xfs_aops.c 39.0 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3 4
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
5 6
 */
#include "xfs.h"
7
#include "xfs_shared.h"
8 9 10
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
11 12
#include "xfs_mount.h"
#include "xfs_inode.h"
13
#include "xfs_trans.h"
14
#include "xfs_inode_item.h"
15
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
16 17
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
18
#include "xfs_trace.h"
19
#include "xfs_bmap.h"
D
Dave Chinner 已提交
20
#include "xfs_bmap_util.h"
21
#include "xfs_bmap_btree.h"
22
#include "xfs_reflink.h"
23
#include <linux/gfp.h>
L
Linus Torvalds 已提交
24
#include <linux/mpage.h>
25
#include <linux/pagevec.h>
L
Linus Torvalds 已提交
26 27
#include <linux/writeback.h>

28 29 30 31 32 33 34 35 36 37 38
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
	bool			imap_valid;
	unsigned int		io_type;
	struct xfs_ioend	*ioend;
	sector_t		last_block;
};

C
Christoph Hellwig 已提交
39
void
40 41 42 43 44 45 46
xfs_count_page_state(
	struct page		*page,
	int			*delalloc,
	int			*unwritten)
{
	struct buffer_head	*bh, *head;

47
	*delalloc = *unwritten = 0;
48 49 50

	bh = head = page_buffers(page);
	do {
51
		if (buffer_unwritten(bh))
52 53 54 55 56 57
			(*unwritten) = 1;
		else if (buffer_delay(bh))
			(*delalloc) = 1;
	} while ((bh = bh->b_this_page) != head);
}

58
struct block_device *
C
Christoph Hellwig 已提交
59
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
60
	struct inode		*inode)
C
Christoph Hellwig 已提交
61
{
C
Christoph Hellwig 已提交
62
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
63 64
	struct xfs_mount	*mp = ip->i_mount;

65
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
66 67 68 69 70
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

71 72 73 74 75 76 77 78 79 80 81 82 83
struct dax_device *
xfs_find_daxdev_for_inode(
	struct inode		*inode)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;

	if (XFS_IS_REALTIME_INODE(ip))
		return mp->m_rtdev_targp->bt_daxdev;
	else
		return mp->m_ddev_targp->bt_daxdev;
}

84
/*
85 86 87
 * We're now finished for good with this page.  Update the page state via the
 * associated buffer_heads, paying attention to the start and end offsets that
 * we need to process on the page.
88
 *
89 90 91 92 93
 * Note that we open code the action in end_buffer_async_write here so that we
 * only have to iterate over the buffers attached to the page once.  This is not
 * only more efficient, but also ensures that we only calls end_page_writeback
 * at the end of the iteration, and thus avoids the pitfall of having the page
 * and buffers potentially freed after every call to end_buffer_async_write.
94 95 96 97 98 99 100
 */
static void
xfs_finish_page_writeback(
	struct inode		*inode,
	struct bio_vec		*bvec,
	int			error)
{
101 102
	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
	bool			busy = false;
103
	unsigned int		off = 0;
104
	unsigned long		flags;
105 106

	ASSERT(bvec->bv_offset < PAGE_SIZE);
F
Fabian Frederick 已提交
107
	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
108
	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
F
Fabian Frederick 已提交
109
	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
110

111 112
	local_irq_save(flags);
	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
113
	do {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		if (off >= bvec->bv_offset &&
		    off < bvec->bv_offset + bvec->bv_len) {
			ASSERT(buffer_async_write(bh));
			ASSERT(bh->b_end_io == NULL);

			if (error) {
				mark_buffer_write_io_error(bh);
				clear_buffer_uptodate(bh);
				SetPageError(bvec->bv_page);
			} else {
				set_buffer_uptodate(bh);
			}
			clear_buffer_async_write(bh);
			unlock_buffer(bh);
		} else if (buffer_async_write(bh)) {
			ASSERT(buffer_locked(bh));
			busy = true;
		}
		off += bh->b_size;
	} while ((bh = bh->b_this_page) != head);
	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
	local_irq_restore(flags);

	if (!busy)
		end_page_writeback(bvec->bv_page);
139 140 141 142 143 144
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
145
 */
146 147
STATIC void
xfs_destroy_ioend(
148 149
	struct xfs_ioend	*ioend,
	int			error)
150
{
151
	struct inode		*inode = ioend->io_inode;
152 153 154 155
	struct bio		*bio = &ioend->io_inline_bio;
	struct bio		*last = ioend->io_bio, *next;
	u64			start = bio->bi_iter.bi_sector;
	bool			quiet = bio_flagged(bio, BIO_QUIET);
156

157
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
158 159 160
		struct bio_vec	*bvec;
		int		i;

161 162 163 164 165 166 167 168
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
169

