xfs_aops.c 31.2 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4
 * Copyright (c) 2016-2018 Christoph Hellwig.
5
 * All Rights Reserved.
L
Linus Torvalds 已提交
6 7
 */
#include "xfs.h"
8
#include "xfs_shared.h"
9 10 11
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
12 13
#include "xfs_mount.h"
#include "xfs_inode.h"
14
#include "xfs_trans.h"
15
#include "xfs_inode_item.h"
16
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
17 18
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_bmap.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22
#include "xfs_bmap_btree.h"
23
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
24 25
#include <linux/writeback.h>

26 27 28 29 30
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
31
	int			fork;
32
	unsigned int		data_seq;
33
	unsigned int		cow_seq;
34 35 36
	struct xfs_ioend	*ioend;
};

37
struct block_device *
C
Christoph Hellwig 已提交
38
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
39
	struct inode		*inode)
C
Christoph Hellwig 已提交
40
{
C
Christoph Hellwig 已提交
41
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
42 43
	struct xfs_mount	*mp = ip->i_mount;

44
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
45 46 47 48 49
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

50 51 52 53 54 55 56 57 58 59 60 61 62
struct dax_device *
xfs_find_daxdev_for_inode(
	struct inode		*inode)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;

	if (XFS_IS_REALTIME_INODE(ip))
		return mp->m_rtdev_targp->bt_daxdev;
	else
		return mp->m_ddev_targp->bt_daxdev;
}

63 64 65
static void
xfs_finish_page_writeback(
	struct inode		*inode,
66
	struct bio_vec	*bvec,
67 68
	int			error)
{
69 70
	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);

71 72 73 74 75
	if (error) {
		SetPageError(bvec->bv_page);
		mapping_set_error(inode->i_mapping, -EIO);
	}

76 77
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78

79
	if (!iop || atomic_dec_and_test(&iop->write_count))
80
		end_page_writeback(bvec->bv_page);
81 82 83 84 85 86
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
87
 */
88 89
STATIC void
xfs_destroy_ioend(
90 91
	struct xfs_ioend	*ioend,
	int			error)
92
{
93
	struct inode		*inode = ioend->io_inode;
94 95 96 97
	struct bio		*bio = &ioend->io_inline_bio;
	struct bio		*last = ioend->io_bio, *next;
	u64			start = bio->bi_iter.bi_sector;
	bool			quiet = bio_flagged(bio, BIO_QUIET);
98

99
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 101
		struct bio_vec	*bvec;
		int		i;
102
		struct bvec_iter_all iter_all;
103

104 105 106 107 108 109 110 111
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
112

113
		/* walk each page on bio, ending page IO on them */
114
		bio_for_each_segment_all(bvec, bio, i, iter_all)
115
			xfs_finish_page_writeback(inode, bvec, error);
116
		bio_put(bio);
117
	}
118 119 120 121 122

	if (unlikely(error && !quiet)) {
		xfs_err_ratelimited(XFS_I(inode)->i_mount,
			"writeback error on sector %llu", start);
	}
123 124
}

C
Christoph Hellwig 已提交
125 126 127 128 129 130 131 132 133
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

134 135 136 137 138 139 140 141
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

142 143
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
				XFS_TRANS_NOFS, &tp);
144
	if (error)
145 146 147 148
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
149
	/*
150
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
151 152
	 * we released it.
	 */
153
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
154 155 156 157
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
158
	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
159 160 161
	return 0;
}

162
/*
163
 * Update on-disk file size now that data has been written to disk.
164
 */
165
STATIC int
166
__xfs_setfilesize(
167 168 169 170
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
171 172 173
{
	xfs_fsize_t		isize;

174
	xfs_ilock(ip, XFS_ILOCK_EXCL);
175
	isize = xfs_new_eof(ip, offset + size);
176 177
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
178
		xfs_trans_cancel(tp);
179
		return 0;
180 181
	}

182
	trace_xfs_setfilesize(ip, offset, size);
183 184 185 186 187

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

188
	return xfs_trans_commit(tp);
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

208 209
STATIC int
xfs_setfilesize_ioend(
210 211
	struct xfs_ioend	*ioend,
	int			error)
212 213 214 215 216 217 218 219 220
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
221
	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
222
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
223

224
	/* we abort the update if there was an IO error */
225
	if (error) {
226
		xfs_trans_cancel(tp);
227
		return error;
228 229
	}

