xfs_aops.c 38.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_shared.h"
20 21 22
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
23 24
#include "xfs_mount.h"
#include "xfs_inode.h"
25
#include "xfs_trans.h"
26
#include "xfs_inode_item.h"
27
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
28 29
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
30
#include "xfs_trace.h"
31
#include "xfs_bmap.h"
D
Dave Chinner 已提交
32
#include "xfs_bmap_util.h"
33
#include "xfs_bmap_btree.h"
34
#include "xfs_reflink.h"
35
#include <linux/gfp.h>
L
Linus Torvalds 已提交
36
#include <linux/mpage.h>
37
#include <linux/pagevec.h>
L
Linus Torvalds 已提交
38 39
#include <linux/writeback.h>

40 41 42 43 44 45 46 47 48 49 50
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
	bool			imap_valid;
	unsigned int		io_type;
	struct xfs_ioend	*ioend;
	sector_t		last_block;
};

C
Christoph Hellwig 已提交
51
void
52 53 54 55 56 57 58
xfs_count_page_state(
	struct page		*page,
	int			*delalloc,
	int			*unwritten)
{
	struct buffer_head	*bh, *head;

59
	*delalloc = *unwritten = 0;
60 61 62

	bh = head = page_buffers(page);
	do {
63
		if (buffer_unwritten(bh))
64 65 66 67 68 69
			(*unwritten) = 1;
		else if (buffer_delay(bh))
			(*delalloc) = 1;
	} while ((bh = bh->b_this_page) != head);
}

70
struct block_device *
C
Christoph Hellwig 已提交
71
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
72
	struct inode		*inode)
C
Christoph Hellwig 已提交
73
{
C
Christoph Hellwig 已提交
74
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
75 76
	struct xfs_mount	*mp = ip->i_mount;

77
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
78 79 80 81 82
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

83
/*
84 85 86
 * We're now finished for good with this page.  Update the page state via the
 * associated buffer_heads, paying attention to the start and end offsets that
 * we need to process on the page.
87 88 89 90 91 92
 *
 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
 * the page at all, as we may be racing with memory reclaim and it can free both
 * the bufferhead chain and the page as it will see the page as clean and
 * unused.
93 94 95 96 97 98 99 100
 */
static void
xfs_finish_page_writeback(
	struct inode		*inode,
	struct bio_vec		*bvec,
	int			error)
{
	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
101
	struct buffer_head	*head, *bh, *next;
102
	unsigned int		off = 0;
103
	unsigned int		bsize;
104 105

	ASSERT(bvec->bv_offset < PAGE_SIZE);
106
	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
107
	ASSERT(end < PAGE_SIZE);
108
	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
109 110 111

	bh = head = page_buffers(bvec->bv_page);

112
	bsize = bh->b_size;
113
	do {
114
		next = bh->b_this_page;
115 116 117 118 119 120
		if (off < bvec->bv_offset)
			goto next_bh;
		if (off > end)
			break;
		bh->b_end_io(bh, !error);
next_bh:
121 122
		off += bsize;
	} while ((bh = next) != head);
123 124 125 126 127 128
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
129
 */
130 131
STATIC void
xfs_destroy_ioend(
132 133
	struct xfs_ioend	*ioend,
	int			error)
134
{
135
	struct inode		*inode = ioend->io_inode;
136
	struct bio		*last = ioend->io_bio;
137
	struct bio		*bio, *next;
138

139
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 141 142
		struct bio_vec	*bvec;
		int		i;

143 144 145 146 147 148 149 150
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
151

152 153 154 155 156
		/* walk each page on bio, ending page IO on them */
		bio_for_each_segment_all(bvec, bio, i)
			xfs_finish_page_writeback(inode, bvec, error);

		bio_put(bio);
157
	}
158 159
}

C
Christoph Hellwig 已提交
160 161 162 163 164 165 166 167 168
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

169 170 171 172 173 174 175 176
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

177 178
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
179 180 181 182
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
183
	/*
184
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
185 186
	 * we released it.
	 */
187
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
188 189 190 191 192 193 194 195
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
	return 0;
}

196
/*
197
 * Update on-disk file size now that data has been written to disk.
198
 */
199
STATIC int
200
__xfs_setfilesize(
201 202 203 204
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
205 206 207
{
	xfs_fsize_t		isize;

208
	xfs_ilock(ip, XFS_ILOCK_EXCL);
209
	isize = xfs_new_eof(ip, offset + size);
210 211
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
212
		xfs_trans_cancel(tp);
213
		return 0;
214 215
	}

216
	trace_xfs_setfilesize(ip, offset, size);
217 218 219 220 221

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

222
	return xfs_trans_commit(tp);
223 224
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