170 171 172 173 174
		/* walk each page on bio, ending page IO on them */
		bio_for_each_segment_all(bvec, bio, i)
			xfs_finish_page_writeback(inode, bvec, error);

		bio_put(bio);
175
	}
176 177 178 179 180

	if (unlikely(error && !quiet)) {
		xfs_err_ratelimited(XFS_I(inode)->i_mount,
			"writeback error on sector %llu", start);
	}
181 182
}

C
Christoph Hellwig 已提交
183 184 185 186 187 188 189 190 191
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

192 193 194 195 196 197 198 199
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

200 201
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
				XFS_TRANS_NOFS, &tp);
202
	if (error)
203 204 205 206
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
207
	/*
208
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
209 210
	 * we released it.
	 */
211
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
212 213 214 215
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
216
	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
217 218 219
	return 0;
}

220
/*
221
 * Update on-disk file size now that data has been written to disk.
222
 */
223
STATIC int
224
__xfs_setfilesize(
225 226 227 228
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
229 230 231
{
	xfs_fsize_t		isize;

232
	xfs_ilock(ip, XFS_ILOCK_EXCL);
233
	isize = xfs_new_eof(ip, offset + size);
234 235
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
236
		xfs_trans_cancel(tp);
237
		return 0;
238 239
	}

240
	trace_xfs_setfilesize(ip, offset, size);
241 242 243 244 245

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

246
	return xfs_trans_commit(tp);
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

266 267
STATIC int
xfs_setfilesize_ioend(
268 269
	struct xfs_ioend	*ioend,
	int			error)
270 271 272 273 274 275 276 277 278
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
279
	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
280
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
281

282
	/* we abort the update if there was an IO error */
283
	if (error) {
284
		xfs_trans_cancel(tp);
285
		return error;
286 287
	}

288
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
289 290
}

291
/*
292
 * IO write completion.
293 294
 */
STATIC void
295
xfs_end_io(
296
	struct work_struct *work)
297
{
298 299 300
	struct xfs_ioend	*ioend =
		container_of(work, struct xfs_ioend, io_work);
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
301 302
	xfs_off_t		offset = ioend->io_offset;
	size_t			size = ioend->io_size;
303
	int			error;
304

305
	/*
306
	 * Just clean up the in-memory strutures if the fs has been shut down.
307
	 */
308
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
309
		error = -EIO;
310 311
		goto done;
	}
312

313
	/*
314
	 * Clean up any COW blocks on an I/O error.
315
	 */
316
	error = blk_status_to_errno(ioend->io_bio->bi_status);
317 318 319 320 321
	if (unlikely(error)) {
		switch (ioend->io_type) {
		case XFS_IO_COW:
			xfs_reflink_cancel_cow_range(ip, offset, size, true);
			break;
322
		}
323 324

		goto done;
325 326
	}

327
	/*
328
	 * Success:  commit the COW or unwritten blocks if needed.
329
	 */
330 331 332 333 334
	switch (ioend->io_type) {
	case XFS_IO_COW:
		error = xfs_reflink_end_cow(ip, offset, size);
		break;
	case XFS_IO_UNWRITTEN:
335 336
		/* writeback should never update isize */
		error = xfs_iomap_write_unwritten(ip, offset, size, false);
337 338 339 340
		break;
	default:
		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
		break;
341
	}
342

343
done:
344 345
	if (ioend->io_append_trans)
		error = xfs_setfilesize_ioend(ioend, error);
346
	xfs_destroy_ioend(ioend, error);
347 348
}

349 350 351
STATIC void
xfs_end_bio(
	struct bio		*bio)
352
{
353 354
	struct xfs_ioend	*ioend = bio->bi_private;
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
355

356
	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
357 358 359 360
		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
	else if (ioend->io_append_trans)
		queue_work(mp->m_data_workqueue, &ioend->io_work);
	else
361
		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
362 363
}

L
Linus Torvalds 已提交
364 365 366 367
STATIC int
xfs_map_blocks(
	struct inode		*inode,
	loff_t			offset,
C
Christoph Hellwig 已提交
368
	struct xfs_bmbt_irec	*imap,
369
	int			type)
L
Linus Torvalds 已提交
370
{
C
Christoph Hellwig 已提交
371 372
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
F
Fabian Frederick 已提交
373
	ssize_t			count = i_blocksize(inode);
C
Christoph Hellwig 已提交
374 375 376 377 378
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error = 0;
	int			nimaps = 1;

	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
379
		return -EIO;
C
Christoph Hellwig 已提交
380

381 382 383 384 385 386 387 388 389 390 391 392 393
	/*
	 * Truncate can race with writeback since writeback doesn't take the
	 * iolock and truncate decreases the file size before it starts
	 * truncating the pages between new_size and old_size.  Therefore, we
	 * can end up in the situation where writeback gets a CoW fork mapping
	 * but the truncate makes the mapping invalid and we end up in here
	 * trying to get a new mapping.  Bail out here so that we simply never
	 * get a valid mapping and so we drop the write altogether.  The page
	 * truncation will kill the contents anyway.
	 */
	if (type == XFS_IO_COW && offset > i_size_read(inode))
		return 0;

