchOverride:ivb,vlv
8382 8383 8384 8385
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8386 8387 8388 8389 8390 8391 8392 8393
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8394
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8395 8396 8397 8398 8399
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8400
	if (HAS_PCH_LPT_LP(dev_priv))
8401 8402 8403
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8404 8405

	/* WADPOClockGatingDisable:hsw */
8406 8407
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8408
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8409 8410
}

8411
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8412
{
8413
	if (HAS_PCH_LPT_LP(dev_priv)) {
8414 8415 8416 8417 8418 8419 8420
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8421 8422 8423 8424 8425
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8426
	u32 val;
8427 8428 8429 8430 8431

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8432 8433 8434 8435 8436
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8447 8448 8449 8450 8451 8452
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

	/* Wa #1181 */
8453 8454
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8455 8456
}

8457
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8458
{
8459
	u32 val;
8460 8461
	cnp_init_clock_gating(dev_priv);

8462 8463 8464 8465
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8466 8467 8468 8469 8470 8471 8472 8473
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8474 8475 8476
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8477 8478
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8479 8480
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8481 8482 8483 8484 8485 8486

	/* Display WA #1133: WaFbcSkipSegments:cnl */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
8487 8488
}

8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8499
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8500
{
8501
	gen9_init_clock_gating(dev_priv);
8502 8503 8504 8505 8506

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8507 8508 8509 8510 8511

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8512

8513
	/* WaFbcNukeOnHostModify:kbl */
8514 8515
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8516 8517
}

8518
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8519
{
8520
	gen9_init_clock_gating(dev_priv);
8521 8522 8523 8524

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8525 8526 8527 8528

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8529 8530
}

8531
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8532
{
8533 8534 8535
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8536
	enum pipe pipe;
B
Ben Widawsky 已提交
8537

8538
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8539
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8540

8541
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8542 8543 8544
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8545
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8546
	for_each_pipe(dev_priv, pipe) {
8547
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8548
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8549
			   BDW_DPRS_MASK_VBLANK_SRD);
8550
	}
8551

8552 8553 8554 8555 8556
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8557

8558 8559
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8560 8561 8562 8563

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8564

8565 8566
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8567

8568 8569
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8570

8571 8572 8573 8574
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8575
	lpt_init_clock_gating(dev_priv);
8576 8577 8578 8579 8580 8581 8582 8583

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8584 8585
}

8586
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8587
{
8588 8589 8590 8591 8592
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8593
	/* This is required by WaCatErrorRejectionIssue:hsw */
8594 8595 8596 8597
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8598 8599 8600
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8601

8602 8603 8604
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8605 8606 8607 8608
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8609
	/* WaDisable4x2SubspanOptimization:hsw */
8610 8611
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8612

8613 8614 8615
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8616 8617 8618 8619
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8620 8621
	 */
	I915_WRITE(GEN7_GT_MODE,
8622
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8623

8624 8625 8626 8627
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8628
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8629 8630
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8631
	lpt_init_clock_gating(dev_priv);
8632 8633
}

8634
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8635
{
8636
	uint32_t snpcr;
8637

8638
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8639

8640
	/* WaDisableEarlyCull:ivb */
8641 8642 8643
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8644
	/* WaDisableBackToBackFlipFix:ivb */
8645 8646 8647 8648
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8649
	/* WaDisablePSDDualDispatchEnable:ivb */
8650
	if (IS_IVB_GT1(dev_priv))
8651 8652 8653
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8654 8655 8656
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8657
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8658 8659 8660
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8661
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8662 8663 8664
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8665
		   GEN7_WA_L3_CHICKEN_MODE);
8666
	if (IS_IVB_GT1(dev_priv))
8667 8668
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8669 8670 8671 8672
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8673 8674
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8675
	}
8676

8677
	/* WaForceL3Serialization:ivb */
8678 8679 8680
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8681
	/*
8682
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8683
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8684 8685
	 */
	I915_WRITE(GEN6_UCGCTL2,
8686
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8687

8688
	/* This is required by WaCatErrorRejectionIssue:ivb */
8689 8690 8691 8692
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8693
	g4x_disable_trickle_feed(dev_priv);
8694 8695

	gen7_setup_fixed_func_scheduler(dev_priv);
8696

8697 8698 8699 8700 8701
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8702

8703
	/* WaDisable4x2SubspanOptimization:ivb */
8704 8705
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8706

8707 8708 8709
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8710 8711 8712 8713
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8714 8715
	 */
	I915_WRITE(GEN7_GT_MODE,
8716
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8717