242 243
STATIC int
xfs_setfilesize_ioend(
244 245
	struct xfs_ioend	*ioend,
	int			error)
246 247 248 249 250 251 252 253 254 255
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
256
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
257

258
	/* we abort the update if there was an IO error */
259
	if (error) {
260
		xfs_trans_cancel(tp);
261
		return error;
262 263
	}

264
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
265 266
}

267
/*
268
 * IO write completion.
269 270
 */
STATIC void
271
xfs_end_io(
272
	struct work_struct *work)
273
{
274 275 276 277
	struct xfs_ioend	*ioend =
		container_of(work, struct xfs_ioend, io_work);
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	int			error = ioend->io_bio->bi_error;
278

279 280 281 282 283
	/*
	 * Set an error if the mount has shut down and proceed with end I/O
	 * processing so it can perform whatever cleanups are necessary.
	 */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
284
		error = -EIO;
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	/*
	 * For a CoW extent, we need to move the mapping from the CoW fork
	 * to the data fork.  If instead an error happened, just dump the
	 * new blocks.
	 */
	if (ioend->io_type == XFS_IO_COW) {
		if (error)
			goto done;
		if (ioend->io_bio->bi_error) {
			error = xfs_reflink_cancel_cow_range(ip,
					ioend->io_offset, ioend->io_size);
			goto done;
		}
		error = xfs_reflink_end_cow(ip, ioend->io_offset,
				ioend->io_size);
		if (error)
			goto done;
	}

305 306 307
	/*
	 * For unwritten extents we need to issue transactions to convert a
	 * range to normal written extens after the data I/O has finished.
308 309 310
	 * Detecting and handling completion IO errors is done individually
	 * for each case as different cleanup operations need to be performed
	 * on error.
311
	 */
312
	if (ioend->io_type == XFS_IO_UNWRITTEN) {
313
		if (error)
314
			goto done;
315 316
		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
						  ioend->io_size);
317
	} else if (ioend->io_append_trans) {
318
		error = xfs_setfilesize_ioend(ioend, error);
319
	} else {
320 321
		ASSERT(!xfs_ioend_is_append(ioend) ||
		       ioend->io_type == XFS_IO_COW);
322
	}
323

324
done:
325
	xfs_destroy_ioend(ioend, error);
326 327
}

328 329 330
STATIC void
xfs_end_bio(
	struct bio		*bio)
331
{
332 333
	struct xfs_ioend	*ioend = bio->bi_private;
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
334

335
	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
336 337 338 339 340
		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
	else if (ioend->io_append_trans)
		queue_work(mp->m_data_workqueue, &ioend->io_work);
	else
		xfs_destroy_ioend(ioend, bio->bi_error);
341 342
}

L
Linus Torvalds 已提交
343 344 345 346
STATIC int
xfs_map_blocks(
	struct inode		*inode,
	loff_t			offset,
C
Christoph Hellwig 已提交
347
	struct xfs_bmbt_irec	*imap,
348
	int			type)
L
Linus Torvalds 已提交
349
{
C
Christoph Hellwig 已提交
350 351
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
C
Christoph Hellwig 已提交
352
	ssize_t			count = 1 << inode->i_blkbits;
C
Christoph Hellwig 已提交
353 354 355 356 357 358
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error = 0;
	int			bmapi_flags = XFS_BMAPI_ENTIRE;
	int			nimaps = 1;

	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
359
		return -EIO;
C
Christoph Hellwig 已提交
360

361
	ASSERT(type != XFS_IO_COW);
362
	if (type == XFS_IO_UNWRITTEN)
C
Christoph Hellwig 已提交
363
		bmapi_flags |= XFS_BMAPI_IGSTATE;
C
Christoph Hellwig 已提交
364

365
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
366 367
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
D
Dave Chinner 已提交
368
	ASSERT(offset <= mp->m_super->s_maxbytes);
C
Christoph Hellwig 已提交
369

D
Dave Chinner 已提交
370 371
	if (offset + count > mp->m_super->s_maxbytes)
		count = mp->m_super->s_maxbytes - offset;
C
Christoph Hellwig 已提交
372 373
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);
D
Dave Chinner 已提交
374 375
	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
				imap, &nimaps, bmapi_flags);
376 377 378 379 380 381 382
	/*
	 * Truncate an overwrite extent if there's a pending CoW
	 * reservation before the end of this extent.  This forces us
	 * to come back to writepage to take care of the CoW.
	 */
	if (nimaps && type == XFS_IO_OVERWRITE)
		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
C
Christoph Hellwig 已提交
383
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
384

C
Christoph Hellwig 已提交
385
	if (error)
D
Dave Chinner 已提交
386
		return error;
C
Christoph Hellwig 已提交
387