394
	ASSERT(type != XFS_IO_COW);
C
Christoph Hellwig 已提交
395

396
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
397 398
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
D
Dave Chinner 已提交
399
	ASSERT(offset <= mp->m_super->s_maxbytes);
C
Christoph Hellwig 已提交
400

401
	if (offset > mp->m_super->s_maxbytes - count)
D
Dave Chinner 已提交
402
		count = mp->m_super->s_maxbytes - offset;
C
Christoph Hellwig 已提交
403 404
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);
D
Dave Chinner 已提交
405
	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
406
				imap, &nimaps, XFS_BMAPI_ENTIRE);
C
Christoph Hellwig 已提交
407
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
408

C
Christoph Hellwig 已提交
409
	if (error)
D
Dave Chinner 已提交
410
		return error;
C
Christoph Hellwig 已提交
411

412
	if (type == XFS_IO_DELALLOC &&
C
Christoph Hellwig 已提交
413
	    (!nimaps || isnullstartblock(imap->br_startblock))) {
414 415
		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
				imap);
C
Christoph Hellwig 已提交
416
		if (!error)
417
			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
D
Dave Chinner 已提交
418
		return error;
C
Christoph Hellwig 已提交
419 420
	}

C
Christoph Hellwig 已提交
421
#ifdef DEBUG
422
	if (type == XFS_IO_UNWRITTEN) {
C
Christoph Hellwig 已提交
423 424 425 426 427 428 429 430
		ASSERT(nimaps);
		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
	}
#endif
	if (nimaps)
		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
	return 0;
L
Linus Torvalds 已提交
431 432
}

433
STATIC bool
434
xfs_imap_valid(
435
	struct inode		*inode,
C
Christoph Hellwig 已提交
436
	struct xfs_bmbt_irec	*imap,
437
	xfs_off_t		offset)
L
Linus Torvalds 已提交
438
{
439
	offset >>= inode->i_blkbits;
440

441 442 443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We have to make sure the cached mapping is within EOF to protect
	 * against eofblocks trimming on file release leaving us with a stale
	 * mapping. Otherwise, a page for a subsequent file extending buffered
	 * write could get picked up by this writeback cycle and written to the
	 * wrong blocks.
	 *
	 * Note that what we really want here is a generic mapping invalidation
	 * mechanism to protect us from arbitrary extent modifying contexts, not
	 * just eofblocks.
	 */
	xfs_trim_extent_eof(imap, XFS_I(inode));

454 455
	return offset >= imap->br_startoff &&
		offset < imap->br_startoff + imap->br_blockcount;
L
Linus Torvalds 已提交
456 457
}

458 459 460 461 462 463 464 465 466
STATIC void
xfs_start_buffer_writeback(
	struct buffer_head	*bh)
{
	ASSERT(buffer_mapped(bh));
	ASSERT(buffer_locked(bh));
	ASSERT(!buffer_delay(bh));
	ASSERT(!buffer_unwritten(bh));

467 468
	bh->b_end_io = NULL;
	set_buffer_async_write(bh);
469 470 471 472 473 474 475
	set_buffer_uptodate(bh);
	clear_buffer_dirty(bh);
}

STATIC void
xfs_start_page_writeback(
	struct page		*page,
476
	int			clear_dirty)
477 478 479
{
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
480 481 482 483 484 485 486 487 488

	/*
	 * if the page was not fully cleaned, we need to ensure that the higher
	 * layers come back to it correctly. That means we need to keep the page
	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
	 * write this page in this writeback sweep will be made.
	 */
	if (clear_dirty) {
489
		clear_page_dirty_for_io(page);
490 491 492 493
		set_page_writeback(page);
	} else
		set_page_writeback_keepwrite(page);

494 495 496
	unlock_page(page);
}

497
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
498 499 500 501 502
{
	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}

/*
503 504 505 506 507 508
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
509 510 511
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
512 513 514
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
515
 */
516
STATIC int
517
xfs_submit_ioend(
518
	struct writeback_control *wbc,
519
	struct xfs_ioend	*ioend,
520
	int			status)
521
{
522 523
	/* Convert CoW extents to regular */
	if (!status && ioend->io_type == XFS_IO_COW) {
524 525 526 527 528 529 530 531 532 533
		/*
		 * Yuk. This can do memory allocation, but is not a
		 * transactional operation so everything is done in GFP_KERNEL
		 * context. That can deadlock, because we hold pages in
		 * writeback state and GFP_KERNEL allocations can block on them.
		 * Hence we must operate in nofs conditions here.
		 */
		unsigned nofs_flag;

		nofs_flag = memalloc_nofs_save();
534 535
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
536
		memalloc_nofs_restore(nofs_flag);
537 538
	}

