xfs_aops.c 39.3 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3 4
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
5 6
 */
#include "xfs.h"
7
#include "xfs_shared.h"
8 9 10
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
11 12
#include "xfs_mount.h"
#include "xfs_inode.h"
13
#include "xfs_trans.h"
14
#include "xfs_inode_item.h"
15
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
16 17
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
18
#include "xfs_trace.h"
19
#include "xfs_bmap.h"
D
Dave Chinner 已提交
20
#include "xfs_bmap_util.h"
21
#include "xfs_bmap_btree.h"
22
#include "xfs_reflink.h"
23
#include <linux/gfp.h>
L
Linus Torvalds 已提交
24
#include <linux/mpage.h>
25
#include <linux/pagevec.h>
L
Linus Torvalds 已提交
26 27
#include <linux/writeback.h>

28 29 30 31 32 33 34 35 36 37 38
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
	bool			imap_valid;
	unsigned int		io_type;
	struct xfs_ioend	*ioend;
	sector_t		last_block;
};

C
Christoph Hellwig 已提交
39
void
40 41 42 43 44 45 46
xfs_count_page_state(
	struct page		*page,
	int			*delalloc,
	int			*unwritten)
{
	struct buffer_head	*bh, *head;

47
	*delalloc = *unwritten = 0;
48 49 50

	bh = head = page_buffers(page);
	do {
51
		if (buffer_unwritten(bh))
52 53 54 55 56 57
			(*unwritten) = 1;
		else if (buffer_delay(bh))
			(*delalloc) = 1;
	} while ((bh = bh->b_this_page) != head);
}

58
struct block_device *
C
Christoph Hellwig 已提交
59
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
60
	struct inode		*inode)
C
Christoph Hellwig 已提交
61
{
C
Christoph Hellwig 已提交
62
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
63 64
	struct xfs_mount	*mp = ip->i_mount;

65
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
66 67 68 69 70
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

71 72 73 74 75 76 77 78 79 80 81 82 83
struct dax_device *
xfs_find_daxdev_for_inode(
	struct inode		*inode)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;

	if (XFS_IS_REALTIME_INODE(ip))
		return mp->m_rtdev_targp->bt_daxdev;
	else
		return mp->m_ddev_targp->bt_daxdev;
}

84
/*
85 86 87
 * We're now finished for good with this page.  Update the page state via the
 * associated buffer_heads, paying attention to the start and end offsets that
 * we need to process on the page.
88
 *
89 90 91 92 93
 * Note that we open code the action in end_buffer_async_write here so that we
 * only have to iterate over the buffers attached to the page once.  This is not
 * only more efficient, but also ensures that we only calls end_page_writeback
 * at the end of the iteration, and thus avoids the pitfall of having the page
 * and buffers potentially freed after every call to end_buffer_async_write.
94 95 96 97 98 99 100
 */
static void
xfs_finish_page_writeback(
	struct inode		*inode,
	struct bio_vec		*bvec,
	int			error)
{
101 102
	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
	bool			busy = false;
103
	unsigned int		off = 0;
104
	unsigned long		flags;
105 106

	ASSERT(bvec->bv_offset < PAGE_SIZE);
F
Fabian Frederick 已提交
107
	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
108
	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
F
Fabian Frederick 已提交
109
	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
110

111 112
	local_irq_save(flags);
	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
113
	do {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		if (off >= bvec->bv_offset &&
		    off < bvec->bv_offset + bvec->bv_len) {
			ASSERT(buffer_async_write(bh));
			ASSERT(bh->b_end_io == NULL);

			if (error) {
				mark_buffer_write_io_error(bh);
				clear_buffer_uptodate(bh);
				SetPageError(bvec->bv_page);
			} else {
				set_buffer_uptodate(bh);
			}
			clear_buffer_async_write(bh);
			unlock_buffer(bh);
		} else if (buffer_async_write(bh)) {
			ASSERT(buffer_locked(bh));
			busy = true;
		}
		off += bh->b_size;
	} while ((bh = bh->b_this_page) != head);
	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
	local_irq_restore(flags);

