xfs_aops.c 31.9 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4
 * Copyright (c) 2016-2018 Christoph Hellwig.
5
 * All Rights Reserved.
L
Linus Torvalds 已提交
6 7
 */
#include "xfs.h"
8
#include "xfs_shared.h"
9 10 11
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
12 13
#include "xfs_mount.h"
#include "xfs_inode.h"
14
#include "xfs_trans.h"
15
#include "xfs_inode_item.h"
16
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
17 18
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_bmap.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22
#include "xfs_bmap_btree.h"
23
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
24 25
#include <linux/writeback.h>

26 27 28 29 30
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
31
	int			fork;
32
	unsigned int		data_seq;
33
	unsigned int		cow_seq;
34 35 36
	struct xfs_ioend	*ioend;
};

37
struct block_device *
C
Christoph Hellwig 已提交
38
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
39
	struct inode		*inode)
C
Christoph Hellwig 已提交
40
{
C
Christoph Hellwig 已提交
41
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
42 43
	struct xfs_mount	*mp = ip->i_mount;

44
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
45 46 47 48 49
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

50 51 52 53 54 55 56 57 58 59 60 61 62
struct dax_device *
xfs_find_daxdev_for_inode(
	struct inode		*inode)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;

	if (XFS_IS_REALTIME_INODE(ip))
		return mp->m_rtdev_targp->bt_daxdev;
	else
		return mp->m_ddev_targp->bt_daxdev;
}

63 64 65
static void
xfs_finish_page_writeback(
	struct inode		*inode,
66
	struct bio_vec	*bvec,
67 68
	int			error)
{
69 70
	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);

71 72 73 74 75
	if (error) {
		SetPageError(bvec->bv_page);
		mapping_set_error(inode->i_mapping, -EIO);
	}

76 77
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78

79
	if (!iop || atomic_dec_and_test(&iop->write_count))
80
		end_page_writeback(bvec->bv_page);
81 82 83 84 85 86
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
87
 */
88 89
STATIC void
xfs_destroy_ioend(
90 91
	struct xfs_ioend	*ioend,
	int			error)
92
{
93
	struct inode		*inode = ioend->io_inode;
94 95 96 97
	struct bio		*bio = &ioend->io_inline_bio;
	struct bio		*last = ioend->io_bio, *next;
	u64			start = bio->bi_iter.bi_sector;
	bool			quiet = bio_flagged(bio, BIO_QUIET);
98

99
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 101
		struct bio_vec	*bvec;
		int		i;
102
		struct bvec_iter_all iter_all;
103

104 105 106 107 108 109 110 111
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
112

113
		/* walk each page on bio, ending page IO on them */
114
		bio_for_each_segment_all(bvec, bio, i, iter_all)
115
			xfs_finish_page_writeback(inode, bvec, error);
116
		bio_put(bio);
117
	}
118 119 120 121 122

	if (unlikely(error && !quiet)) {
		xfs_err_ratelimited(XFS_I(inode)->i_mount,
			"writeback error on sector %llu", start);
	}
123 124
}

C
Christoph Hellwig 已提交
125 126 127 128 129 130 131 132 133
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

134 135 136 137 138 139 140 141
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

142 143
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
				XFS_TRANS_NOFS, &tp);
144
	if (error)
145 146 147 148
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
149
	/*
150
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
151 152
	 * we released it.
	 */
153
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
154 155 156 157
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
158
	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
159 160 161
	return 0;
}

162
/*
163
 * Update on-disk file size now that data has been written to disk.
164
 */
165
STATIC int
166
__xfs_setfilesize(
167 168 169 170
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
171 172 173
{
	xfs_fsize_t		isize;

174
	xfs_ilock(ip, XFS_ILOCK_EXCL);
175
	isize = xfs_new_eof(ip, offset + size);
176 177
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
178
		xfs_trans_cancel(tp);
179
		return 0;
180 181
	}