539 540
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
541
	    ioend->io_type != XFS_IO_UNWRITTEN &&
542 543
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
544
		status = xfs_setfilesize_trans_alloc(ioend);
545

546 547
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
548
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
549

550 551 552 553 554 555 556
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
557
		ioend->io_bio->bi_status = errno_to_blk_status(status);
558
		bio_endio(ioend->io_bio);
559 560
		return status;
	}
561

562
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
563
	submit_bio(ioend->io_bio);
564
	return 0;
565 566
}

567 568 569 570 571 572
static void
xfs_init_bio_from_bh(
	struct bio		*bio,
	struct buffer_head	*bh)
{
	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
573
	bio_set_dev(bio, bh->b_bdev);
574
}
575

576 577 578 579 580 581 582 583 584
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
	unsigned int		type,
	xfs_off_t		offset,
	struct buffer_head	*bh)
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
585

586
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	xfs_init_bio_from_bh(bio, bh);

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
	ioend->io_type = type;
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	INIT_WORK(&ioend->io_work, xfs_end_io);
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
	struct buffer_head	*bh)
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
	xfs_init_bio_from_bh(new, bh);

	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
621
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
622
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
623
	submit_bio(ioend->io_bio);
624
	ioend->io_bio = new;
625 626 627 628 629 630
}

/*
 * Test to see if we've been building up a completion structure for
 * earlier buffers -- if so, we try to append to this ioend if we
 * can, otherwise we finish off any current ioend and start another.
631 632
 * Return the ioend we finished off so that the caller can submit it
 * once it has finished processing the dirty page.
633 634 635 636 637
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
	struct buffer_head	*bh,
638
	xfs_off_t		offset,
639
	struct xfs_writepage_ctx *wpc,
640
	struct writeback_control *wbc,
641
	struct list_head	*iolist)
642
{
643
	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
644 645
	    bh->b_blocknr != wpc->last_block + 1 ||
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
646 647
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
648
		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
649 650
	}

651 652 653 654 655 656
	/*
	 * If the buffer doesn't fit into the bio we need to allocate a new
	 * one.  This shouldn't happen more than once for a given buffer.
	 */
	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
		xfs_chain_bio(wpc->ioend, wbc, bh);
657

658 659
	wpc->ioend->io_size += bh->b_size;
	wpc->last_block = bh->b_blocknr;
660
	xfs_start_buffer_writeback(bh);
661 662
}

663 664
STATIC void
xfs_map_buffer(
C
Christoph Hellwig 已提交
665
	struct inode		*inode,
666
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
667
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
668
	xfs_off_t		offset)
669 670
{
	sector_t		bn;
671
	struct xfs_mount	*m = XFS_I(inode)->i_mount;
C
Christoph Hellwig 已提交
672 673
	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
674

C
Christoph Hellwig 已提交
675 676
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
677

678
	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
679
	      ((offset - iomap_offset) >> inode->i_blkbits);
680

C
Christoph Hellwig 已提交
681
	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
682 683 684 685 686

	bh->b_blocknr = bn;
	set_buffer_mapped(bh);
}

L
Linus Torvalds 已提交
687 688
STATIC void
xfs_map_at_offset(
C
Christoph Hellwig 已提交
689
	struct inode		*inode,
L
Linus Torvalds 已提交
690
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
691
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
692
	xfs_off_t		offset)
L
Linus Torvalds 已提交
693
{
C
Christoph Hellwig 已提交
694 695
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
L
Linus Torvalds 已提交
696

C
Christoph Hellwig 已提交
697
	xfs_map_buffer(inode, bh, imap, offset);
L
Linus Torvalds 已提交
698 699
	set_buffer_mapped(bh);
	clear_buffer_delay(bh);
700
	clear_buffer_unwritten(bh);
L
Linus Torvalds 已提交
701 702
}

703 704 705
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
706 707
	unsigned int		offset,
	unsigned int		length)
708
{
709 710
	trace_xfs_invalidatepage(page->mapping->host, page, offset,
				 length);
711 712 713 714 715 716 717 718

	/*
	 * If we are invalidating the entire page, clear the dirty state from it
	 * so that we can check for attempts to release dirty cached pages in
	 * xfs_vm_releasepage().
	 */
	if (offset == 0 && length >= PAGE_SIZE)
		cancel_dirty_page(page);
719
	block_invalidatepage(page, offset, length);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
}

/*
 * If the page has delalloc buffers on it, we need to punch them out before we
 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 * is done on that same region - the delalloc extent is returned when none is
 * supposed to be there.
 *
 * We prevent this by truncating away the delalloc regions on the page before
 * invalidating it. Because they are delalloc, we can do this without needing a
 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 * truncation without a transaction as there is no space left for block
 * reservation (typically why we see a ENOSPC in writeback).
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
741
	struct xfs_mount	*mp = ip->i_mount;
742
	loff_t			offset = page_offset(page);
743 744
	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
	int			error;
745