388
	if (type == XFS_IO_DELALLOC &&
C
Christoph Hellwig 已提交
389
	    (!nimaps || isnullstartblock(imap->br_startblock))) {
390 391
		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
				imap);
C
Christoph Hellwig 已提交
392
		if (!error)
393
			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
D
Dave Chinner 已提交
394
		return error;
C
Christoph Hellwig 已提交
395 396
	}

C
Christoph Hellwig 已提交
397
#ifdef DEBUG
398
	if (type == XFS_IO_UNWRITTEN) {
C
Christoph Hellwig 已提交
399 400 401 402 403 404 405 406
		ASSERT(nimaps);
		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
	}
#endif
	if (nimaps)
		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
	return 0;
L
Linus Torvalds 已提交
407 408
}

409
STATIC bool
410
xfs_imap_valid(
411
	struct inode		*inode,
C
Christoph Hellwig 已提交
412
	struct xfs_bmbt_irec	*imap,
413
	xfs_off_t		offset)
L
Linus Torvalds 已提交
414
{
415
	offset >>= inode->i_blkbits;
416

417 418
	return offset >= imap->br_startoff &&
		offset < imap->br_startoff + imap->br_blockcount;
L
Linus Torvalds 已提交
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
STATIC void
xfs_start_buffer_writeback(
	struct buffer_head	*bh)
{
	ASSERT(buffer_mapped(bh));
	ASSERT(buffer_locked(bh));
	ASSERT(!buffer_delay(bh));
	ASSERT(!buffer_unwritten(bh));

	mark_buffer_async_write(bh);
	set_buffer_uptodate(bh);
	clear_buffer_dirty(bh);
}

STATIC void
xfs_start_page_writeback(
	struct page		*page,
438
	int			clear_dirty)
439 440 441
{
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
442 443 444 445 446 447 448 449 450

	/*
	 * if the page was not fully cleaned, we need to ensure that the higher
	 * layers come back to it correctly. That means we need to keep the page
	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
	 * write this page in this writeback sweep will be made.
	 */
	if (clear_dirty) {
451
		clear_page_dirty_for_io(page);
452 453 454 455
		set_page_writeback(page);
	} else
		set_page_writeback_keepwrite(page);

456 457 458
	unlock_page(page);
}

459
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
460 461 462 463 464
{
	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}

/*
465 466 467 468 469 470
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
471 472 473
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
474 475 476
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
477
 */
478
STATIC int
479
xfs_submit_ioend(
480
	struct writeback_control *wbc,
481
	struct xfs_ioend	*ioend,
482
	int			status)
483
{
484 485 486 487 488 489
	/* Convert CoW extents to regular */
	if (!status && ioend->io_type == XFS_IO_COW) {
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
	}

490 491
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
492
	    ioend->io_type != XFS_IO_UNWRITTEN &&
493 494
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
495
		status = xfs_setfilesize_trans_alloc(ioend);
496

497 498
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
499
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
500

501 502 503 504 505 506 507
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
508 509
		ioend->io_bio->bi_error = status;
		bio_endio(ioend->io_bio);
510 511
		return status;
	}
512

513
	submit_bio(ioend->io_bio);
514
	return 0;
515 516
}

517 518 519 520 521 522 523 524
static void
xfs_init_bio_from_bh(
	struct bio		*bio,
	struct buffer_head	*bh)
{
	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
	bio->bi_bdev = bh->b_bdev;
}
525

526 527 528 529 530 531 532 533 534
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
	unsigned int		type,
	xfs_off_t		offset,
	struct buffer_head	*bh)
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
	xfs_init_bio_from_bh(bio, bh);

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
	ioend->io_type = type;
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	INIT_WORK(&ioend->io_work, xfs_end_io);
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
	struct buffer_head	*bh)
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
	xfs_init_bio_from_bh(new, bh);

	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
571
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
572
	submit_bio(ioend->io_bio);
573
	ioend->io_bio = new;
574 575 576 577 578 579
}

/*
 * Test to see if we've been building up a completion structure for
 * earlier buffers -- if so, we try to append to this ioend if we
 * can, otherwise we finish off any current ioend and start another.
580 581
 * Return the ioend we finished off so that the caller can submit it
 * once it has finished processing the dirty page.
582 583 584 585 586
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
	struct buffer_head	*bh,
587
	xfs_off_t		offset,
588
	struct xfs_writepage_ctx *wpc,
589
	struct writeback_control *wbc,
590
	struct list_head	*iolist)
591
{
592
	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
593 594
	    bh->b_blocknr != wpc->last_block + 1 ||
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
595 596
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
597
		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
598 599
	}

600 601 602 603 604 605
	/*
	 * If the buffer doesn't fit into the bio we need to allocate a new
	 * one.  This shouldn't happen more than once for a given buffer.
	 */
	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
		xfs_chain_bio(wpc->ioend, wbc, bh);
606