8718 8719 8720 8721
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8722

8723
	if (!HAS_PCH_NOP(dev_priv))
8724
		cpt_init_clock_gating(dev_priv);
8725

8726
	gen6_check_mch_setup(dev_priv);
8727 8728
}

8729
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8730
{
8731
	/* WaDisableEarlyCull:vlv */
8732 8733 8734
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8735
	/* WaDisableBackToBackFlipFix:vlv */
8736 8737 8738 8739
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8740
	/* WaPsdDispatchEnable:vlv */
8741
	/* WaDisablePSDDualDispatchEnable:vlv */
8742
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8743 8744
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8745

8746 8747 8748
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8749
	/* WaForceL3Serialization:vlv */
8750 8751 8752
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8753
	/* WaDisableDopClockGating:vlv */
8754 8755 8756
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8757
	/* This is required by WaCatErrorRejectionIssue:vlv */
8758 8759 8760 8761
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8762 8763
	gen7_setup_fixed_func_scheduler(dev_priv);

8764
	/*
8765
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8766
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8767 8768
	 */
	I915_WRITE(GEN6_UCGCTL2,
8769
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8770

8771 8772 8773 8774 8775
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8776

8777 8778 8779 8780
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8781 8782
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8783

8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8795 8796 8797 8798 8799 8800
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8801
	/*
8802
	 * WaDisableVLVClockGating_VBIIssue:vlv
8803 8804 8805
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8806
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8807 8808
}

8809
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8810
{
8811 8812 8813 8814 8815
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8816 8817 8818 8819

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8820 8821 8822 8823

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8824 8825 8826 8827

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8828

8829 8830 8831 8832 8833 8834 8835
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8836 8837 8838 8839 8840
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8841 8842
}

8843
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8855
	if (IS_GM45(dev_priv))
8856 8857
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8858 8859 8860 8861

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8862

8863 8864 8865
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8866
	g4x_disable_trickle_feed(dev_priv);
8867 8868
}

8869
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8870 8871 8872 8873 8874 8875
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8876 8877
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8878 8879 8880

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8881 8882
}

8883
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8884 8885 8886 8887 8888 8889 8890
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8891 8892
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8893 8894 8895

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8896 8897
}

8898
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8899 8900 8901 8902 8903 8904
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8905

8906
	if (IS_PINEVIEW(dev_priv))
8907
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8908 8909 8910

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8911 8912

	/* interrupts should cause a wake up from C3 */
8913
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8914 8915 8916

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8917 8918 8919

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8920 8921
}

8922
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8923 8924
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8925 8926 8927 8928

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8929 8930 8931

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8932 8933
}

8934
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8935
{
8936 8937 8938
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8939 8940
}

8941
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8942
{
8943
	dev_priv->display.init_clock_gating(dev_priv);
8944 8945
}

8946
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8947
{
8948 8949
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8950 8951
}

8952
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8968
	if (IS_CANNONLAKE(dev_priv))
8969
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8970 8971
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
8972
	else if (IS_SKYLAKE(dev_priv))
8973
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8974
	else if (IS_KABYLAKE(dev_priv))
8975
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8976
	else if (IS_BROXTON(dev_priv))
8977
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8978 8979
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8980
	else if (IS_BROADWELL(dev_priv))
8981
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8982
	else if (IS_CHERRYVIEW(dev_priv))
8983
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8984
	else if (IS_HASWELL(dev_priv))
8985
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8986
	else if (IS_IVYBRIDGE(dev_priv))
8987
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8988
	else if (IS_VALLEYVIEW(dev_priv))
8989
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8990 8991 8992
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
8993
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8994 8995
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8996
	else if (IS_I965GM(dev_priv))
8997
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8998
	else if (IS_I965G(dev_priv))
8999
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9012
/* Set up chip specific power management-related functions */
9013
void intel_init_pm(struct drm_i915_private *dev_priv)
9014
{
9015
	intel_fbc_init(dev_priv);
9016

9017
	/* For cxsr */
9018
	if (IS_PINEVIEW(dev_priv))
9019
		i915_pineview_get_mem_freq(dev_priv);
9020
	else if (IS_GEN5(dev_priv))
9021
		i915_ironlake_get_mem_freq(dev_priv);
9022

9023
	/* For FIFO watermark updates */
9024
	if (INTEL_GEN(dev_priv) >= 9) {
9025
		skl_setup_wm_latency(dev_priv);
9026
		dev_priv->display.initial_watermarks = skl_initial_wm;
9027
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9028
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9029
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9030
		ilk_setup_wm_latency(dev_priv);
9031