182
	trace_xfs_setfilesize(ip, offset, size);
183 184 185 186 187

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

188
	return xfs_trans_commit(tp);
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

208 209
STATIC int
xfs_setfilesize_ioend(
210 211
	struct xfs_ioend	*ioend,
	int			error)
212 213 214 215 216 217 218 219 220
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
221
	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
222
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
223

224
	/* we abort the update if there was an IO error */
225
	if (error) {
226
		xfs_trans_cancel(tp);
227
		return error;
228 229
	}

230
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
231 232
}

233
/*
234
 * IO write completion.
235 236
 */
STATIC void
237 238
xfs_end_ioend(
	struct xfs_ioend	*ioend)
239
{
240
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
241 242
	xfs_off_t		offset = ioend->io_offset;
	size_t			size = ioend->io_size;
243
	int			error;
244

245
	/*
246
	 * Just clean up the in-memory strutures if the fs has been shut down.
247
	 */
248
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249
		error = -EIO;
250 251
		goto done;
	}
252

253
	/*
254
	 * Clean up any COW blocks on an I/O error.
255
	 */
256
	error = blk_status_to_errno(ioend->io_bio->bi_status);
257
	if (unlikely(error)) {
258
		if (ioend->io_fork == XFS_COW_FORK)
259 260
			xfs_reflink_cancel_cow_range(ip, offset, size, true);
		goto done;
261 262
	}

263
	/*
264
	 * Success: commit the COW or unwritten blocks if needed.
265
	 */
266
	if (ioend->io_fork == XFS_COW_FORK)
267
		error = xfs_reflink_end_cow(ip, offset, size);
268
	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
269
		error = xfs_iomap_write_unwritten(ip, offset, size, false);
270
	else
271
		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
272

273
done:
274 275
	if (ioend->io_append_trans)
		error = xfs_setfilesize_ioend(ioend, error);
276
	xfs_destroy_ioend(ioend, error);
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* Finish all pending io completions. */
void
xfs_end_io(
	struct work_struct	*work)
{
	struct xfs_inode	*ip;
	struct xfs_ioend	*ioend;
	struct list_head	completion_list;
	unsigned long		flags;

	ip = container_of(work, struct xfs_inode, i_ioend_work);

	spin_lock_irqsave(&ip->i_ioend_lock, flags);
	list_replace_init(&ip->i_ioend_list, &completion_list);
	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);

	while (!list_empty(&completion_list)) {
		ioend = list_first_entry(&completion_list, struct xfs_ioend,
				io_list);
		list_del_init(&ioend->io_list);
		xfs_end_ioend(ioend);
	}
}

303 304 305
STATIC void
xfs_end_bio(
	struct bio		*bio)
306
{
307
	struct xfs_ioend	*ioend = bio->bi_private;
308 309 310
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_mount	*mp = ip->i_mount;
	unsigned long		flags;
311

312
	if (ioend->io_fork == XFS_COW_FORK ||
313 314 315 316 317 318 319 320 321
	    ioend->io_state == XFS_EXT_UNWRITTEN ||
	    ioend->io_append_trans != NULL) {
		spin_lock_irqsave(&ip->i_ioend_lock, flags);
		if (list_empty(&ip->i_ioend_list))
			WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
						 &ip->i_ioend_work));
		list_add_tail(&ioend->io_list, &ip->i_ioend_list);
		spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
	} else
322
		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
323 324
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * Fast revalidation of the cached writeback mapping. Return true if the current
 * mapping is valid, false otherwise.
 */
static bool
xfs_imap_valid(
	struct xfs_writepage_ctx	*wpc,
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb)
{
	if (offset_fsb < wpc->imap.br_startoff ||
	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
		return false;
	/*
	 * If this is a COW mapping, it is sufficient to check that the mapping
	 * covers the offset. Be careful to check this first because the caller
	 * can revalidate a COW mapping without updating the data seqno.
	 */
343
	if (wpc->fork == XFS_COW_FORK)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		return true;