607 608
	wpc->ioend->io_size += bh->b_size;
	wpc->last_block = bh->b_blocknr;
609
	xfs_start_buffer_writeback(bh);
610 611
}

612 613
STATIC void
xfs_map_buffer(
C
Christoph Hellwig 已提交
614
	struct inode		*inode,
615
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
616
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
617
	xfs_off_t		offset)
618 619
{
	sector_t		bn;
620
	struct xfs_mount	*m = XFS_I(inode)->i_mount;
C
Christoph Hellwig 已提交
621 622
	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
623

C
Christoph Hellwig 已提交
624 625
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626

627
	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
628
	      ((offset - iomap_offset) >> inode->i_blkbits);
629

C
Christoph Hellwig 已提交
630
	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
631 632 633 634 635

	bh->b_blocknr = bn;
	set_buffer_mapped(bh);
}

L
Linus Torvalds 已提交
636 637
STATIC void
xfs_map_at_offset(
C
Christoph Hellwig 已提交
638
	struct inode		*inode,
L
Linus Torvalds 已提交
639
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
640
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
641
	xfs_off_t		offset)
L
Linus Torvalds 已提交
642
{
C
Christoph Hellwig 已提交
643 644
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
L
Linus Torvalds 已提交
645

C
Christoph Hellwig 已提交
646
	xfs_map_buffer(inode, bh, imap, offset);
L
Linus Torvalds 已提交
647 648
	set_buffer_mapped(bh);
	clear_buffer_delay(bh);
649
	clear_buffer_unwritten(bh);
L
Linus Torvalds 已提交
650 651 652
}

/*
653 654 655 656
 * Test if a given page contains at least one buffer of a given @type.
 * If @check_all_buffers is true, then we walk all the buffers in the page to
 * try to find one of the type passed in. If it is not set, then the caller only
 * needs to check the first buffer on the page for a match.
L
Linus Torvalds 已提交
657
 */
658
STATIC bool
659
xfs_check_page_type(
660
	struct page		*page,
661 662
	unsigned int		type,
	bool			check_all_buffers)
L
Linus Torvalds 已提交
663
{
664 665
	struct buffer_head	*bh;
	struct buffer_head	*head;
L
Linus Torvalds 已提交
666

667 668 669 670 671 672
	if (PageWriteback(page))
		return false;
	if (!page->mapping)
		return false;
	if (!page_has_buffers(page))
		return false;
L
Linus Torvalds 已提交
673

674 675 676 677 678 679
	bh = head = page_buffers(page);
	do {
		if (buffer_unwritten(bh)) {
			if (type == XFS_IO_UNWRITTEN)
				return true;
		} else if (buffer_delay(bh)) {
680
			if (type == XFS_IO_DELALLOC)
681 682
				return true;
		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
683
			if (type == XFS_IO_OVERWRITE)
684 685
				return true;
		}
L
Linus Torvalds 已提交
686

687 688 689 690
		/* If we are only checking the first buffer, we are done now. */
		if (!check_all_buffers)
			break;
	} while ((bh = bh->b_this_page) != head);
L
Linus Torvalds 已提交
691

692
	return false;
L
Linus Torvalds 已提交
693 694
}

695 696 697
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
698 699
	unsigned int		offset,
	unsigned int		length)
700
{
701 702 703
	trace_xfs_invalidatepage(page->mapping->host, page, offset,
				 length);
	block_invalidatepage(page, offset, length);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

/*
 * If the page has delalloc buffers on it, we need to punch them out before we
 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 * is done on that same region - the delalloc extent is returned when none is
 * supposed to be there.
 *
 * We prevent this by truncating away the delalloc regions on the page before
 * invalidating it. Because they are delalloc, we can do this without needing a
 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 * truncation without a transaction as there is no space left for block
 * reservation (typically why we see a ENOSPC in writeback).
 *
 * This is not a performance critical path, so for now just do the punching a
 * buffer head at a time.
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct buffer_head	*bh, *head;
	loff_t			offset = page_offset(page);

731
	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
732 733
		goto out_invalidate;

734 735 736
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		goto out_invalidate;

737
	xfs_alert(ip->i_mount,
738 739 740 741 742 743 744
		"page discard on page %p, inode 0x%llx, offset %llu.",
			page, ip->i_ino, offset);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	bh = head = page_buffers(page);
	do {
		int		error;
745
		xfs_fileoff_t	start_fsb;
746 747 748 749

		if (!buffer_delay(bh))
			goto next_buffer;

750 751
		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
752 753
		if (error) {
			/* something screwed, just bail */
754
			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
755
				xfs_alert(ip->i_mount,
756
			"page discard unable to remove delalloc mapping.");
757
			}
758 759 760
			break;
		}
next_buffer:
761
		offset += 1 << inode->i_blkbits;
762 763 764 765 766

