hci_request.c 88.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31 32

#include "smp.h"
#include "hci_request.h"

33 34 35 36
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

37 38 39 40 41 42 43
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

44 45 46 47 48
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

49 50 51 52 53
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

54 55
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
56 57 58 59 60
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

61
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
62 63 64 65 66 67 68 69 70 71 72 73 74 75

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
76 77 78 79 80 81
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
82 83 84 85 86 87 88 89 90 91

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

92 93 94 95 96 97 98 99 100 101
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

102 103 104
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
105
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
106 107 108 109 110 111 112 113 114 115

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

116
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117
{
118
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

134
	bt_dev_dbg(hdev, "");
135 136 137 138 139 140 141 142

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	err = hci_req_run_skb(&req, hci_req_sync_complete);
143
	if (err < 0)
144 145
		return ERR_PTR(err);

146 147
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
148

149
	if (err == -ERESTARTSYS)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

170
	bt_dev_dbg(hdev, "end: err %d", err);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
192 193
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
194
		   unsigned long opt, u32 timeout, u8 *hci_status)
195 196 197 198
{
	struct hci_request req;
	int err = 0;

199
	bt_dev_dbg(hdev, "start");
200 201 202 203 204

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

205 206 207 208 209 210
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
211 212 213 214 215 216 217 218 219 220

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
221 222 223
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
224
			return 0;
225 226 227 228
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
229 230 231 232

		return err;
	}

233 234
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
235

236
	if (err == -ERESTARTSYS)
237 238 239 240 241
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
242 243
		if (hci_status)
			*hci_status = hdev->req_result;
244 245 246 247
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
248 249
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
250 251 252 253
		break;

	default:
		err = -ETIMEDOUT;
254 255
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
256 257 258
		break;
	}

259 260
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
261 262
	hdev->req_status = hdev->req_result = 0;

263
	bt_dev_dbg(hdev, "end: err %d", err);
264 265 266 267

	return err;
}

268 269
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
270
		 unsigned long opt, u32 timeout, u8 *hci_status)
271 272 273 274 275 276 277
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
278
	hci_req_sync_lock(hdev);
279
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280
	hci_req_sync_unlock(hdev);
281 282 283 284

	return ret;
}

285 286 287 288 289 290 291 292 293 294 295
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

296
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 298 299 300
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
301
		skb_put_data(skb, param, plen);
302

303
	bt_dev_dbg(hdev, "skb len %d", skb->len);
304

305 306
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
307 308 309 310 311 312 313 314 315 316 317

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

318
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
319 320 321 322 323 324 325 326 327

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
328 329
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
330 331 332 333 334
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
335
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336

337
	bt_cb(skb)->hci.req_event = event;
338 339 340 341 342 343 344 345 346 347

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
366 367
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
368 369
	}

370
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
371 372 373 374 375 376 377 378 379 380

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
	/* If there is at least one ADV monitors and one pending LE connection
	 * or one device to be scanned for, we should alternate between
	 * allowlist scan and one without any filters to save power.
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
				  list_empty(&hdev->pend_le_reports));
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

463 464
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
465

466
	if (list_empty(&hdev->pend_le_conns) &&
467 468
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
469
		/* If there is no pending LE connections or devices
470 471
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
472 473 474 475 476 477
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

478
		hci_req_add_le_scan_disable(req, false);
479

480
		bt_dev_dbg(hdev, "stopping background scanning");
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
497
			hci_req_add_le_scan_disable(req, false);
498 499

		hci_req_add_le_passive_scan(req);
500
		bt_dev_dbg(hdev, "starting background scanning");
501 502 503
	}
}

504 505 506 507 508 509 510 511 512 513
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
#define PNP_INFO_SVCLASS_ID		0x1200

static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 4)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		u16 uuid16;

		if (uuid->size != 16)
			continue;

		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
		if (uuid16 < 0x1100)
			continue;

		if (uuid16 == PNP_INFO_SVCLASS_ID)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID16_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u16) > len) {
			uuids_start[1] = EIR_UUID16_SOME;
			break;
		}

		*ptr++ = (uuid16 & 0x00ff);
		*ptr++ = (uuid16 & 0xff00) >> 8;
		uuids_start[0] += sizeof(uuid16);
	}

	return ptr;
}

static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 6)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 32)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID32_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u32) > len) {
			uuids_start[1] = EIR_UUID32_SOME;
			break;
		}