	/*
	 * This is not a COW mapping. Check the sequence number of the data fork
	 * because concurrent changes could have invalidated the extent. Check
	 * the COW fork because concurrent changes since the last time we
	 * checked (and found nothing at this offset) could have added
	 * overlapping blocks.
	 */
	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
		return false;
	if (xfs_inode_has_cow_data(ip) &&
	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
		return false;
	return true;
}

361 362 363 364 365
/*
 * Pass in a dellalloc extent and convert it to real extents, return the real
 * extent that maps offset_fsb in wpc->imap.
 *
 * The current page is held locked so nothing could have removed the block
366 367
 * backing offset_fsb, although it could have moved from the COW to the data
 * fork by another thread.
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
 */
static int
xfs_convert_blocks(
	struct xfs_writepage_ctx *wpc,
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb)
{
	int			error;

	/*
	 * Attempt to allocate whatever delalloc extent currently backs
	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
	 * because it may take several attempts to allocate real blocks for a
	 * contiguous delalloc extent if free space is sufficiently fragmented.
	 */
	do {
		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
				&wpc->imap, wpc->fork == XFS_COW_FORK ?
					&wpc->cow_seq : &wpc->data_seq);
		if (error)
			return error;
	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);

	return 0;
}

L
Linus Torvalds 已提交
394 395
STATIC int
xfs_map_blocks(
C
Christoph Hellwig 已提交
396
	struct xfs_writepage_ctx *wpc,
L
Linus Torvalds 已提交
397
	struct inode		*inode,
C
Christoph Hellwig 已提交
398
	loff_t			offset)
L
Linus Torvalds 已提交
399
{
C
Christoph Hellwig 已提交
400 401
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
F
Fabian Frederick 已提交
402
	ssize_t			count = i_blocksize(inode);
403 404
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
405
	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
C
Christoph Hellwig 已提交
406
	struct xfs_bmbt_irec	imap;
407
	struct xfs_iext_cursor	icur;
408
	int			retries = 0;
C
Christoph Hellwig 已提交
409 410
	int			error = 0;

411 412 413
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

414 415 416 417
	/*
	 * COW fork blocks can overlap data fork blocks even if the blocks
	 * aren't shared.  COW I/O always takes precedent, so we must always
	 * check for overlap on reflink inodes unless the mapping is already a
418 419 420 421 422 423 424 425 426 427
	 * COW one, or the COW fork hasn't changed from the last time we looked
	 * at it.
	 *
	 * It's safe to check the COW fork if_seq here without the ILOCK because
	 * we've indirectly protected against concurrent updates: writeback has
	 * the page locked, which prevents concurrent invalidations by reflink
	 * and directio and prevents concurrent buffered writes to the same
	 * page.  Changes to if_seq always happen under i_lock, which protects
	 * against concurrent updates and provides a memory barrier on the way
	 * out that ensures that we always see the current value.
428
	 */
429
	if (xfs_imap_valid(wpc, ip, offset_fsb))
430 431 432 433 434 435 436 437
		return 0;

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.  If we return without a valid map, it means we
	 * landed in a hole and we skip the block.
	 */
438
retry:
439
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
440 441
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
442 443 444 445 446

	/*
	 * Check if this is offset is covered by a COW extents, and if yes use
	 * it directly instead of looking up anything in the data fork.
	 */
447
	if (xfs_inode_has_cow_data(ip) &&
448 449 450
	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
		cow_fsb = imap.br_startoff;
	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
451
		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
C
Christoph Hellwig 已提交
452
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
453 454

		wpc->fork = XFS_COW_FORK;
C
Christoph Hellwig 已提交
455 456 457 458
		goto allocate_blocks;
	}

	/*
459 460
	 * No COW extent overlap. Revalidate now that we may have updated
	 * ->cow_seq. If the data mapping is still valid, we're done.
C
Christoph Hellwig 已提交
461
	 */
462
	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
C
Christoph Hellwig 已提交
463 464 465 466 467 468 469 470 471
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return 0;
	}