746
	if (XFS_FORCED_SHUTDOWN(mp))
747 748
		goto out_invalidate;

749
	xfs_alert(mp,
750
		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
751 752
			page, ip->i_ino, offset);

753 754 755 756
	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
			PAGE_SIZE / i_blocksize(inode));
	if (error && !XFS_FORCED_SHUTDOWN(mp))
		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
757
out_invalidate:
758
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
759 760
}

761 762 763 764 765 766 767 768 769
static int
xfs_map_cow(
	struct xfs_writepage_ctx *wpc,
	struct inode		*inode,
	loff_t			offset,
	unsigned int		*new_type)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_bmbt_irec	imap;
770
	bool			is_cow = false;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	int			error;

	/*
	 * If we already have a valid COW mapping keep using it.
	 */
	if (wpc->io_type == XFS_IO_COW) {
		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
		if (wpc->imap_valid) {
			*new_type = XFS_IO_COW;
			return 0;
		}
	}

	/*
	 * Else we need to check if there is a COW mapping at this offset.
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
788
	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
789 790 791 792 793 794 795 796 797
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!is_cow)
		return 0;

	/*
	 * And if the COW mapping has a delayed extent here we need to
	 * allocate real space for it now.
	 */
798
	if (isnullstartblock(imap.br_startblock)) {
799 800 801 802 803 804 805 806 807 808 809 810
		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
				&imap);
		if (error)
			return error;
	}

	wpc->io_type = *new_type = XFS_IO_COW;
	wpc->imap_valid = true;
	wpc->imap = imap;
	return 0;
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
 * adding buffers to is cached on the writepage context, and if the new buffer
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
827 828 829
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
830
	struct writeback_control *wbc,
831 832
	struct inode		*inode,
	struct page		*page,
833
	uint64_t		end_offset)
834
{
835 836
	LIST_HEAD(submit_list);
	struct xfs_ioend	*ioend, *next;
837
	struct buffer_head	*bh, *head;
F
Fabian Frederick 已提交
838
	ssize_t			len = i_blocksize(inode);
839
	uint64_t		offset;
840 841
	int			error = 0;
	int			count = 0;
842
	unsigned int		new_type;
843 844 845 846 847 848 849 850 851 852 853 854 855

	bh = head = page_buffers(page);
	offset = page_offset(page);
	do {
		if (offset >= end_offset)
			break;

		/*
		 * set_page_dirty dirties all buffers in a page, independent
		 * of their state.  The dirty state however is entirely
		 * meaningless for holes (!mapped && uptodate), so skip
		 * buffers covering holes here.
		 */
856
		if (!buffer_mapped(bh) && buffer_uptodate(bh))
857 858
			continue;

859 860 861 862 863 864 865
		if (buffer_unwritten(bh))
			new_type = XFS_IO_UNWRITTEN;
		else if (buffer_delay(bh))
			new_type = XFS_IO_DELALLOC;
		else if (buffer_uptodate(bh))
			new_type = XFS_IO_OVERWRITE;
		else {
866 867 868 869
			if (PageUptodate(page))
				ASSERT(buffer_mapped(bh));
			/*
			 * This buffer is not uptodate and will not be
870
			 * written to disk.
871 872 873 874
			 */
			continue;
		}

875 876 877 878 879 880 881 882 883 884 885
		if (xfs_is_reflink_inode(XFS_I(inode))) {
			error = xfs_map_cow(wpc, inode, offset, &new_type);
			if (error)
				goto out;
		}

		if (wpc->io_type != new_type) {
			wpc->io_type = new_type;
			wpc->imap_valid = false;
		}

886 887 888 889 890 891 892
		if (wpc->imap_valid)
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
							 offset);
		if (!wpc->imap_valid) {
			error = xfs_map_blocks(inode, offset, &wpc->imap,
					     wpc->io_type);
			if (error)
893
				goto out;
894 895 896 897 898 899 900
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
							 offset);
		}
		if (wpc->imap_valid) {
			lock_buffer(bh);
			if (wpc->io_type != XFS_IO_OVERWRITE)
				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
901
			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
902 903 904 905 906
			count++;
		}

	} while (offset += len, ((bh = bh->b_this_page) != head));

907
	ASSERT(wpc->ioend || list_empty(&submit_list));
908

909
out:
910
	/*
911 912 913 914 915 916 917 918 919
	 * On error, we have to fail the ioend here because we have locked
	 * buffers in the ioend. If we don't do this, we'll deadlock
	 * invalidating the page as that tries to lock the buffers on the page.
	 * Also, because we may have set pages under writeback, we have to make
	 * sure we run IO completion to mark the error state of the IO
	 * appropriately, so we can't cancel the ioend directly here. That means
	 * we have to mark this page as under writeback if we included any
	 * buffers from it in the ioend chain so that completion treats it
	 * correctly.
920
	 *
921 922 923 924 925
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
	 * or it's buffers right now. The caller will still need to trigger
	 * submission of outstanding ioends on the writepage context so they are
	 * treated correctly on error.
926
	 */
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	if (count) {
		xfs_start_page_writeback(page, !error);