		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
		ptr += sizeof(u32);
		uuids_start[0] += sizeof(u32);
	}

	return ptr;
}

static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 18)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 128)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID128_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + 16 > len) {
			uuids_start[1] = EIR_UUID128_SOME;
			break;
		}

		memcpy(ptr, uuid->uuid, 16);
		ptr += 16;
		uuids_start[0] += 16;
	}

	return ptr;
}

static void create_eir(struct hci_dev *hdev, u8 *data)
{
	u8 *ptr = data;
	size_t name_len;

	name_len = strlen(hdev->dev_name);

	if (name_len > 0) {
		/* EIR Data type */
		if (name_len > 48) {
			name_len = 48;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		/* EIR Data length */
		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ptr += (name_len + 2);
	}

	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
		ptr[0] = 2;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8) hdev->inq_tx_power;

		ptr += 3;
	}

	if (hdev->devid_source > 0) {
		ptr[0] = 9;
		ptr[1] = EIR_DEVICE_ID;

		put_unaligned_le16(hdev->devid_source, ptr + 2);
		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
		put_unaligned_le16(hdev->devid_product, ptr + 6);
		put_unaligned_le16(hdev->devid_version, ptr + 8);

		ptr += 10;
	}

	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
}

void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

	create_eir(hdev, cp.data);

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

701
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
702
{
703
	struct hci_dev *hdev = req->hdev;
704

705 706 707 708 709
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

710 711 712
	if (hdev->suspended)
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

713 714 715 716 717 718 719 720 721 722 723 724 725 726
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
727

728
	/* Disable address resolution */
729
	if (use_ll_privacy(hdev) &&
730
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
731
	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
732
		__u8 enable = 0x00;
733

734 735
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
736 737
}

738 739 740 741 742 743 744 745 746 747 748
static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
				u8 bdaddr_type)
{
	struct hci_cp_le_del_from_white_list cp;

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
749

750 751
	if (use_ll_privacy(req->hdev) &&
	    hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) {
752 753 754 755 756 757 758 759 760 761 762 763 764
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
765 766 767 768 769 770
}

/* Adds connection to white list if needed. On error, returns -1. */
static int add_to_white_list(struct hci_request *req,
			     struct hci_conn_params *params, u8 *num_entries,
			     bool allow_rpa)
771 772
{
	struct hci_cp_le_add_to_white_list cp;
773 774 775 776 777 778
	struct hci_dev *hdev = req->hdev;

	/* Already in white list */
	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
				   params->addr_type))
		return 0;
779

780 781 782 783 784
	/* Select filter policy to accept all advertising */
	if (*num_entries >= hdev->le_white_list_size)
		return -1;

	/* White list can not be used with RPAs */
785 786
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
787 788 789 790 791
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

	/* During suspend, only wakeable devices can be in whitelist */
792 793
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
794 795 796
		return 0;

	*num_entries += 1;
797 798 799
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

800 801
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
802
	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
803

804 805
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

827
	return 0;
828 829 830 831 832 833 834
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
835 836 837 838 839 840 841 842
	u8 num_entries = 0;
	bool pend_conn, pend_report;
	/* We allow whitelisting even with RPAs in suspend. In the worst case,
	 * we won't be able to wake from devices that use the privacy1.2
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
843 844 845 846 847 848 849 850

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
851 852 853 854 855 856 857 858 859
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
		 * remove it from the whitelist.
860
		 */
861 862
		if (!pend_conn && !pend_report) {
			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
863 864 865
			continue;
		}

866
		/* White list can not be used with RPAs */
867 868
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
869
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
870 871
			return 0x00;
		}
872

873
		num_entries++;
874 875 876 877 878 879 880 881 882 883 884 885 886
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
887
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
888 889 890 891 892
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
893
	 * white list if there is still space. Abort if space runs out.
894 895
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
896
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
897 898 899
			return 0x00;
	}

900 901 902 903 904 905 906 907
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
	 * - There are 1 or more ADV monitors registered
	 * - Interleaved scanning is not currently using the allowlist
	 *
	 * Once the controller offloading of advertisement monitor is in place,
	 * the above condition should include the support of MSFT extension
	 * support.
908
	 */
909 910
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
911 912
		return 0x00;