	} while ((bh = bh->b_this_page) != head);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_invalidate:
767
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
768 769 770
	return;
}

771 772 773 774 775 776 777 778 779
static int
xfs_map_cow(
	struct xfs_writepage_ctx *wpc,
	struct inode		*inode,
	loff_t			offset,
	unsigned int		*new_type)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_bmbt_irec	imap;
780
	bool			is_cow = false;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	int			error;

	/*
	 * If we already have a valid COW mapping keep using it.
	 */
	if (wpc->io_type == XFS_IO_COW) {
		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
		if (wpc->imap_valid) {
			*new_type = XFS_IO_COW;
			return 0;
		}
	}

	/*
	 * Else we need to check if there is a COW mapping at this offset.
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
798
	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
799 800 801 802 803 804 805 806 807
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!is_cow)
		return 0;

	/*
	 * And if the COW mapping has a delayed extent here we need to
	 * allocate real space for it now.
	 */
808
	if (isnullstartblock(imap.br_startblock)) {
809 810 811 812 813 814 815 816 817 818 819 820
		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
				&imap);
		if (error)
			return error;
	}

	wpc->io_type = *new_type = XFS_IO_COW;
	wpc->imap_valid = true;
	wpc->imap = imap;
	return 0;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
 * adding buffers to is cached on the writepage context, and if the new buffer
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
837 838 839
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
840
	struct writeback_control *wbc,
841 842 843 844 845
	struct inode		*inode,
	struct page		*page,
	loff_t			offset,
	__uint64_t              end_offset)
{
846 847
	LIST_HEAD(submit_list);
	struct xfs_ioend	*ioend, *next;
848 849 850 851
	struct buffer_head	*bh, *head;
	ssize_t			len = 1 << inode->i_blkbits;
	int			error = 0;
	int			count = 0;
852
	int			uptodate = 1;
853
	unsigned int		new_type;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	bh = head = page_buffers(page);
	offset = page_offset(page);
	do {
		if (offset >= end_offset)
			break;
		if (!buffer_uptodate(bh))
			uptodate = 0;

		/*
		 * set_page_dirty dirties all buffers in a page, independent
		 * of their state.  The dirty state however is entirely
		 * meaningless for holes (!mapped && uptodate), so skip
		 * buffers covering holes here.
		 */
		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
			wpc->imap_valid = false;
			continue;
		}

874 875 876 877 878 879 880
		if (buffer_unwritten(bh))
			new_type = XFS_IO_UNWRITTEN;
		else if (buffer_delay(bh))
			new_type = XFS_IO_DELALLOC;
		else if (buffer_uptodate(bh))
			new_type = XFS_IO_OVERWRITE;
		else {
881 882 883 884 885 886 887 888 889 890 891 892
			if (PageUptodate(page))
				ASSERT(buffer_mapped(bh));
			/*
			 * This buffer is not uptodate and will not be
			 * written to disk.  Ensure that we will put any
			 * subsequent writeable buffers into a new
			 * ioend.
			 */
			wpc->imap_valid = false;
			continue;
		}

893 894 895 896 897 898 899 900 901 902 903
		if (xfs_is_reflink_inode(XFS_I(inode))) {
			error = xfs_map_cow(wpc, inode, offset, &new_type);
			if (error)
				goto out;
		}

		if (wpc->io_type != new_type) {
			wpc->io_type = new_type;
			wpc->imap_valid = false;
		}

904 905 906 907 908 909 910
		if (wpc->imap_valid)
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
							 offset);
		if (!wpc->imap_valid) {
			error = xfs_map_blocks(inode, offset, &wpc->imap,
					     wpc->io_type);
			if (error)
911
				goto out;
912 913 914 915 916 917 918
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
							 offset);
		}
		if (wpc->imap_valid) {
			lock_buffer(bh);
			if (wpc->io_type != XFS_IO_OVERWRITE)
				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
919
			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
920 921 922 923 924 925 926 927
			count++;
		}

	} while (offset += len, ((bh = bh->b_this_page) != head));

	if (uptodate && bh == head)
		SetPageUptodate(page);

928
	ASSERT(wpc->ioend || list_empty(&submit_list));
929

930
out:
931
	/*
932 933 934 935 936 937 938 939 940
	 * On error, we have to fail the ioend here because we have locked
	 * buffers in the ioend. If we don't do this, we'll deadlock
	 * invalidating the page as that tries to lock the buffers on the page.
	 * Also, because we may have set pages under writeback, we have to make
	 * sure we run IO completion to mark the error state of the IO
	 * appropriately, so we can't cancel the ioend directly here. That means
	 * we have to mark this page as under writeback if we included any
	 * buffers from it in the ioend chain so that completion treats it
	 * correctly.
941
	 *
942 943 944 945 946
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
	 * or it's buffers right now. The caller will still need to trigger
	 * submission of outstanding ioends on the writepage context so they are
	 * treated correctly on error.
947
	 */
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	if (count) {
		xfs_start_page_writeback(page, !error);