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.
	 */
472 473
	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
474
	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
C
Christoph Hellwig 已提交
475
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
476

477 478
	wpc->fork = XFS_DATA_FORK;

479
	/* landed in a hole or beyond EOF? */
480 481
	if (imap.br_startoff > offset_fsb) {
		imap.br_blockcount = imap.br_startoff - offset_fsb;
C
Christoph Hellwig 已提交
482 483
		imap.br_startoff = offset_fsb;
		imap.br_startblock = HOLESTARTBLOCK;
484
		imap.br_state = XFS_EXT_NORM;
C
Christoph Hellwig 已提交
485
	}
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	/*
	 * Truncate to the next COW extent if there is one.  This is the only
	 * opportunity to do this because we can skip COW fork lookups for the
	 * subsequent blocks in the mapping; however, the requirement to treat
	 * the COW range separately remains.
	 */
	if (cow_fsb != NULLFILEOFF &&
	    cow_fsb < imap.br_startoff + imap.br_blockcount)
		imap.br_blockcount = cow_fsb - imap.br_startoff;

	/* got a delalloc extent? */
	if (imap.br_startblock != HOLESTARTBLOCK &&
	    isnullstartblock(imap.br_startblock))
		goto allocate_blocks;

C
Christoph Hellwig 已提交
502
	wpc->imap = imap;
503
	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
C
Christoph Hellwig 已提交
504 505
	return 0;
allocate_blocks:
506
	error = xfs_convert_blocks(wpc, ip, offset_fsb);
507 508 509 510 511 512 513 514 515 516 517
	if (error) {
		/*
		 * If we failed to find the extent in the COW fork we might have
		 * raced with a COW to data fork conversion or truncate.
		 * Restart the lookup to catch the extent in the data fork for
		 * the former case, but prevent additional retries to avoid
		 * looping forever for the latter case.
		 */
		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
			goto retry;
		ASSERT(error != -EAGAIN);
C
Christoph Hellwig 已提交
518
		return error;
519
	}
520 521 522 523 524 525 526 527 528 529 530 531

	/*
	 * Due to merging the return real extent might be larger than the
	 * original delalloc one.  Trim the return extent to the next COW
	 * boundary again to force a re-lookup.
	 */
	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;

	ASSERT(wpc->imap.br_startoff <= offset_fsb);
	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
532
	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
C
Christoph Hellwig 已提交
533
	return 0;
L
Linus Torvalds 已提交
534 535
}

536
/*
537 538 539 540 541 542
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
543 544 545
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
546 547 548
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
549
 */
550
STATIC int
551
xfs_submit_ioend(
552
	struct writeback_control *wbc,
553
	struct xfs_ioend	*ioend,
554
	int			status)
555
{
556
	/* Convert CoW extents to regular */
557
	if (!status && ioend->io_fork == XFS_COW_FORK) {
558 559 560 561 562 563 564 565 566 567
		/*
		 * Yuk. This can do memory allocation, but is not a
		 * transactional operation so everything is done in GFP_KERNEL
		 * context. That can deadlock, because we hold pages in
		 * writeback state and GFP_KERNEL allocations can block on them.
		 * Hence we must operate in nofs conditions here.
		 */
		unsigned nofs_flag;

		nofs_flag = memalloc_nofs_save();
568 569
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
570
		memalloc_nofs_restore(nofs_flag);
571 572
	}

573 574
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
575 576
	    (ioend->io_fork == XFS_COW_FORK ||
	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
577 578
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
579
		status = xfs_setfilesize_trans_alloc(ioend);
580

581 582
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
583
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
584

585 586 587 588 589 590 591
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
592
		ioend->io_bio->bi_status = errno_to_blk_status(status);
593
		bio_endio(ioend->io_bio);
594 595
		return status;
	}
596