913 914 915 916
	/* Select filter policy to use white list */
	return 0x01;
}

917 918 919 920 921
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

922
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
923 924
			       u16 window, u8 own_addr_type, u8 filter_policy,
			       bool addr_resolv)
925
{
926
	struct hci_dev *hdev = req->hdev;
927

928 929 930 931 932
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

933 934 935
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
	    addr_resolv) {
936
		u8 enable = 0x01;
937

938 939 940
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

941 942 943 944 945 946 947
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
948 949
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
950 951 952 953 954 955 956 957

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
983 984

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
985
			    plen, ext_param_cp);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

1035 1036 1037 1038
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
1039 1040
void hci_req_add_le_passive_scan(struct hci_request *req)
{
1041 1042 1043
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
1044
	u16 window, interval;
1045 1046
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
1047 1048 1049 1050 1051

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
1052 1053 1054 1055 1056 1057 1058

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
1059 1060
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
1061 1062
		return;

1063 1064
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
1065 1066 1067
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
1083
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1084 1085 1086
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

1087
	if (hdev->suspended) {
1088 1089
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
1090 1091

		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1092 1093 1094
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
1095 1096 1097
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
1098 1099 1100 1101 1102 1103 1104
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1105
			   own_addr_type, filter_policy, addr_resolv);
1106 1107
}

1108
static bool adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1109 1110 1111
{
	struct adv_info *adv_instance;

1112
	/* Instance 0x00 always set local name */
1113
	if (instance == 0x00)
1114
		return true;
1115 1116 1117

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
1118
		return false;
1119

1120 1121
	if (adv_instance->flags & MGMT_ADV_FLAG_APPEARANCE ||
	    adv_instance->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1122
		return true;
1123

1124
	return adv_instance->scan_rsp_len ? true : false;
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

	memset(&f, 0, sizeof(f));
	f.flt_type = HCI_FLT_CLEAR_ALL;
	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);

	/* Update page scan state (since we may have modified it when setting
	 * the event filter).
	 */
	__hci_req_update_scan(req);
}

static void hci_req_set_event_filter(struct hci_request *req)
{
1143
	struct bdaddr_list_with_flags *b;
1144 1145
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
1146
	u8 scan = SCAN_DISABLED;
1147 1148 1149 1150

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

1151 1152 1153 1154 1155
	list_for_each_entry(b, &hdev->whitelist, list) {
		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
					b->current_flags))
			continue;

1156 1157 1158 1159 1160 1161 1162 1163
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1164
		scan = SCAN_PAGE;
1165 1166
	}

1167 1168 1169 1170 1171
	if (scan)
		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
	else
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

1172 1173 1174
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
1184
void __hci_req_pause_adv_instances(struct hci_request *req)
1185
{
1186
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
1199
static void __hci_req_resume_adv_instances(struct hci_request *req)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

1233 1234 1235 1236
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
1237 1238 1239 1240
	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1241 1242 1243 1244
		wake_up(&hdev->suspend_wait_q);
	}
}

1245 1246 1247
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1248
	int old_state;
1249 1250 1251 1252 1253
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1254 1255 1256 1257 1258 1259
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1260 1261 1262 1263 1264 1265
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

1277
		/* Stop directed advertising */
1278 1279 1280 1281 1282 1283 1284 1285
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

1286 1287
		/* Pause other advertisements */
		if (hdev->adv_instance_cnt)
1288
			__hci_req_pause_adv_instances(&req);
1289

1290 1291
		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1292 1293 1294 1295
		/* Disable page scan */
		page_scan = SCAN_DISABLED;
		hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);

1296
		/* Disable LE passive scan if enabled */
1297 1298
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_interleave_scan(hdev);
1299
			hci_req_add_le_scan_disable(&req, false);
1300
		}
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		/* Mark task needing completion */
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1324
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1325 1326 1327 1328
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1329
		/* Enable passive scan at lower duty cycle */
1330
		__hci_update_background_scan(&req);
1331 1332 1333 1334 1335 1336 1337 1338
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

		hci_req_clear_event_filter(&req);
1339
		/* Reset passive/background scanning to normal */
1340
		__hci_update_background_scan(&req);
1341

1342
		/* Unpause directed advertising */
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

1353 1354
		/* Resume other advertisements */
		if (hdev->adv_instance_cnt)
1355
			__hci_req_resume_adv_instances(&req);
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365
		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1366 1367 1368 1369
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1370 1371 1372 1373 1374 1375