230
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
231 232
}

233
/*
234
 * IO write completion.
235 236
 */
STATIC void
237
xfs_end_io(
238
	struct work_struct *work)
239
{
240 241 242
	struct xfs_ioend	*ioend =
		container_of(work, struct xfs_ioend, io_work);
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
243 244
	xfs_off_t		offset = ioend->io_offset;
	size_t			size = ioend->io_size;
245
	int			error;
246

247
	/*
248
	 * Just clean up the in-memory strutures if the fs has been shut down.
249
	 */
250
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
251
		error = -EIO;
252 253
		goto done;
	}
254

255
	/*
256
	 * Clean up any COW blocks on an I/O error.
257
	 */
258
	error = blk_status_to_errno(ioend->io_bio->bi_status);
259
	if (unlikely(error)) {
260
		if (ioend->io_fork == XFS_COW_FORK)
261 262
			xfs_reflink_cancel_cow_range(ip, offset, size, true);
		goto done;
263 264
	}

265
	/*
266
	 * Success: commit the COW or unwritten blocks if needed.
267
	 */
268
	if (ioend->io_fork == XFS_COW_FORK)
269
		error = xfs_reflink_end_cow(ip, offset, size);
270
	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
271
		error = xfs_iomap_write_unwritten(ip, offset, size, false);
272
	else
273
		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
274

275
done:
276 277
	if (ioend->io_append_trans)
		error = xfs_setfilesize_ioend(ioend, error);
278
	xfs_destroy_ioend(ioend, error);
279 280
}

281 282 283
STATIC void
xfs_end_bio(
	struct bio		*bio)
284
{
285 286
	struct xfs_ioend	*ioend = bio->bi_private;
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
287

288 289
	if (ioend->io_fork == XFS_COW_FORK ||
	    ioend->io_state == XFS_EXT_UNWRITTEN)
290 291 292 293
		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
	else if (ioend->io_append_trans)
		queue_work(mp->m_data_workqueue, &ioend->io_work);
	else
294
		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
295 296
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Fast revalidation of the cached writeback mapping. Return true if the current
 * mapping is valid, false otherwise.
 */
static bool
xfs_imap_valid(
	struct xfs_writepage_ctx	*wpc,
	struct xfs_inode		*ip,
	xfs_fileoff_t			offset_fsb)
{
	if (offset_fsb < wpc->imap.br_startoff ||
	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
		return false;
	/*
	 * If this is a COW mapping, it is sufficient to check that the mapping
	 * covers the offset. Be careful to check this first because the caller
	 * can revalidate a COW mapping without updating the data seqno.
	 */
315
	if (wpc->fork == XFS_COW_FORK)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
		return true;

	/*
	 * This is not a COW mapping. Check the sequence number of the data fork
	 * because concurrent changes could have invalidated the extent. Check
	 * the COW fork because concurrent changes since the last time we
	 * checked (and found nothing at this offset) could have added
	 * overlapping blocks.
	 */
	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
		return false;
	if (xfs_inode_has_cow_data(ip) &&
	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
		return false;
	return true;
}

333 334 335 336 337
/*
 * Pass in a dellalloc extent and convert it to real extents, return the real
 * extent that maps offset_fsb in wpc->imap.
 *
 * The current page is held locked so nothing could have removed the block
338 339
 * backing offset_fsb, although it could have moved from the COW to the data
 * fork by another thread.
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
 */
static int
xfs_convert_blocks(
	struct xfs_writepage_ctx *wpc,
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb)
{
	int			error;

	/*
	 * Attempt to allocate whatever delalloc extent currently backs
	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
	 * because it may take several attempts to allocate real blocks for a
	 * contiguous delalloc extent if free space is sufficiently fragmented.
	 */
	do {
		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
				&wpc->imap, wpc->fork == XFS_COW_FORK ?
					&wpc->cow_seq : &wpc->data_seq);
		if (error)
			return error;
	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);

	return 0;
}

L
Linus Torvalds 已提交
366 367
STATIC int
xfs_map_blocks(
C
Christoph Hellwig 已提交
368
	struct xfs_writepage_ctx *wpc,
L
Linus Torvalds 已提交
369
	struct inode		*inode,
C
Christoph Hellwig 已提交
370
	loff_t			offset)
L
Linus Torvalds 已提交
371
{
C
Christoph Hellwig 已提交
372 373
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
F
Fabian Frederick 已提交
374
	ssize_t			count = i_blocksize(inode);
375 376
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
377
	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
C
Christoph Hellwig 已提交
378
	struct xfs_bmbt_irec	imap;
379
	struct xfs_iext_cursor	icur;
380
	int			retries = 0;
C
Christoph Hellwig 已提交
381 382
	int			error = 0;