597
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
598
	submit_bio(ioend->io_bio);
599
	return 0;
600 601
}

602 603 604
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
605 606
	int			fork,
	xfs_exntst_t		state,
607
	xfs_off_t		offset,
608 609
	struct block_device	*bdev,
	sector_t		sector)
610 611 612
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
613

614
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
615 616
	bio_set_dev(bio, bdev);
	bio->bi_iter.bi_sector = sector;
617 618 619

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
620 621
	ioend->io_fork = fork;
	ioend->io_state = state;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
641 642
	struct block_device	*bdev,
	sector_t		sector)
643 644 645 646
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
647 648
	bio_set_dev(new, bdev);
	new->bi_iter.bi_sector = sector;
649 650
	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
651
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
652
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
653
	submit_bio(ioend->io_bio);
654
	ioend->io_bio = new;
655 656 657
}

/*
658 659
 * Test to see if we have an existing ioend structure that we could append to
 * first, otherwise finish off the current ioend and start another.
660 661 662 663
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
664
	xfs_off_t		offset,
665
	struct page		*page,
666
	struct iomap_page	*iop,
667
	struct xfs_writepage_ctx *wpc,
668
	struct writeback_control *wbc,
669
	struct list_head	*iolist)
670
{
671 672 673 674 675 676 677 678 679 680
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
	unsigned		len = i_blocksize(inode);
	unsigned		poff = offset & (PAGE_SIZE - 1);
	sector_t		sector;

	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);

681 682 683
	if (!wpc->ioend ||
	    wpc->fork != wpc->ioend->io_fork ||
	    wpc->imap.br_state != wpc->ioend->io_state ||
684
	    sector != bio_end_sector(wpc->ioend->io_bio) ||
685
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
686 687
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
688 689
		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
				wpc->imap.br_state, offset, bdev, sector);
690 691
	}

M
Ming Lei 已提交
692
	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, true)) {
693 694 695 696
		if (iop)
			atomic_inc(&iop->write_count);
		if (bio_full(wpc->ioend->io_bio))
			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
M
Ming Lei 已提交
697
		bio_add_page(wpc->ioend->io_bio, page, len, poff);
698
	}
699

700
	wpc->ioend->io_size += len;
701 702
}

703 704 705
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
706 707
	unsigned int		offset,
	unsigned int		length)
708
{
709 710
	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
	iomap_invalidatepage(page, offset, length);
711 712 713
}

/*
714 715 716
 * If the page has delalloc blocks on it, we need to punch them out before we
 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
 * inode that can trip up a later direct I/O read operation on the same region.
717
 *
718 719 720 721 722
 * We prevent this by truncating away the delalloc regions on the page.  Because
 * they are delalloc, we can do this without needing a transaction. Indeed - if
 * we get ENOSPC errors, we have to be able to do this truncation without a
 * transaction as there is no space left for block reservation (typically why we
 * see a ENOSPC in writeback).
723 724 725 726 727 728 729
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
730
	struct xfs_mount	*mp = ip->i_mount;
731
	loff_t			offset = page_offset(page);
732 733
	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
	int			error;
734

735
	if (XFS_FORCED_SHUTDOWN(mp))
736 737
		goto out_invalidate;

738
	xfs_alert(mp,
739
		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
740 741
			page, ip->i_ino, offset);

742 743 744 745
	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
			PAGE_SIZE / i_blocksize(inode));
	if (error && !XFS_FORCED_SHUTDOWN(mp))
		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
746
out_invalidate:
747
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
748 749
}

750 751 752 753
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
754
 * adding blocks to is cached on the writepage context, and if the new block
755 756 757 758 759 760 761 762 763 764 765
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
766 767 768
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
769
	struct writeback_control *wbc,
770 771
	struct inode		*inode,
	struct page		*page,
772
	uint64_t		end_offset)
773
{
774
	LIST_HEAD(submit_list);
775 776
	struct iomap_page	*iop = to_iomap_page(page);
	unsigned		len = i_blocksize(inode);
777
	struct xfs_ioend	*ioend, *next;
778
	uint64_t		file_offset;	/* file offset of page */
779
	int			error = 0, count = 0, i;
780