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1376
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1377
{
1378
	return adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1379 1380 1381 1382
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1383
	if (ext_adv_capable(req->hdev)) {
1384
		__hci_req_disable_ext_adv_instance(req, 0x00);
1385

1386 1387 1388 1389 1390
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
}

static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
{
	u32 flags;
	struct adv_info *adv_instance;

	if (instance == 0x00) {
		/* Instance 0 always manages the "Tx Power" and "Flags"
		 * fields
		 */
		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;

		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
		 * corresponds to the "connectable" instance flag.
		 */
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
			flags |= MGMT_ADV_FLAG_CONNECTABLE;

1410 1411 1412
		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1413 1414
			flags |= MGMT_ADV_FLAG_DISCOV;

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		return flags;
	}

	adv_instance = hci_find_adv_instance(hdev, instance);

	/* Return 0 when we got an invalid instance identifier. */
	if (!adv_instance)
		return 0;

	return adv_instance->flags;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

	/* Check le_states if there is any connection in slave role. */
	if (hdev->conn_hash.le_num_slave > 0) {
		/* Slave connection state and non connectable mode bit 20. */
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

		/* Slave connection state and connectable mode bit 38
		 * and scannable bit 21.
		 */
1465 1466
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
			return false;
	}

	/* Check le_states if there is any connection in master role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
		/* Master connection state and non connectable mode bit 18. */
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

		/* Master connection state and connectable mode bit 35 and
		 * scannable 19.
		 */
1479
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1480 1481 1482 1483 1484 1485 1486
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1487 1488 1489
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1490
	struct adv_info *adv_instance;
1491 1492 1493
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1494
	u16 adv_min_interval, adv_max_interval;
1495 1496
	u32 flags;

1497
	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1498
	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1499 1500 1501 1502 1503 1504 1505 1506

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1523 1524 1525
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1526 1527 1528 1529
		return;

	memset(&cp, 0, sizeof(cp));

1530 1531 1532 1533
	if (adv_instance) {
		adv_min_interval = adv_instance->min_interval;
		adv_max_interval = adv_instance->max_interval;
	} else {
1534 1535
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1536 1537 1538 1539
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1540
	} else {
1541
		if (adv_cur_instance_is_scannable(hdev))
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1555 1556 1557 1558 1559 1560 1561 1562
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1563
u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1564
{
1565
	size_t short_len;
1566
	size_t complete_len;
1567

1568 1569
	/* no space left for name (+ NULL + type + len) */
	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1570
		return ad_len;
1571

1572 1573 1574
	/* use complete name if present and fits */
	complete_len = strlen(hdev->dev_name);
	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1575
		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1576
				       hdev->dev_name, complete_len + 1);
1577

1578 1579 1580
	/* use short name if present */
	short_len = strlen(hdev->short_name);
	if (short_len)
1581
		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1582
				       hdev->short_name, short_len + 1);
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	/* use shortened full name if present, we already know that name
	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
	 */
	if (complete_len) {
		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];

		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';

		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
				       sizeof(name));
1595 1596 1597 1598 1599
	}

	return ad_len;
}

1600 1601 1602 1603 1604
static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
{
	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
}

1605 1606
static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
{
1607 1608 1609
	u8 scan_rsp_len = 0;

	if (hdev->appearance) {
1610
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1611 1612
	}

1613
	return append_local_name(hdev, ptr, scan_rsp_len);
1614 1615
}

1616 1617 1618 1619
static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
					u8 *ptr)
{
	struct adv_info *adv_instance;
1620 1621
	u32 instance_flags;
	u8 scan_rsp_len = 0;
1622 1623 1624 1625 1626

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

1627 1628
	instance_flags = adv_instance->flags;

1629
	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1630
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1631 1632
	}

1633
	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1634 1635
	       adv_instance->scan_rsp_len);

1636 1637 1638 1639 1640 1641
	scan_rsp_len += adv_instance->scan_rsp_len;

	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);

	return scan_rsp_len;
1642 1643
}

1644
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1645 1646 1647 1648 1649 1650 1651
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1652 1653
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_scan_rsp_data cp;
1654

1655
		memset(&cp, 0, sizeof(cp));
1656

1657
		if (instance)
1658 1659 1660
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
1661
			len = create_default_scan_rsp_data(hdev, cp.data);
1662 1663 1664 1665 1666 1667 1668 1669

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;

		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;

1670
		cp.handle = instance;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		cp.length = len;
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1691