9032
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9033
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9034
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9035
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9036
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9037 9038 9039 9040 9041 9042
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9043 9044 9045 9046
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9047
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9048
		vlv_setup_wm_latency(dev_priv);
9049
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9050
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9051
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9052
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9053
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9054 9055 9056 9057 9058 9059
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9060
	} else if (IS_PINEVIEW(dev_priv)) {
9061
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9062 9063 9064 9065 9066 9067 9068 9069 9070
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9071
			intel_set_memory_cxsr(dev_priv, false);
9072 9073 9074
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9075
	} else if (IS_GEN4(dev_priv)) {
9076
		dev_priv->display.update_wm = i965_update_wm;
9077
	} else if (IS_GEN3(dev_priv)) {
9078 9079
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9080
	} else if (IS_GEN2(dev_priv)) {
9081
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9082
			dev_priv->display.update_wm = i845_update_wm;
9083
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9084 9085
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9086
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9087 9088 9089
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9090 9091 9092
	}
}

9093 9094 9095 9096 9097 9098 9099 9100 9101
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9102
		return -ENODEV;
9103 9104 9105
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9106
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9107 9108 9109 9110
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9111
		MISSING_CASE(flags);
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9138
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9139
{
9140 9141
	int status;

9142
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9143

9144 9145 9146 9147 9148 9149
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9150 9151
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9152 9153 9154
		return -EAGAIN;
	}

9155 9156 9157
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9158

9159 9160 9161
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9162 9163
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9164 9165 9166
		return -ETIMEDOUT;
	}

9167 9168
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9169

9170 9171 9172 9173 9174 9175
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9176 9177
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9178 9179 9180
		return status;
	}

B
Ben Widawsky 已提交
9181 9182 9183
	return 0;
}

9184
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9185
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
9186
{
9187 9188
	int status;

9189
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9190

9191 9192 9193 9194 9195 9196
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9197 9198
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9199 9200 9201
		return -EAGAIN;
	}

9202
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9203
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9204
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9205

9206 9207 9208
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9209 9210
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9211 9212 9213
		return -ETIMEDOUT;
	}

9214
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9215

9216 9217 9218 9219 9220 9221
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9222 9223
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9224 9225 9226
		return status;
	}

B
Ben Widawsky 已提交
9227 9228
	return 0;
}
9229

9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9251
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9252 9253
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9254
 * for @timeout_base_ms and if this times out for another 50 ms with
9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9266
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9290
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9291
	 * account for interrupts that could reduce the number of these
9292 9293
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9294 9295 9296 9297
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9298
	ret = wait_for_atomic(COND, 50);
9299 9300 9301 9302 9303 9304 9305
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9306 9307
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9308 9309
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9310 9311 9312 9313
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9314
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9315 9316
}

9317
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9318
{
9319 9320 9321
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9322 9323
}

9324
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9325
{
9326 9327
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9328 9329 9330 9331
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9332
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9333 9334
}

9335
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9336
{
9337 9338
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9339
	/* CHV needs even values */
9340
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9341 9342
}

9343
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9344
{
9345
	if (INTEL_GEN(dev_priv) >= 9)
9346 9347
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9348
	else if (IS_CHERRYVIEW(dev_priv))
9349
		return chv_gpu_freq(dev_priv, val);
9350
	else if (IS_VALLEYVIEW(dev_priv))
9351 9352 9353
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9354 9355
}

9356 9357
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9358
	if (INTEL_GEN(dev_priv) >= 9)
9359 9360
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9361
	else if (IS_CHERRYVIEW(dev_priv))
9362
		return chv_freq_opcode(dev_priv, val);
9363
	else if (IS_VALLEYVIEW(dev_priv))
9364 9365
		return byt_freq_opcode(dev_priv, val);
	else
9366
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9367
}
9368

9369
void intel_pm_setup(struct drm_i915_private *dev_priv)
9370
{
9371
	mutex_init(&dev_priv->pcu_lock);
D
Daniel Vetter 已提交
9372

9373
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9374

9375 9376
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9377
}
9378

9379 9380 9381
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9382
	u32 lower, upper, tmp;
9383
	int loop = 2;
9384 9385 9386 9387 9388 9389 9390 9391 9392

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9393 9394 9395 9396 9397
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9398
	 */
9399 9400
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9412
	} while (upper != tmp && --loop);
9413

9414 9415 9416 9417 9418
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9419 9420 9421 9422 9423
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9424 9425
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9426
{
9427
	u64 time_hw, units, div;
9428

9429
	if (!intel_rc6_enabled())
9430 9431 9432 9433 9434 9435
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9436
		units = 1000;
9437 9438
		div = dev_priv->czclk_freq;

9439
		time_hw = vlv_residency_raw(dev_priv, reg);
9440
	} else if (IS_GEN9_LP(dev_priv)) {
9441
		units = 1000;
9442 9443
		div = 1200;		/* 833.33ns */

9444 9445 9446 9447 9448 9449 9450
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9451 9452

	intel_runtime_pm_put(dev_priv);
9453
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9454
}