781 782
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
783

784
	/*
785 786 787
	 * Walk through the page to find areas to write back. If we run off the
	 * end of the current map or find the current map invalid, grab a new
	 * one.
788
	 */
789 790 791 792
	for (i = 0, file_offset = page_offset(page);
	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
	     i++, file_offset += len) {
		if (iop && !test_bit(i, iop->uptodate))
793 794
			continue;

795 796 797
		error = xfs_map_blocks(wpc, inode, file_offset);
		if (error)
			break;
798
		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
C
Christoph Hellwig 已提交
799
			continue;
800 801
		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
				 &submit_list);
C
Christoph Hellwig 已提交
802
		count++;
803
	}
804

805
	ASSERT(wpc->ioend || list_empty(&submit_list));
806 807
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
808 809

	/*
810 811 812 813 814 815
	 * On error, we have to fail the ioend here because we may have set
	 * pages under writeback, we have to make sure we run IO completion to
	 * mark the error state of the IO appropriately, so we can't cancel the
	 * ioend directly here.  That means we have to mark this page as under
	 * writeback if we included any blocks from it in the ioend chain so
	 * that completion treats it correctly.
816
	 *
817 818
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
819 820 821
	 * now.  The caller will still need to trigger submission of outstanding
	 * ioends on the writepage context so they are treated correctly on
	 * error.
822
	 */
823 824 825 826 827 828 829 830
	if (unlikely(error)) {
		if (!count) {
			xfs_aops_discard_page(page);
			ClearPageUptodate(page);
			unlock_page(page);
			goto done;
		}

831 832 833 834 835 836 837 838
		/*
		 * If the page was not fully cleaned, we need to ensure that the
		 * higher layers come back to it correctly.  That means we need
		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
		 * so another attempt to write this page in this writeback sweep
		 * will be made.
		 */
839
		set_page_writeback_keepwrite(page);
840
	} else {
841 842
		clear_page_dirty_for_io(page);
		set_page_writeback(page);
843
	}
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	unlock_page(page);

	/*
	 * Preserve the original error if there was one, otherwise catch
	 * submission errors here and propagate into subsequent ioend
	 * submissions.
	 */
	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
		int error2;

		list_del_init(&ioend->io_list);
		error2 = xfs_submit_ioend(wbc, ioend, error);
		if (error2 && !error)
			error = error2;
	}

	/*
862 863
	 * We can end up here with no error and nothing to write only if we race
	 * with a partial page truncate on a sub-page block sized filesystem.
864 865 866 867
	 */
	if (!count)
		end_page_writeback(page);
done:
868 869 870 871
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
872
/*
873 874 875 876 877
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
L
Linus Torvalds 已提交
878 879
 */
STATIC int
880
xfs_do_writepage(
881
	struct page		*page,
882 883
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
884
{
885
	struct xfs_writepage_ctx *wpc = data;
886
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
887
	loff_t			offset;
888
	uint64_t              end_offset;
889
	pgoff_t                 end_index;
890

891
	trace_xfs_writepage(inode, page, 0, 0);
892 893 894 895

	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
896 897 898
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
899
	 *
900 901
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
902
	 */
903 904
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
905
		goto redirty;
L
Linus Torvalds 已提交
906

907
	/*
908 909
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
910
	 */
911
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
912
		goto redirty;
913

914
	/*
915 916
	 * Is this page beyond the end of the file?
	 *
917 918 919 920 921 922 923 924 925 926
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
927
	offset = i_size_read(inode);
928
	end_index = offset >> PAGE_SHIFT;
929
	if (page->index < end_index)
930
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
931 932 933 934 935 936 937 938 939 940 941 942
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
943
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
944 945