1692 1693
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1694

1695
		cp.length = len;
1696

1697 1698
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
{
	struct adv_info *adv_instance = NULL;
	u8 ad_len = 0, flags = 0;
	u32 instance_flags;

	/* Return 0 when the current instance identifier is invalid. */
	if (instance) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return 0;
	}

	instance_flags = get_adv_instance_flags(hdev, instance);

1716 1717 1718 1719 1720 1721 1722 1723
	/* If instance already has the flags set skip adding it once
	 * again.
	 */
	if (adv_instance && eir_get_data(adv_instance->adv_data,
					 adv_instance->adv_data_len, EIR_FLAGS,
					 NULL))
		goto skip_flags;

1724 1725 1726 1727 1728 1729 1730 1731 1732
	/* The Add Advertising command allows userspace to set both the general
	 * and limited discoverable flags.
	 */
	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
		flags |= LE_AD_GENERAL;

	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
		flags |= LE_AD_LIMITED;

1733 1734 1735
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		flags |= LE_AD_NO_BREDR;

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
		/* If a discovery flag wasn't provided, simply use the global
		 * settings.
		 */
		if (!flags)
			flags |= mgmt_get_adv_discov_flags(hdev);

		/* If flags would still be empty, then there is no need to
		 * include the "Flags" AD field".
		 */
		if (flags) {
			ptr[0] = 0x02;
			ptr[1] = EIR_FLAGS;
			ptr[2] = flags;

			ad_len += 3;
			ptr += 3;
		}
	}

1756
skip_flags:
1757 1758 1759 1760 1761 1762 1763
	if (adv_instance) {
		memcpy(ptr, adv_instance->adv_data,
		       adv_instance->adv_data_len);
		ad_len += adv_instance->adv_data_len;
		ptr += adv_instance->adv_data_len;
	}

1764 1765
	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
		s8 adv_tx_power;
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		if (ext_adv_capable(hdev)) {
			if (adv_instance)
				adv_tx_power = adv_instance->tx_power;
			else
				adv_tx_power = hdev->adv_tx_power;
		} else {
			adv_tx_power = hdev->adv_tx_power;
		}

		/* Provide Tx Power only if we can provide a valid value for it */
		if (adv_tx_power != HCI_TX_POWER_INVALID) {
			ptr[0] = 0x02;
			ptr[1] = EIR_TX_POWER;
			ptr[2] = (u8)adv_tx_power;

			ad_len += 3;
			ptr += 3;
		}
1785 1786 1787 1788 1789
	}

	return ad_len;
}

1790
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1791 1792 1793 1794 1795 1796 1797
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1798 1799
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_adv_data cp;
1800

1801
		memset(&cp, 0, sizeof(cp));
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;

		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;
1814
		cp.handle = instance;
1815 1816
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1817

1818 1819 1820 1821 1822
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1823

1824 1825 1826 1827 1828 1829
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1830

1831 1832 1833 1834 1835 1836 1837
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1838 1839
}

1840
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1841 1842 1843 1844 1845 1846 1847 1848 1849
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

	if (!use_ll_privacy(hdev) &&
	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1872 1873
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1874
	bt_dev_dbg(hdev, "status %u", status);
1875 1876 1877 1878 1879 1880 1881
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1882
	    list_empty(&hdev->adv_instances))
1883 1884 1885 1886
		return;

	hci_req_init(&req, hdev);

1887 1888 1889
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1890
	} else {
1891 1892 1893 1894 1895 1896 1897
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1911
	bt_dev_dbg(hdev, "");
1912 1913 1914 1915 1916

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1917
	instance = hdev->cur_adv_instance;
1918 1919 1920 1921 1922
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1923
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1924 1925 1926 1927

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1928
	hci_req_run(&req, NULL);
1929 1930 1931 1932 1933

unlock:
	hci_dev_unlock(hdev);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
		int to;

2004 2005 2006 2007 2008 2009 2010
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
		if (use_ll_privacy(hdev))
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		if (adv_instance) {
			if (!adv_instance->rpa_expired &&
			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
				return 0;

			adv_instance->rpa_expired = false;
		} else {
			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
			    !bacmp(&hdev->random_addr, &hdev->rpa))
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2026
			bt_dev_err(hdev, "failed to generate new RPA");
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		if (adv_instance)
			queue_delayed_work(hdev->workqueue,
					   &adv_instance->rpa_expired_cb, to);
		else
			queue_delayed_work(hdev->workqueue,
					   &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