		/*
		 * Preserve the original error if there was one, otherwise catch
		 * submission errors here and propagate into subsequent ioend
		 * submissions.
		 */
		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
			int error2;

			list_del_init(&ioend->io_list);
			error2 = xfs_submit_ioend(wbc, ioend, error);
			if (error2 && !error)
				error = error2;
		}
	} else if (error) {
965 966 967
		xfs_aops_discard_page(page);
		ClearPageUptodate(page);
		unlock_page(page);
968 969 970 971 972 973 974 975
	} else {
		/*
		 * We can end up here with no error and nothing to write if we
		 * race with a partial page truncate on a sub-page block sized
		 * filesystem. In that case we need to mark the page clean.
		 */
		xfs_start_page_writeback(page, 1);
		end_page_writeback(page);
976
	}
977

978 979 980 981
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
982
/*
983 984 985 986 987 988
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
 * For any other dirty buffer heads on the page we should flush them.
L
Linus Torvalds 已提交
989 990
 */
STATIC int
991
xfs_do_writepage(
992
	struct page		*page,
993 994
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
995
{
996
	struct xfs_writepage_ctx *wpc = data;
997
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
998 999
	loff_t			offset;
	__uint64_t              end_offset;
1000
	pgoff_t                 end_index;
1001

1002
	trace_xfs_writepage(inode, page, 0, 0);
1003

1004 1005
	ASSERT(page_has_buffers(page));

1006 1007 1008
	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
1009 1010 1011
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
1012
	 *
1013 1014
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
1015
	 */
1016 1017
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
1018
		goto redirty;
L
Linus Torvalds 已提交
1019

1020
	/*
1021 1022
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
1023
	 */
1024
	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1025
		goto redirty;
1026

1027
	/*
1028 1029
	 * Is this page beyond the end of the file?
	 *
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
1040
	offset = i_size_read(inode);
1041
	end_index = offset >> PAGE_SHIFT;
1042
	if (page->index < end_index)
1043
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
1056
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1057 1058

		/*
1059 1060 1061 1062
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
1074
		 */
1075 1076
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
1077
			goto redirty;
1078 1079 1080 1081 1082

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
1083
		 * that is not a multiple of the page size, the remaining
1084 1085 1086
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
1087
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1088 1089 1090

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
1091 1092
	}

1093
	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1094

1095
redirty:
1096 1097 1098 1099 1100
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
1112 1113 1114
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1115 1116
}

1117 1118 1119 1120 1121
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
1122 1123 1124 1125 1126
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

1127
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1128 1129 1130 1131
	if (dax_mapping(mapping))
		return dax_writeback_mapping_range(mapping,
				xfs_find_bdev_for_inode(mapping->host), wbc);

1132
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1133 1134 1135
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1136 1137
}

1138 1139
/*
 * Called to move a page into cleanable state - and from there
1140
 * to be released. The page should already be clean. We always
1141 1142
 * have buffer heads in this call.
 *
1143
 * Returns 1 if the page is ok to release, 0 otherwise.
1144 1145
 */
STATIC int
1146
xfs_vm_releasepage(
1147 1148 1149
	struct page		*page,
	gfp_t			gfp_mask)
{
1150
	int			delalloc, unwritten;
1151

1152
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1153

1154 1155 1156 1157 1158 1159 1160
	/*
	 * mm accommodates an old ext3 case where clean pages might not have had
	 * the dirty bit cleared. Thus, it can send actual dirty pages to
	 * ->releasepage() via shrink_active_list(). Conversely,
	 * block_invalidatepage() can send pages that are still marked dirty
	 * but otherwise have invalidated buffers.
	 *
1161 1162 1163 1164 1165
	 * We want to release the latter to avoid unnecessary buildup of the
	 * LRU, skip the former and warn if we've left any lingering
	 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
	 * or unwritten buffers and warn if the page is not dirty. Otherwise
	 * try to release the buffers.
1166
	 */
1167
	xfs_count_page_state(page, &delalloc, &unwritten);
1168

1169 1170
	if (delalloc) {
		WARN_ON_ONCE(!PageDirty(page));
1171
		return 0;
1172 1173 1174
	}
	if (unwritten) {
		WARN_ON_ONCE(!PageDirty(page));
1175
		return 0;
1176
	}
1177 1178 1179 1180

	return try_to_free_buffers(page);
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/*
 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
 * is, so that we can avoid repeated get_blocks calls.
 *
 * If the mapping spans EOF, then we have to break the mapping up as the mapping
 * for blocks beyond EOF must be marked new so that sub block regions can be
 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
 * was just allocated or is unwritten, otherwise the callers would overwrite
 * existing data with zeros. Hence we have to split the mapping into a range up
 * to and including EOF, and a second mapping for beyond EOF.
 */
static void
xfs_map_trim_size(
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
	struct xfs_bmbt_irec	*imap,
	xfs_off_t		offset,
	ssize_t			size)
{
	xfs_off_t		mapping_size;