383 384 385
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

386 387 388 389
	/*
	 * COW fork blocks can overlap data fork blocks even if the blocks
	 * aren't shared.  COW I/O always takes precedent, so we must always
	 * check for overlap on reflink inodes unless the mapping is already a
390 391 392 393 394 395 396 397 398 399
	 * COW one, or the COW fork hasn't changed from the last time we looked
	 * at it.
	 *
	 * It's safe to check the COW fork if_seq here without the ILOCK because
	 * we've indirectly protected against concurrent updates: writeback has
	 * the page locked, which prevents concurrent invalidations by reflink
	 * and directio and prevents concurrent buffered writes to the same
	 * page.  Changes to if_seq always happen under i_lock, which protects
	 * against concurrent updates and provides a memory barrier on the way
	 * out that ensures that we always see the current value.
400
	 */
401
	if (xfs_imap_valid(wpc, ip, offset_fsb))
402 403 404 405 406 407 408 409
		return 0;

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.  If we return without a valid map, it means we
	 * landed in a hole and we skip the block.
	 */
410
retry:
411
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
412 413
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
414 415 416 417 418

	/*
	 * Check if this is offset is covered by a COW extents, and if yes use
	 * it directly instead of looking up anything in the data fork.
	 */
419
	if (xfs_inode_has_cow_data(ip) &&
420 421 422
	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
		cow_fsb = imap.br_startoff;
	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
423
		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
C
Christoph Hellwig 已提交
424
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
425 426

		wpc->fork = XFS_COW_FORK;
C
Christoph Hellwig 已提交
427 428 429 430
		goto allocate_blocks;
	}

	/*
431 432
	 * No COW extent overlap. Revalidate now that we may have updated
	 * ->cow_seq. If the data mapping is still valid, we're done.
C
Christoph Hellwig 已提交
433
	 */
434
	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
C
Christoph Hellwig 已提交
435 436 437 438 439 440 441 442 443
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return 0;
	}

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.
	 */
444 445
	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
446
	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
C
Christoph Hellwig 已提交
447
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
448

449 450
	wpc->fork = XFS_DATA_FORK;

451
	/* landed in a hole or beyond EOF? */
452 453
	if (imap.br_startoff > offset_fsb) {
		imap.br_blockcount = imap.br_startoff - offset_fsb;
C
Christoph Hellwig 已提交
454 455
		imap.br_startoff = offset_fsb;
		imap.br_startblock = HOLESTARTBLOCK;
456
		imap.br_state = XFS_EXT_NORM;
C
Christoph Hellwig 已提交
457
	}
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	/*
	 * Truncate to the next COW extent if there is one.  This is the only
	 * opportunity to do this because we can skip COW fork lookups for the
	 * subsequent blocks in the mapping; however, the requirement to treat
	 * the COW range separately remains.
	 */
	if (cow_fsb != NULLFILEOFF &&
	    cow_fsb < imap.br_startoff + imap.br_blockcount)
		imap.br_blockcount = cow_fsb - imap.br_startoff;

	/* got a delalloc extent? */
	if (imap.br_startblock != HOLESTARTBLOCK &&
	    isnullstartblock(imap.br_startblock))
		goto allocate_blocks;

C
Christoph Hellwig 已提交
474
	wpc->imap = imap;
475
	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
C
Christoph Hellwig 已提交
476 477
	return 0;
allocate_blocks:
478
	error = xfs_convert_blocks(wpc, ip, offset_fsb);
479 480 481 482 483 484 485 486 487 488 489
	if (error) {
		/*
		 * If we failed to find the extent in the COW fork we might have
		 * raced with a COW to data fork conversion or truncate.
		 * Restart the lookup to catch the extent in the data fork for
		 * the former case, but prevent additional retries to avoid
		 * looping forever for the latter case.
		 */
		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
			goto retry;
		ASSERT(error != -EAGAIN);
C
Christoph Hellwig 已提交
490
		return error;
491
	}
492 493 494 495 496 497 498 499 500 501 502 503

	/*
	 * Due to merging the return real extent might be larger than the
	 * original delalloc one.  Trim the return extent to the next COW
	 * boundary again to force a re-lookup.
	 */
	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;