2077 2078 2079 2080 2081
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

2082
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
2083 2084 2085 2086 2087
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
2088 2089 2090 2091
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
2092
	bool secondary_adv;
2093

2094 2095 2096 2097 2098 2099 2100 2101
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

2102 2103 2104 2105 2106 2107 2108 2109
	flags = get_adv_instance_flags(hdev, instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

2110
	if (!is_advertising_allowed(hdev, connectable))
2111 2112
		return -EPERM;

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

2123 2124
	memset(&cp, 0, sizeof(cp));

2125 2126 2127 2128 2129 2130 2131 2132 2133
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
2134

2135 2136 2137 2138 2139 2140 2141
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
2142
	} else if (adv_instance_is_scannable(hdev, instance)) {
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
2153

2154
	cp.own_addr_type = own_addr_type;
2155
	cp.channel_map = hdev->le_adv_channel_map;
2156
	cp.handle = instance;
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

2170 2171
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
		}

		memset(&cp, 0, sizeof(cp));

2187
		cp.handle = instance;
2188 2189 2190 2191 2192 2193 2194
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

2195 2196 2197
	return 0;
}

2198
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2199
{
2200
	struct hci_dev *hdev = req->hdev;
2201 2202 2203
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2204 2205 2206 2207 2208 2209 2210 2211 2212
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

2224 2225 2226 2227 2228 2229
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
2230
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2231 2232 2233 2234

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
2235 2236 2237 2238

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
2239 2240

	return 0;
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

2285 2286
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
2287
	struct hci_dev *hdev = req->hdev;
2288
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2289 2290
	int err;

2291 2292 2293 2294 2295
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
2296

2297 2298 2299 2300
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

2301
	__hci_req_update_scan_rsp_data(req, instance);
2302
	__hci_req_enable_ext_advertising(req, instance);
2303 2304 2305 2306

	return 0;
}

2307 2308 2309 2310 2311 2312 2313 2314
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2315
	    list_empty(&hdev->adv_instances))
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

2346 2347 2348 2349
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
2350 2351
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
2352
	}
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
2363 2364 2365 2366 2367 2368 2369
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2385 2386 2387
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2413
				mgmt_advertising_removed(sk, hdev, rem_inst);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2427
				mgmt_advertising_removed(sk, hdev, instance);
2428 2429 2430 2431 2432 2433 2434
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

2435
	if (next_instance && !ext_adv_capable(hdev))
2436 2437 2438 2439
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
2454
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2455
	    hci_lookup_le_connect(hdev)) {
2456
		bt_dev_dbg(hdev, "Deferring random address update");
2457
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2458 2459 2460 2461 2462 2463 2464
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
2465
			      bool use_rpa, u8 *own_addr_type)
2466 2467 2468 2469 2470 2471 2472 2473
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2474
	if (use_rpa) {
2475 2476
		int to;

2477 2478 2479 2480 2481 2482 2483
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
		if (use_ll_privacy(hdev))
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2484

2485
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2486 2487 2488 2489 2490
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2491
			bt_dev_err(hdev, "failed to generate new RPA");
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2534 2535 2536 2537
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2538
	 */
2539
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2540
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2541
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2542
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2576
void __hci_req_update_scan(struct hci_request *req)
2577 2578 2579 2580
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2581
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2582 2583 2584 2585 2586 2587 2588 2589
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2590 2591 2592
	if (hdev->scanning_paused)
		return;

2593
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2594 2595 2596 2597 2598
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2599
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2600 2601
		scan |= SCAN_INQUIRY;

2602 2603 2604 2605
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2606 2607 2608
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2609
static int update_scan(struct hci_request *req, unsigned long opt)
2610
{
2611 2612 2613 2614 2615
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2616

2617 2618 2619 2620 2621
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2637
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2638 2639 2640

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2641 2642 2643 2644 2645 2646
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2681
	bt_dev_dbg(hdev, "");
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2749
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2750
		__hci_req_update_adv_data(req, 0x00);
2751

2752 2753 2754
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2755 2756 2757 2758 2759 2760
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2761 2762
	}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2835
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2850
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2864
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2865 2866 2867 2868 2869
		return err;
	}

	return 0;
}
2870

2871
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2872 2873 2874 2875
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2876
	return 0;
2877 2878 2879 2880 2881 2882
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2896