		/*
		 * Preserve the original error if there was one, otherwise catch
		 * submission errors here and propagate into subsequent ioend
		 * submissions.
		 */
		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
			int error2;

			list_del_init(&ioend->io_list);
			error2 = xfs_submit_ioend(wbc, ioend, error);
			if (error2 && !error)
				error = error2;
		}
	} else if (error) {
944 945 946
		xfs_aops_discard_page(page);
		ClearPageUptodate(page);
		unlock_page(page);
947 948 949 950 951 952 953 954
	} else {
		/*
		 * We can end up here with no error and nothing to write if we
		 * race with a partial page truncate on a sub-page block sized
		 * filesystem. In that case we need to mark the page clean.
		 */
		xfs_start_page_writeback(page, 1);
		end_page_writeback(page);
955
	}
956

957 958 959 960
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
961
/*
962 963 964 965 966 967
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
 * For any other dirty buffer heads on the page we should flush them.
L
Linus Torvalds 已提交
968 969
 */
STATIC int
970
xfs_do_writepage(
971
	struct page		*page,
972 973
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
974
{
975
	struct xfs_writepage_ctx *wpc = data;
976
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
977
	loff_t			offset;
978
	uint64_t              end_offset;
979
	pgoff_t                 end_index;
980

981
	trace_xfs_writepage(inode, page, 0, 0);
982

983 984
	ASSERT(page_has_buffers(page));

985 986 987
	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
988 989 990
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
991
	 *
992 993
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
994
	 */
995 996
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
997
		goto redirty;
L
Linus Torvalds 已提交
998

999
	/*
1000 1001
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
1002
	 */
1003
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1004
		goto redirty;
1005

1006
	/*
1007 1008
	 * Is this page beyond the end of the file?
	 *
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
1019
	offset = i_size_read(inode);
1020
	end_index = offset >> PAGE_SHIFT;
1021
	if (page->index < end_index)
1022
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
1035
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1036 1037

		/*
1038 1039 1040 1041
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
1053
		 */
1054 1055
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
1056
			goto redirty;
1057 1058 1059 1060 1061

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
1062
		 * that is not a multiple of the page size, the remaining
1063 1064 1065
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
1066
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1067 1068 1069

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
1070 1071
	}

1072
	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1073

1074
redirty:
1075 1076 1077 1078 1079
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
1091 1092 1093
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1094 1095
}

1096 1097 1098 1099 1100
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
1101 1102 1103 1104 1105
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

1106
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1107
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1108 1109 1110
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1111 1112
}

D
Dan Williams 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
STATIC int
xfs_dax_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
	return dax_writeback_mapping_range(mapping,
			xfs_find_bdev_for_inode(mapping->host), wbc);
}

1123 1124
/*
 * Called to move a page into cleanable state - and from there
1125
 * to be released. The page should already be clean. We always
1126 1127
 * have buffer heads in this call.
 *
1128
 * Returns 1 if the page is ok to release, 0 otherwise.
1129 1130
 */
STATIC int
1131
xfs_vm_releasepage(
1132 1133 1134
	struct page		*page,
	gfp_t			gfp_mask)
{
1135
	int			delalloc, unwritten;
1136

1137
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1138

1139 1140 1141 1142
	/*
	 * mm accommodates an old ext3 case where clean pages might not have had
	 * the dirty bit cleared. Thus, it can send actual dirty pages to
	 * ->releasepage() via shrink_active_list(). Conversely,
1143 1144
	 * block_invalidatepage() can send pages that are still marked dirty but
	 * otherwise have invalidated buffers.
1145
	 *
1146
	 * We want to release the latter to avoid unnecessary buildup of the
1147 1148 1149 1150 1151 1152 1153
	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
	 * that are entirely invalidated and need to be released.  Hence the
	 * only time we should get dirty pages here is through
	 * shrink_active_list() and so we can simply skip those now.
	 *
	 * warn if we've left any lingering delalloc/unwritten buffers on clean
	 * or invalidated pages we are about to release.
1154
	 */
1155 1156 1157
	if (PageDirty(page))
		return 0;