	ASSERT(wpc->imap.br_startoff <= offset_fsb);
	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
504
	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
C
Christoph Hellwig 已提交
505
	return 0;
L
Linus Torvalds 已提交
506 507
}

508
/*
509 510 511 512 513 514
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
515 516 517
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
518 519 520
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
521
 */
522
STATIC int
523
xfs_submit_ioend(
524
	struct writeback_control *wbc,
525
	struct xfs_ioend	*ioend,
526
	int			status)
527
{
528
	/* Convert CoW extents to regular */
529
	if (!status && ioend->io_fork == XFS_COW_FORK) {
530 531 532 533 534 535 536 537 538 539
		/*
		 * Yuk. This can do memory allocation, but is not a
		 * transactional operation so everything is done in GFP_KERNEL
		 * context. That can deadlock, because we hold pages in
		 * writeback state and GFP_KERNEL allocations can block on them.
		 * Hence we must operate in nofs conditions here.
		 */
		unsigned nofs_flag;

		nofs_flag = memalloc_nofs_save();
540 541
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
542
		memalloc_nofs_restore(nofs_flag);
543 544
	}

545 546
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
547 548
	    (ioend->io_fork == XFS_COW_FORK ||
	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
549 550
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
551
		status = xfs_setfilesize_trans_alloc(ioend);
552

553 554
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
555
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
556

557 558 559 560 561 562 563
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
564
		ioend->io_bio->bi_status = errno_to_blk_status(status);
565
		bio_endio(ioend->io_bio);
566 567
		return status;
	}
568

569
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
570
	submit_bio(ioend->io_bio);
571
	return 0;
572 573
}

574 575 576
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
577 578
	int			fork,
	xfs_exntst_t		state,
579
	xfs_off_t		offset,
580 581
	struct block_device	*bdev,
	sector_t		sector)
582 583 584
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
585

586
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
587 588
	bio_set_dev(bio, bdev);
	bio->bi_iter.bi_sector = sector;
589 590 591

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
592 593
	ioend->io_fork = fork;
	ioend->io_state = state;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	INIT_WORK(&ioend->io_work, xfs_end_io);
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
614 615
	struct block_device	*bdev,
	sector_t		sector)
616 617 618 619
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
620 621
	bio_set_dev(new, bdev);
	new->bi_iter.bi_sector = sector;
622 623
	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
624
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
625
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
626
	submit_bio(ioend->io_bio);
627
	ioend->io_bio = new;
628 629 630
}

/*
631 632
 * Test to see if we have an existing ioend structure that we could append to
 * first, otherwise finish off the current ioend and start another.
633 634 635 636
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
637
	xfs_off_t		offset,
638
	struct page		*page,
639
	struct iomap_page	*iop,
640
	struct xfs_writepage_ctx *wpc,
641
	struct writeback_control *wbc,
642
	struct list_head	*iolist)
643
{
644 645 646 647 648 649 650 651 652 653
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
	unsigned		len = i_blocksize(inode);
	unsigned		poff = offset & (PAGE_SIZE - 1);
	sector_t		sector;

	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);

654 655 656
	if (!wpc->ioend ||
	    wpc->fork != wpc->ioend->io_fork ||
	    wpc->imap.br_state != wpc->ioend->io_state ||
657
	    sector != bio_end_sector(wpc->ioend->io_bio) ||
658
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
659 660
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
661 662
		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
				wpc->imap.br_state, offset, bdev, sector);
663 664
	}

M
Ming Lei 已提交
665
	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, true)) {
666 667 668 669
		if (iop)
			atomic_inc(&iop->write_count);
		if (bio_full(wpc->ioend->io_bio))
			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
M
Ming Lei 已提交
670
		bio_add_page(wpc->ioend->io_bio, page, len, poff);
671
	}
672

673
	wpc->ioend->io_size += len;
674 675
}

676 677 678
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
679 680
	unsigned int		offset,
	unsigned int		length)
681
{
682 683
	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
	iomap_invalidatepage(page, offset, length);
684 685 686
}

/*
687 688 689
 * If the page has delalloc blocks on it, we need to punch them out before we
 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
 * inode that can trip up a later direct I/O read operation on the same region.
690
 *
691 692 693 694 695
 * We prevent this by truncating away the delalloc regions on the page.  Because
 * they are delalloc, we can do this without needing a transaction. Indeed - if
 * we get ENOSPC errors, we have to be able to do this truncation without a
 * transaction as there is no space left for block reservation (typically why we
 * see a ENOSPC in writeback).
696 697 698 699 700 701 702
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
703
	struct xfs_mount	*mp = ip->i_mount;
704
	loff_t			offset = page_offset(page);
705 706
	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
	int			error;
707