2897
	hci_dev_unlock(hdev);
2898 2899
}

2900
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2901
{
2902
	hci_req_add_le_scan_disable(req, false);
2903
	return 0;
2904 2905
}

2906
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2907
{
2908
	u8 length = opt;
2909 2910
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2911 2912
	struct hci_cp_inquiry cp;

2913
	bt_dev_dbg(req->hdev, "");
2914

2915 2916 2917
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2918

2919
	memset(&cp, 0, sizeof(cp));
2920 2921 2922 2923 2924 2925

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2926
	cp.length = length;
2927

2928
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2929

2930
	return 0;
2931 2932 2933 2934 2935 2936 2937 2938
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2939
	bt_dev_dbg(hdev, "");
2940

2941 2942 2943
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2944 2945
	cancel_delayed_work(&hdev->le_scan_restart);

2946 2947
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2948 2949
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2967 2968
		return;

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2980
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2981 2982 2983 2984 2985 2986 2987 2988 2989
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2990 2991
}

2992 2993 2994 2995 2996 2997 2998 2999
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

3000 3001 3002 3003 3004
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

3005
	hci_req_add_le_scan_disable(req, false);
3006

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
3024 3025 3026 3027 3028

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
3029
{
3030 3031
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
3032
	unsigned long timeout, duration, scan_start, now;
3033
	u8 status;
3034

3035
	bt_dev_dbg(hdev, "");
3036

3037
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
3038
	if (status) {
3039 3040
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

3078 3079 3080 3081 3082
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
3083 3084
	/* White list is not used for discovery */
	u8 filter_policy = 0x00;
3085 3086
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
3087 3088
	int err;

3089
	bt_dev_dbg(hdev, "");
3090 3091 3092 3093 3094

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
3095
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3096
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
3097 3098
		cancel_interleave_scan(hdev);
	}
3099 3100 3101 3102 3103

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
3104 3105
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
3106 3107 3108
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

3109 3110
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
3111
			   filter_policy, addr_resolv);
3112 3113 3114 3115 3116 3117 3118
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

3119
	bt_dev_dbg(req->hdev, "");
3120 3121 3122 3123 3124

	err = active_scan(req, opt);
	if (err)
		return err;

3125
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
3126 3127 3128 3129 3130 3131
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

3132
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
3133 3134 3135 3136

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
3137 3138
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
3158
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
3159 3160 3161 3162 3163
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
3164
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3165 3166 3167 3168
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3169
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

3180
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

3197 3198 3199 3200 3201 3202 3203 3204
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

3205
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
3206 3207 3208 3209 3210 3211 3212

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
3213
			hci_req_add_le_scan_disable(req, false);
3214 3215 3216 3217 3218 3219
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3220
			hci_req_add_le_scan_disable(req, false);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
3268 3269 3270 3271 3272 3273
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
3274 3275 3276 3277 3278 3279
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

3280 3281 3282 3283 3284
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

3285
	bt_dev_dbg(hdev, "");
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

3341
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3342 3343 3344 3345
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
3346 3347
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3361

3362
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3363
				if (!ext_adv_capable(hdev))
3364
					__hci_req_enable_advertising(req);
3365
				else if (!err)
3366 3367
					__hci_req_enable_ext_advertising(req,
									 0x00);
3368
			}
3369 3370
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3371 3372 3373 3374

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3375
							adv_instance->instance,
3376
							true);
3377
		}
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3413 3414
void hci_request_setup(struct hci_dev *hdev)
{
3415
	INIT_WORK(&hdev->discov_update, discov_update);
3416
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3417
	INIT_WORK(&hdev->scan_update, scan_update_work);
3418
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3419
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3420
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3421 3422
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3423
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3424
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3425 3426 3427 3428
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3429 3430
	hci_req_sync_cancel(hdev, ENODEV);

3431
	cancel_work_sync(&hdev->discov_update);
3432
	cancel_work_sync(&hdev->bg_scan_update);
3433
	cancel_work_sync(&hdev->scan_update);
3434
	cancel_work_sync(&hdev->connectable_update);
3435
	cancel_work_sync(&hdev->discoverable_update);
3436
	cancel_delayed_work_sync(&hdev->discov_off);
3437 3438
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3439 3440 3441 3442 3443

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3444 3445

	cancel_interleave_scan(hdev);
3446
}