	if (!busy)
		end_page_writeback(bvec->bv_page);
139 140 141 142 143 144
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
145
 */
146 147
STATIC void
xfs_destroy_ioend(
148 149
	struct xfs_ioend	*ioend,
	int			error)
150
{
151
	struct inode		*inode = ioend->io_inode;
152 153 154 155
	struct bio		*bio = &ioend->io_inline_bio;
	struct bio		*last = ioend->io_bio, *next;
	u64			start = bio->bi_iter.bi_sector;
	bool			quiet = bio_flagged(bio, BIO_QUIET);
156

157
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
158 159 160
		struct bio_vec	*bvec;
		int		i;

161 162 163 164 165 166 167 168
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
169

170 171 172 173 174
		/* walk each page on bio, ending page IO on them */
		bio_for_each_segment_all(bvec, bio, i)
			xfs_finish_page_writeback(inode, bvec, error);

		bio_put(bio);
175
	}
176 177 178 179 180

	if (unlikely(error && !quiet)) {
		xfs_err_ratelimited(XFS_I(inode)->i_mount,
			"writeback error on sector %llu", start);
	}
181 182
}

C
Christoph Hellwig 已提交
183 184 185 186 187 188 189 190 191
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

192 193 194 195 196 197 198 199
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

200 201
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
				XFS_TRANS_NOFS, &tp);
202
	if (error)
203 204 205 206
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
207
	/*
208
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
209 210
	 * we released it.
	 */
211
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
212 213 214 215
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
216
	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
217 218 219
	return 0;
}

220
/*
221
 * Update on-disk file size now that data has been written to disk.
222
 */
223
STATIC int
224
__xfs_setfilesize(
225 226 227 228
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
229 230 231
{
	xfs_fsize_t		isize;

232
	xfs_ilock(ip, XFS_ILOCK_EXCL);
233
	isize = xfs_new_eof(ip, offset + size);
234 235
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
236
		xfs_trans_cancel(tp);
237
		return 0;
238 239
	}

240
	trace_xfs_setfilesize(ip, offset, size);
241 242 243 244 245

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

246
	return xfs_trans_commit(tp);
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

266 267
STATIC int
xfs_setfilesize_ioend(
268 269
	struct xfs_ioend	*ioend,
	int			error)
270 271 272 273 274 275 276 277 278
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
279
	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
280
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
281

282
	/* we abort the update if there was an IO error */
283
	if (error) {
284
		xfs_trans_cancel(tp);
285
		return error;
286 287
	}

288
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
289 290
}

291
/*
292
 * IO write completion.
293 294
 */
STATIC void
295
xfs_end_io(
296
	struct work_struct *work)
297
{
298 299 300
	struct xfs_ioend	*ioend =
		container_of(work, struct xfs_ioend, io_work);
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
301 302
	xfs_off_t		offset = ioend->io_offset;
	size_t			size = ioend->io_size;
303
	int			error;
304

305
	/*
306
	 * Just clean up the in-memory strutures if the fs has been shut down.
307
	 */
308
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
309
		error = -EIO;
310 311
		goto done;
	}
312

313
	/*
314
	 * Clean up any COW blocks on an I/O error.
315
	 */
316
	error = blk_status_to_errno(ioend->io_bio->bi_status);
317 318 319 320 321
	if (unlikely(error)) {
		switch (ioend->io_type) {
		case XFS_IO_COW:
			xfs_reflink_cancel_cow_range(ip, offset, size, true);
			break;
322
		}
323 324

		goto done;
325 326
	}

327
	/*
328
	 * Success:  commit the COW or unwritten blocks if needed.
329
	 */
330 331 332 333 334
	switch (ioend->io_type) {
	case XFS_IO_COW:
		error = xfs_reflink_end_cow(ip, offset, size);
		break;
	case XFS_IO_UNWRITTEN:
335 336
		/* writeback should never update isize */
		error = xfs_iomap_write_unwritten(ip, offset, size, false);
337 338 339 340
		break;
	default:
		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
		break;
341
	}
342