708
	if (XFS_FORCED_SHUTDOWN(mp))
709 710
		goto out_invalidate;

711
	xfs_alert(mp,
712
		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
713 714
			page, ip->i_ino, offset);

715 716 717 718
	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
			PAGE_SIZE / i_blocksize(inode));
	if (error && !XFS_FORCED_SHUTDOWN(mp))
		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
719
out_invalidate:
720
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
721 722
}

723 724 725 726
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
727
 * adding blocks to is cached on the writepage context, and if the new block
728 729 730 731 732 733 734 735 736 737 738
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
739 740 741
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
742
	struct writeback_control *wbc,
743 744
	struct inode		*inode,
	struct page		*page,
745
	uint64_t		end_offset)
746
{
747
	LIST_HEAD(submit_list);
748 749
	struct iomap_page	*iop = to_iomap_page(page);
	unsigned		len = i_blocksize(inode);
750
	struct xfs_ioend	*ioend, *next;
751
	uint64_t		file_offset;	/* file offset of page */
752
	int			error = 0, count = 0, i;
753

754 755
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
756

757
	/*
758 759 760
	 * Walk through the page to find areas to write back. If we run off the
	 * end of the current map or find the current map invalid, grab a new
	 * one.
761
	 */
762 763 764 765
	for (i = 0, file_offset = page_offset(page);
	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
	     i++, file_offset += len) {
		if (iop && !test_bit(i, iop->uptodate))
766 767
			continue;

768 769 770
		error = xfs_map_blocks(wpc, inode, file_offset);
		if (error)
			break;
771
		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
C
Christoph Hellwig 已提交
772
			continue;
773 774
		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
				 &submit_list);
C
Christoph Hellwig 已提交
775
		count++;
776
	}
777

778
	ASSERT(wpc->ioend || list_empty(&submit_list));
779 780
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
781 782

	/*
783 784 785 786 787 788
	 * On error, we have to fail the ioend here because we may have set
	 * pages under writeback, we have to make sure we run IO completion to
	 * mark the error state of the IO appropriately, so we can't cancel the
	 * ioend directly here.  That means we have to mark this page as under
	 * writeback if we included any blocks from it in the ioend chain so
	 * that completion treats it correctly.
789
	 *
790 791
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
792 793 794
	 * now.  The caller will still need to trigger submission of outstanding
	 * ioends on the writepage context so they are treated correctly on
	 * error.
795
	 */
796 797 798 799 800 801 802 803
	if (unlikely(error)) {
		if (!count) {
			xfs_aops_discard_page(page);
			ClearPageUptodate(page);
			unlock_page(page);
			goto done;
		}

804 805 806 807 808 809 810 811
		/*
		 * If the page was not fully cleaned, we need to ensure that the
		 * higher layers come back to it correctly.  That means we need
		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
		 * so another attempt to write this page in this writeback sweep
		 * will be made.
		 */
812
		set_page_writeback_keepwrite(page);
813
	} else {
814 815
		clear_page_dirty_for_io(page);
		set_page_writeback(page);
816
	}
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	unlock_page(page);

	/*
	 * Preserve the original error if there was one, otherwise catch
	 * submission errors here and propagate into subsequent ioend
	 * submissions.
	 */
	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
		int error2;

		list_del_init(&ioend->io_list);
		error2 = xfs_submit_ioend(wbc, ioend, error);
		if (error2 && !error)
			error = error2;
	}

	/*
835 836
	 * We can end up here with no error and nothing to write only if we race
	 * with a partial page truncate on a sub-page block sized filesystem.
837 838 839 840
	 */
	if (!count)
		end_page_writeback(page);
done:
841 842 843 844
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
845
/*
846 847 848 849 850
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
L
Linus Torvalds 已提交
851 852
 */
STATIC int
853
xfs_do_writepage(
854
	struct page		*page,
855 856
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
857
{
858
	struct xfs_writepage_ctx *wpc = data;
859
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
860
	loff_t			offset;
861
	uint64_t              end_offset;
862
	pgoff_t                 end_index;
863

864
	trace_xfs_writepage(inode, page, 0, 0);
865 866 867 868

	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
869 870 871
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
872
	 *
873 874
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
875
	 */
876 877
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
878
		goto redirty;
L
Linus Torvalds 已提交
879