	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
	mapping_size <<= inode->i_blkbits;

	ASSERT(mapping_size > 0);
	if (mapping_size > size)
		mapping_size = size;
	if (offset < i_size_read(inode) &&
	    offset + mapping_size >= i_size_read(inode)) {
		/* limit mapping to block that spans EOF */
		mapping_size = roundup_64(i_size_read(inode) - offset,
					  1 << inode->i_blkbits);
	}
	if (mapping_size > LONG_MAX)
		mapping_size = LONG_MAX;

	bh_result->b_size = mapping_size;
}

1221
static int
C
Christoph Hellwig 已提交
1222
xfs_get_blocks(
L
Linus Torvalds 已提交
1223 1224 1225
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
C
Christoph Hellwig 已提交
1226
	int			create)
L
Linus Torvalds 已提交
1227
{
C
Christoph Hellwig 已提交
1228 1229 1230 1231 1232
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error = 0;
	int			lockmode = 0;
C
Christoph Hellwig 已提交
1233
	struct xfs_bmbt_irec	imap;
C
Christoph Hellwig 已提交
1234
	int			nimaps = 1;
1235 1236
	xfs_off_t		offset;
	ssize_t			size;
C
Christoph Hellwig 已提交
1237

C
Christoph Hellwig 已提交
1238
	BUG_ON(create);
1239

C
Christoph Hellwig 已提交
1240
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
1241
		return -EIO;
L
Linus Torvalds 已提交
1242

1243
	offset = (xfs_off_t)iblock << inode->i_blkbits;
1244 1245
	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
	size = bh_result->b_size;
1246

C
Christoph Hellwig 已提交
1247
	if (offset >= i_size_read(inode))
1248 1249
		return 0;

1250 1251
	/*
	 * Direct I/O is usually done on preallocated files, so try getting
1252
	 * a block mapping without an exclusive lock first.
1253
	 */
1254
	lockmode = xfs_ilock_data_map_shared(ip);
1255

D
Dave Chinner 已提交
1256 1257 1258
	ASSERT(offset <= mp->m_super->s_maxbytes);
	if (offset + size > mp->m_super->s_maxbytes)
		size = mp->m_super->s_maxbytes - offset;
C
Christoph Hellwig 已提交
1259 1260 1261
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);

C
Christoph Hellwig 已提交
1262 1263
	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
				&imap, &nimaps, XFS_BMAPI_ENTIRE);
L
Linus Torvalds 已提交
1264
	if (error)
C
Christoph Hellwig 已提交
1265 1266
		goto out_unlock;

C
Christoph Hellwig 已提交
1267
	if (nimaps) {
1268 1269 1270
		trace_xfs_get_blocks_found(ip, offset, size,
				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
						   : XFS_IO_OVERWRITE, &imap);
1271
		xfs_iunlock(ip, lockmode);
C
Christoph Hellwig 已提交
1272 1273 1274 1275
	} else {
		trace_xfs_get_blocks_notfound(ip, offset, size);
		goto out_unlock;
	}
L
Linus Torvalds 已提交
1276

1277
	/* trim mapping down to size requested */
1278
	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1279

1280 1281 1282 1283
	/*
	 * For unwritten extents do not report a disk address in the buffered
	 * read case (treat as if we're reading into a hole).
	 */
C
Christoph Hellwig 已提交
1284
	if (imap.br_startblock != HOLESTARTBLOCK &&
1285
	    imap.br_startblock != DELAYSTARTBLOCK &&
C
Christoph Hellwig 已提交
1286
	    !ISUNWRITTEN(&imap))
1287
		xfs_map_buffer(inode, bh_result, &imap, offset);
L
Linus Torvalds 已提交
1288

1289 1290 1291 1292
	/*
	 * If this is a realtime file, data may be on a different device.
	 * to that pointed to from the buffer_head b_bdev currently.
	 */
C
Christoph Hellwig 已提交
1293
	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
L
Linus Torvalds 已提交
1294
	return 0;
C
Christoph Hellwig 已提交
1295 1296 1297

out_unlock:
	xfs_iunlock(ip, lockmode);
D
Dave Chinner 已提交
1298
	return error;
L
Linus Torvalds 已提交
1299 1300
}