343
done:
344 345
	if (ioend->io_append_trans)
		error = xfs_setfilesize_ioend(ioend, error);
346
	xfs_destroy_ioend(ioend, error);
347 348
}

349 350 351
STATIC void
xfs_end_bio(
	struct bio		*bio)
352
{
353 354
	struct xfs_ioend	*ioend = bio->bi_private;
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
355

356
	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
357 358 359 360
		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
	else if (ioend->io_append_trans)
		queue_work(mp->m_data_workqueue, &ioend->io_work);
	else
361
		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
362 363
}

L
Linus Torvalds 已提交
364 365
STATIC int
xfs_map_blocks(
C
Christoph Hellwig 已提交
366
	struct xfs_writepage_ctx *wpc,
L
Linus Torvalds 已提交
367
	struct inode		*inode,
C
Christoph Hellwig 已提交
368
	loff_t			offset)
L
Linus Torvalds 已提交
369
{
C
Christoph Hellwig 已提交
370 371
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
F
Fabian Frederick 已提交
372
	ssize_t			count = i_blocksize(inode);
373
	xfs_fileoff_t		offset_fsb, end_fsb;
C
Christoph Hellwig 已提交
374 375
	struct xfs_bmbt_irec	imap;
	int			whichfork = XFS_DATA_FORK;
376
	struct xfs_iext_cursor	icur;
C
Christoph Hellwig 已提交
377 378 379
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
380
		return -EIO;
C
Christoph Hellwig 已提交
381

382
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
383 384
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
D
Dave Chinner 已提交
385
	ASSERT(offset <= mp->m_super->s_maxbytes);
C
Christoph Hellwig 已提交
386

387 388 389 390 391 392 393 394 395
	if (offset > mp->m_super->s_maxbytes - count)
		count = mp->m_super->s_maxbytes - offset;
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);

	/*
	 * Check if this is offset is covered by a COW extents, and if yes use
	 * it directly instead of looking up anything in the data fork.
	 */
C
Christoph Hellwig 已提交
396
	if (xfs_is_reflink_inode(ip) &&
397 398
	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap) &&
	    imap.br_startoff <= offset_fsb) {
C
Christoph Hellwig 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		/*
		 * Truncate can race with writeback since writeback doesn't
		 * take the iolock and truncate decreases the file size before
		 * it starts truncating the pages between new_size and old_size.
		 * Therefore, we can end up in the situation where writeback
		 * gets a CoW fork mapping but the truncate makes the mapping
		 * invalid and we end up in here trying to get a new mapping.
		 * bail out here so that we simply never get a valid mapping
		 * and so we drop the write altogether.  The page truncation
		 * will kill the contents anyway.
		 */
		if (offset > i_size_read(inode)) {
			wpc->io_type = XFS_IO_HOLE;
			return 0;
		}
		whichfork = XFS_COW_FORK;
		wpc->io_type = XFS_IO_COW;
		goto allocate_blocks;
	}

	/*
	 * Map valid and no COW extent in the way?  We're done.
	 */
	if (wpc->imap_valid) {
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return 0;
	}

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.
	 */
433 434
	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
C
Christoph Hellwig 已提交
435
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
436

437 438 439
	if (imap.br_startoff > offset_fsb) {
		/* landed in a hole or beyond EOF */
		imap.br_blockcount = imap.br_startoff - offset_fsb;
C
Christoph Hellwig 已提交
440 441 442
		imap.br_startoff = offset_fsb;
		imap.br_startblock = HOLESTARTBLOCK;
		wpc->io_type = XFS_IO_HOLE;
443 444 445 446 447 448
	} else {
		if (isnullstartblock(imap.br_startblock)) {
			/* got a delalloc extent */
			wpc->io_type = XFS_IO_DELALLOC;
			goto allocate_blocks;
		}
C
Christoph Hellwig 已提交
449