880
	/*
881 882
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
883
	 */
884
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
885
		goto redirty;
886

887
	/*
888 889
	 * Is this page beyond the end of the file?
	 *
890 891 892 893 894 895 896 897 898 899
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
900
	offset = i_size_read(inode);
901
	end_index = offset >> PAGE_SHIFT;
902
	if (page->index < end_index)
903
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
904 905 906 907 908 909 910 911 912 913 914 915
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
916
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
917 918

		/*
919 920 921 922
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
923 924 925 926 927 928 929 930 931 932 933
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
934
		 */
935 936
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
937
			goto redirty;
938 939 940 941 942

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
943
		 * that is not a multiple of the page size, the remaining
944 945 946
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
947
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
948 949 950

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
951 952
	}

953
	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
954

955
redirty:
956 957 958 959 960
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

961 962 963 964 965
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
966
	struct xfs_writepage_ctx wpc = { };
967 968 969
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
970 971 972
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
973 974
}

975 976 977 978 979
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
980
	struct xfs_writepage_ctx wpc = { };
981 982
	int			ret;

983
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
984
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
985 986 987
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
988 989
}

D
Dan Williams 已提交
990 991 992 993 994 995 996 997 998 999
STATIC int
xfs_dax_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
	return dax_writeback_mapping_range(mapping,
			xfs_find_bdev_for_inode(mapping->host), wbc);
}

1000
STATIC int
1001
xfs_vm_releasepage(
1002 1003 1004
	struct page		*page,
	gfp_t			gfp_mask)
{
1005
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1006
	return iomap_releasepage(page, gfp_mask);
L
Linus Torvalds 已提交
1007 1008 1009
}

STATIC sector_t
1010
xfs_vm_bmap(
L
Linus Torvalds 已提交
1011 1012 1013
	struct address_space	*mapping,
	sector_t		block)
{
C
Christoph Hellwig 已提交
1014
	struct xfs_inode	*ip = XFS_I(mapping->host);
L
Linus Torvalds 已提交
1015

C
Christoph Hellwig 已提交
1016
	trace_xfs_vm_bmap(ip);
1017 1018 1019

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1020
	 * bypasses the file system for actual I/O.  We really can't allow
1021
	 * that on reflinks inodes, so we have to skip out here.  And yes,
1022 1023 1024 1025
	 * 0 is the magic code for a bmap error.
	 *
	 * Since we don't pass back blockdev info, we can't return bmap
	 * information for rt files either.
1026
	 */
1027
	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1028
		return 0;
C
Christoph Hellwig 已提交
1029
	return iomap_bmap(mapping, block, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1030 1031 1032
}

STATIC int
1033
xfs_vm_readpage(
L
Linus Torvalds 已提交
1034 1035 1036
	struct file		*unused,
	struct page		*page)
{
1037
	trace_xfs_vm_readpage(page->mapping->host, 1);
1038
	return iomap_readpage(page, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1039 1040 1041
}

STATIC int
1042
xfs_vm_readpages(
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1048
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1049
	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int
xfs_iomap_swapfile_activate(
	struct swap_info_struct		*sis,
	struct file			*swap_file,
	sector_t			*span)
{
	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
}

1062
const struct address_space_operations xfs_address_space_operations = {
1063 1064 1065
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1066
	.writepages		= xfs_vm_writepages,
1067
	.set_page_dirty		= iomap_set_page_dirty,
1068 1069
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1070
	.bmap			= xfs_vm_bmap,
D
Dan Williams 已提交
1071
	.direct_IO		= noop_direct_IO,
1072 1073
	.migratepage		= iomap_migrate_page,
	.is_partially_uptodate  = iomap_is_partially_uptodate,
1074
	.error_remove_page	= generic_error_remove_page,
1075
	.swap_activate		= xfs_iomap_swapfile_activate,
L
Linus Torvalds 已提交
1076
};
D
Dan Williams 已提交
1077 1078 1079 1080 1081 1082

const struct address_space_operations xfs_dax_aops = {
	.writepages		= xfs_dax_writepages,
	.direct_IO		= noop_direct_IO,
	.set_page_dirty		= noop_set_page_dirty,
	.invalidatepage		= noop_invalidatepage,
1083
	.swap_activate		= xfs_iomap_swapfile_activate,
D
Dan Williams 已提交
1084
};