1158
	xfs_count_page_state(page, &delalloc, &unwritten);
1159

1160
	if (WARN_ON_ONCE(delalloc))
1161
		return 0;
1162
	if (WARN_ON_ONCE(unwritten))
1163 1164 1165 1166 1167
		return 0;

	return try_to_free_buffers(page);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
 * is, so that we can avoid repeated get_blocks calls.
 *
 * If the mapping spans EOF, then we have to break the mapping up as the mapping
 * for blocks beyond EOF must be marked new so that sub block regions can be
 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
 * was just allocated or is unwritten, otherwise the callers would overwrite
 * existing data with zeros. Hence we have to split the mapping into a range up
 * to and including EOF, and a second mapping for beyond EOF.
 */
static void
xfs_map_trim_size(
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
	struct xfs_bmbt_irec	*imap,
	xfs_off_t		offset,
	ssize_t			size)
{
	xfs_off_t		mapping_size;

	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
	mapping_size <<= inode->i_blkbits;

	ASSERT(mapping_size > 0);
	if (mapping_size > size)
		mapping_size = size;
	if (offset < i_size_read(inode) &&
D
Darrick J. Wong 已提交
1197
	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1198 1199
		/* limit mapping to block that spans EOF */
		mapping_size = roundup_64(i_size_read(inode) - offset,
F
Fabian Frederick 已提交
1200
					  i_blocksize(inode));
1201 1202 1203 1204 1205 1206 1207
	}
	if (mapping_size > LONG_MAX)
		mapping_size = LONG_MAX;

	bh_result->b_size = mapping_size;
}

1208
static int
C
Christoph Hellwig 已提交
1209
xfs_get_blocks(
L
Linus Torvalds 已提交
1210 1211 1212
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
C
Christoph Hellwig 已提交
1213
	int			create)
L
Linus Torvalds 已提交
1214
{
C
Christoph Hellwig 已提交
1215 1216 1217 1218 1219
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error = 0;
	int			lockmode = 0;
C
Christoph Hellwig 已提交
1220
	struct xfs_bmbt_irec	imap;
C
Christoph Hellwig 已提交
1221
	int			nimaps = 1;
1222 1223
	xfs_off_t		offset;
	ssize_t			size;
C
Christoph Hellwig 已提交
1224

C
Christoph Hellwig 已提交
1225
	BUG_ON(create);
1226

C
Christoph Hellwig 已提交
1227
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
1228
		return -EIO;
L
Linus Torvalds 已提交
1229

1230
	offset = (xfs_off_t)iblock << inode->i_blkbits;
F
Fabian Frederick 已提交
1231
	ASSERT(bh_result->b_size >= i_blocksize(inode));
1232
	size = bh_result->b_size;
1233

C
Christoph Hellwig 已提交
1234
	if (offset >= i_size_read(inode))
1235 1236
		return 0;

1237 1238
	/*
	 * Direct I/O is usually done on preallocated files, so try getting
1239
	 * a block mapping without an exclusive lock first.
1240
	 */
1241
	lockmode = xfs_ilock_data_map_shared(ip);
1242

D
Dave Chinner 已提交
1243
	ASSERT(offset <= mp->m_super->s_maxbytes);
1244
	if (offset > mp->m_super->s_maxbytes - size)
D
Dave Chinner 已提交
1245
		size = mp->m_super->s_maxbytes - offset;
C
Christoph Hellwig 已提交
1246 1247 1248
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);

1249 1250
	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
			&nimaps, 0);
L
Linus Torvalds 已提交
1251
	if (error)
C
Christoph Hellwig 已提交
1252
		goto out_unlock;
1253
	if (!nimaps) {
C
Christoph Hellwig 已提交
1254 1255 1256
		trace_xfs_get_blocks_notfound(ip, offset, size);
		goto out_unlock;
	}
L
Linus Torvalds 已提交
1257

1258 1259 1260 1261 1262
	trace_xfs_get_blocks_found(ip, offset, size,
		imap.br_state == XFS_EXT_UNWRITTEN ?
			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
	xfs_iunlock(ip, lockmode);

1263
	/* trim mapping down to size requested */
1264
	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1265

1266 1267 1268 1269
	/*
	 * For unwritten extents do not report a disk address in the buffered
	 * read case (treat as if we're reading into a hole).
	 */
1270
	if (xfs_bmap_is_real_extent(&imap))
1271
		xfs_map_buffer(inode, bh_result, &imap, offset);
L
Linus Torvalds 已提交
1272

1273 1274 1275 1276
	/*
	 * If this is a realtime file, data may be on a different device.
	 * to that pointed to from the buffer_head b_bdev currently.
	 */
C
Christoph Hellwig 已提交
1277
	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
L
Linus Torvalds 已提交
1278
	return 0;
C
Christoph Hellwig 已提交
1279 1280 1281

out_unlock:
	xfs_iunlock(ip, lockmode);
D
Dave Chinner 已提交
1282
	return error;
L
Linus Torvalds 已提交
1283 1284 1285
}

STATIC sector_t
1286
xfs_vm_bmap(
L
Linus Torvalds 已提交
1287 1288 1289
	struct address_space	*mapping,
	sector_t		block)
{
C
Christoph Hellwig 已提交
1290
	struct xfs_inode	*ip = XFS_I(mapping->host);
L
Linus Torvalds 已提交
1291