		/*
946 947 948 949
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
950 951 952 953 954 955 956 957 958 959 960
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
961
		 */
962 963
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
964
			goto redirty;
965 966 967 968 969

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
970
		 * that is not a multiple of the page size, the remaining
971 972 973
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
974
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
975 976 977

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
978 979
	}

980
	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
981

982
redirty:
983 984 985 986 987
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

988 989 990 991 992
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
993
	struct xfs_writepage_ctx wpc = { };
994 995 996
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
997 998 999
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1000 1001
}

1002 1003 1004 1005 1006
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
1007
	struct xfs_writepage_ctx wpc = { };
1008 1009
	int			ret;

1010
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1011
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1012 1013 1014
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1015 1016
}

D
Dan Williams 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
STATIC int
xfs_dax_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
	return dax_writeback_mapping_range(mapping,
			xfs_find_bdev_for_inode(mapping->host), wbc);
}

1027
STATIC int
1028
xfs_vm_releasepage(
1029 1030 1031
	struct page		*page,
	gfp_t			gfp_mask)
{
1032
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1033
	return iomap_releasepage(page, gfp_mask);
L
Linus Torvalds 已提交
1034 1035 1036
}

STATIC sector_t
1037
xfs_vm_bmap(
L
Linus Torvalds 已提交
1038 1039 1040
	struct address_space	*mapping,
	sector_t		block)
{
C
Christoph Hellwig 已提交
1041
	struct xfs_inode	*ip = XFS_I(mapping->host);
L
Linus Torvalds 已提交
1042

C
Christoph Hellwig 已提交
1043
	trace_xfs_vm_bmap(ip);
1044 1045 1046

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1047
	 * bypasses the file system for actual I/O.  We really can't allow
1048
	 * that on reflinks inodes, so we have to skip out here.  And yes,
1049 1050 1051 1052
	 * 0 is the magic code for a bmap error.
	 *
	 * Since we don't pass back blockdev info, we can't return bmap
	 * information for rt files either.
1053
	 */
1054
	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1055
		return 0;
C
Christoph Hellwig 已提交
1056
	return iomap_bmap(mapping, block, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1057 1058 1059
}

STATIC int
1060
xfs_vm_readpage(
L
Linus Torvalds 已提交
1061 1062 1063
	struct file		*unused,
	struct page		*page)
{
1064
	trace_xfs_vm_readpage(page->mapping->host, 1);
1065
	return iomap_readpage(page, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1066 1067 1068
}

STATIC int
1069
xfs_vm_readpages(
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1075
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1076
	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static int
xfs_iomap_swapfile_activate(
	struct swap_info_struct		*sis,
	struct file			*swap_file,
	sector_t			*span)
{
	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
}

1089
const struct address_space_operations xfs_address_space_operations = {
1090 1091 1092
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1093
	.writepages		= xfs_vm_writepages,
1094
	.set_page_dirty		= iomap_set_page_dirty,
1095 1096
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1097
	.bmap			= xfs_vm_bmap,
D
Dan Williams 已提交
1098
	.direct_IO		= noop_direct_IO,
1099 1100
	.migratepage		= iomap_migrate_page,
	.is_partially_uptodate  = iomap_is_partially_uptodate,
1101
	.error_remove_page	= generic_error_remove_page,
1102
	.swap_activate		= xfs_iomap_swapfile_activate,
L
Linus Torvalds 已提交
1103
};
D
Dan Williams 已提交
1104 1105 1106 1107 1108 1109

const struct address_space_operations xfs_dax_aops = {
	.writepages		= xfs_dax_writepages,
	.direct_IO		= noop_direct_IO,
	.set_page_dirty		= noop_set_page_dirty,
	.invalidatepage		= noop_invalidatepage,
1110
	.swap_activate		= xfs_iomap_swapfile_activate,
D
Dan Williams 已提交
1111
};