1301 1302
STATIC ssize_t
xfs_vm_direct_IO(
D
Dave Chinner 已提交
1303
	struct kiocb		*iocb,
1304
	struct iov_iter		*iter)
D
Dave Chinner 已提交
1305
{
1306
	/*
1307
	 * We just need the method present so that open/fcntl allow direct I/O.
1308
	 */
1309
	return -EINVAL;
1310
}
L
Linus Torvalds 已提交
1311 1312

STATIC sector_t
1313
xfs_vm_bmap(
L
Linus Torvalds 已提交
1314 1315 1316 1317
	struct address_space	*mapping,
	sector_t		block)
{
	struct inode		*inode = (struct inode *)mapping->host;
1318
	struct xfs_inode	*ip = XFS_I(inode);
L
Linus Torvalds 已提交
1319

C
Christoph Hellwig 已提交
1320
	trace_xfs_vm_bmap(XFS_I(inode));
1321 1322 1323 1324 1325 1326 1327

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
	 * bypasseѕ the file system for actual I/O.  We really can't allow
	 * that on reflinks inodes, so we have to skip out here.  And yes,
	 * 0 is the magic code for a bmap error..
	 */
1328
	if (xfs_is_reflink_inode(ip))
1329
		return 0;
1330

D
Dave Chinner 已提交
1331
	filemap_write_and_wait(mapping);
1332
	return generic_block_bmap(mapping, block, xfs_get_blocks);
L
Linus Torvalds 已提交
1333 1334 1335
}

STATIC int
1336
xfs_vm_readpage(
L
Linus Torvalds 已提交
1337 1338 1339
	struct file		*unused,
	struct page		*page)
{
1340
	trace_xfs_vm_readpage(page->mapping->host, 1);
1341
	return mpage_readpage(page, xfs_get_blocks);
L
Linus Torvalds 已提交
1342 1343 1344
}

STATIC int
1345
xfs_vm_readpages(
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1351
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1352
	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
L
Linus Torvalds 已提交
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/*
 * This is basically a copy of __set_page_dirty_buffers() with one
 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
 * dirty, we'll never be able to clean them because we don't write buffers
 * beyond EOF, and that means we can't invalidate pages that span EOF
 * that have been marked dirty. Further, the dirty state can leak into
 * the file interior if the file is extended, resulting in all sorts of
 * bad things happening as the state does not match the underlying data.
 *
 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
 * this only exist because of bufferheads and how the generic code manages them.
 */
STATIC int
xfs_vm_set_page_dirty(
	struct page		*page)
{
	struct address_space	*mapping = page->mapping;
	struct inode		*inode = mapping->host;
	loff_t			end_offset;
	loff_t			offset;
	int			newly_dirty;

	if (unlikely(!mapping))
		return !TestSetPageDirty(page);

	end_offset = i_size_read(inode);
	offset = page_offset(page);

	spin_lock(&mapping->private_lock);
	if (page_has_buffers(page)) {
		struct buffer_head *head = page_buffers(page);
		struct buffer_head *bh = head;

		do {
			if (offset < end_offset)
				set_buffer_dirty(bh);
			bh = bh->b_this_page;
			offset += 1 << inode->i_blkbits;
		} while (bh != head);
	}
1395
	/*
1396 1397
	 * Lock out page->mem_cgroup migration to keep PageDirty
	 * synchronized with per-memcg dirty page counters.
1398
	 */
J
Johannes Weiner 已提交
1399
	lock_page_memcg(page);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	newly_dirty = !TestSetPageDirty(page);
	spin_unlock(&mapping->private_lock);

	if (newly_dirty) {
		/* sigh - __set_page_dirty() is static, so copy it here, too */
		unsigned long flags;

		spin_lock_irqsave(&mapping->tree_lock, flags);
		if (page->mapping) {	/* Race with truncate? */
			WARN_ON_ONCE(!PageUptodate(page));
J
Johannes Weiner 已提交
1410
			account_page_dirtied(page, mapping);
1411 1412 1413 1414 1415
			radix_tree_tag_set(&mapping->page_tree,
					page_index(page), PAGECACHE_TAG_DIRTY);
		}
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
	}
J
Johannes Weiner 已提交
1416
	unlock_page_memcg(page);
1417 1418
	if (newly_dirty)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1419 1420 1421
	return newly_dirty;
}

1422
const struct address_space_operations xfs_address_space_operations = {
1423 1424 1425
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1426
	.writepages		= xfs_vm_writepages,
1427
	.set_page_dirty		= xfs_vm_set_page_dirty,
1428 1429
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1430 1431
	.bmap			= xfs_vm_bmap,
	.direct_IO		= xfs_vm_direct_IO,
1432
	.migratepage		= buffer_migrate_page,
1433
	.is_partially_uptodate  = block_is_partially_uptodate,
1434
	.error_remove_page	= generic_error_remove_page,
L
Linus Torvalds 已提交
1435
};