C
Christoph Hellwig 已提交
1292
	trace_xfs_vm_bmap(ip);
1293 1294 1295

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1296
	 * bypasses the file system for actual I/O.  We really can't allow
1297
	 * that on reflinks inodes, so we have to skip out here.  And yes,
1298 1299 1300 1301
	 * 0 is the magic code for a bmap error.
	 *
	 * Since we don't pass back blockdev info, we can't return bmap
	 * information for rt files either.
1302
	 */
1303
	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1304
		return 0;
C
Christoph Hellwig 已提交
1305
	return iomap_bmap(mapping, block, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1306 1307 1308
}

STATIC int
1309
xfs_vm_readpage(
L
Linus Torvalds 已提交
1310 1311 1312
	struct file		*unused,
	struct page		*page)
{
1313
	trace_xfs_vm_readpage(page->mapping->host, 1);
1314 1315
	if (i_blocksize(page->mapping->host) == PAGE_SIZE)
		return iomap_readpage(page, &xfs_iomap_ops);
1316
	return mpage_readpage(page, xfs_get_blocks);
L
Linus Torvalds 已提交
1317 1318 1319
}

STATIC int
1320
xfs_vm_readpages(
L
Linus Torvalds 已提交
1321 1322 1323 1324 1325
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1326
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1327 1328
	if (i_blocksize(mapping->host) == PAGE_SIZE)
		return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1329
	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
L
Linus Torvalds 已提交
1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * This is basically a copy of __set_page_dirty_buffers() with one
 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
 * dirty, we'll never be able to clean them because we don't write buffers
 * beyond EOF, and that means we can't invalidate pages that span EOF
 * that have been marked dirty. Further, the dirty state can leak into
 * the file interior if the file is extended, resulting in all sorts of
 * bad things happening as the state does not match the underlying data.
 *
 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
 * this only exist because of bufferheads and how the generic code manages them.
 */
STATIC int
xfs_vm_set_page_dirty(
	struct page		*page)
{
	struct address_space	*mapping = page->mapping;
	struct inode		*inode = mapping->host;
	loff_t			end_offset;
	loff_t			offset;
	int			newly_dirty;

	if (unlikely(!mapping))
		return !TestSetPageDirty(page);

	end_offset = i_size_read(inode);
	offset = page_offset(page);

	spin_lock(&mapping->private_lock);
	if (page_has_buffers(page)) {
		struct buffer_head *head = page_buffers(page);
		struct buffer_head *bh = head;

		do {
			if (offset < end_offset)
				set_buffer_dirty(bh);
			bh = bh->b_this_page;
F
Fabian Frederick 已提交
1369
			offset += i_blocksize(inode);
1370 1371
		} while (bh != head);
	}
1372
	/*
1373 1374
	 * Lock out page->mem_cgroup migration to keep PageDirty
	 * synchronized with per-memcg dirty page counters.
1375
	 */
J
Johannes Weiner 已提交
1376
	lock_page_memcg(page);
1377 1378 1379
	newly_dirty = !TestSetPageDirty(page);
	spin_unlock(&mapping->private_lock);

M
Matthew Wilcox 已提交
1380 1381
	if (newly_dirty)
		__set_page_dirty(page, mapping, 1);
J
Johannes Weiner 已提交
1382
	unlock_page_memcg(page);
1383 1384
	if (newly_dirty)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1385 1386 1387
	return newly_dirty;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static int
xfs_iomap_swapfile_activate(
	struct swap_info_struct		*sis,
	struct file			*swap_file,
	sector_t			*span)
{
	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
}

1398
const struct address_space_operations xfs_address_space_operations = {
1399 1400 1401
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1402
	.writepages		= xfs_vm_writepages,
1403
	.set_page_dirty		= xfs_vm_set_page_dirty,
1404 1405
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1406
	.bmap			= xfs_vm_bmap,
D
Dan Williams 已提交
1407
	.direct_IO		= noop_direct_IO,
1408
	.migratepage		= buffer_migrate_page,
1409
	.is_partially_uptodate  = block_is_partially_uptodate,
1410
	.error_remove_page	= generic_error_remove_page,
1411
	.swap_activate		= xfs_iomap_swapfile_activate,
L
Linus Torvalds 已提交
1412
};
D
Dan Williams 已提交
1413 1414 1415 1416 1417 1418

const struct address_space_operations xfs_dax_aops = {
	.writepages		= xfs_dax_writepages,
	.direct_IO		= noop_direct_IO,
	.set_page_dirty		= noop_set_page_dirty,
	.invalidatepage		= noop_invalidatepage,
1419
	.swap_activate		= xfs_iomap_swapfile_activate,
D
Dan Williams 已提交
1420
};