450 451 452 453
		if (imap.br_state == XFS_EXT_UNWRITTEN)
			wpc->io_type = XFS_IO_UNWRITTEN;
		else
			wpc->io_type = XFS_IO_OVERWRITE;
C
Christoph Hellwig 已提交
454
	}
455

C
Christoph Hellwig 已提交
456 457 458 459 460 461 462 463 464
	wpc->imap = imap;
	trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
	return 0;
allocate_blocks:
	error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap);
	if (error)
		return error;
	wpc->imap = imap;
	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
C
Christoph Hellwig 已提交
465
	return 0;
L
Linus Torvalds 已提交
466 467
}

468
STATIC bool
469
xfs_imap_valid(
470
	struct inode		*inode,
C
Christoph Hellwig 已提交
471
	struct xfs_bmbt_irec	*imap,
472
	xfs_off_t		offset)
L
Linus Torvalds 已提交
473
{
474
	offset >>= inode->i_blkbits;
475

476 477 478 479 480 481 482 483 484 485 486 487 488
	/*
	 * We have to make sure the cached mapping is within EOF to protect
	 * against eofblocks trimming on file release leaving us with a stale
	 * mapping. Otherwise, a page for a subsequent file extending buffered
	 * write could get picked up by this writeback cycle and written to the
	 * wrong blocks.
	 *
	 * Note that what we really want here is a generic mapping invalidation
	 * mechanism to protect us from arbitrary extent modifying contexts, not
	 * just eofblocks.
	 */
	xfs_trim_extent_eof(imap, XFS_I(inode));

489 490
	return offset >= imap->br_startoff &&
		offset < imap->br_startoff + imap->br_blockcount;
L
Linus Torvalds 已提交
491 492
}

493 494 495 496 497 498 499 500 501
STATIC void
xfs_start_buffer_writeback(
	struct buffer_head	*bh)
{
	ASSERT(buffer_mapped(bh));
	ASSERT(buffer_locked(bh));
	ASSERT(!buffer_delay(bh));
	ASSERT(!buffer_unwritten(bh));

502 503
	bh->b_end_io = NULL;
	set_buffer_async_write(bh);
504 505 506 507 508 509 510
	set_buffer_uptodate(bh);
	clear_buffer_dirty(bh);
}

STATIC void
xfs_start_page_writeback(
	struct page		*page,
511
	int			clear_dirty)
512 513 514
{
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
515 516 517 518 519 520 521 522 523

	/*
	 * if the page was not fully cleaned, we need to ensure that the higher
	 * layers come back to it correctly. That means we need to keep the page
	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
	 * write this page in this writeback sweep will be made.
	 */
	if (clear_dirty) {
524
		clear_page_dirty_for_io(page);
525 526 527 528
		set_page_writeback(page);
	} else
		set_page_writeback_keepwrite(page);

529 530 531
	unlock_page(page);
}

532
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
533 534 535 536 537
{
	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
}

/*
538 539 540 541 542 543
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
544 545 546
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
547 548 549
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
550
 */
551
STATIC int
552
xfs_submit_ioend(
553
	struct writeback_control *wbc,
554
	struct xfs_ioend	*ioend,
555
	int			status)
556
{
557 558
	/* Convert CoW extents to regular */
	if (!status && ioend->io_type == XFS_IO_COW) {
559 560 561 562 563 564 565 566 567 568
		/*
		 * Yuk. This can do memory allocation, but is not a
		 * transactional operation so everything is done in GFP_KERNEL
		 * context. That can deadlock, because we hold pages in
		 * writeback state and GFP_KERNEL allocations can block on them.
		 * Hence we must operate in nofs conditions here.
		 */
		unsigned nofs_flag;

		nofs_flag = memalloc_nofs_save();
569 570
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
571
		memalloc_nofs_restore(nofs_flag);
572 573
	}

574 575
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
576
	    ioend->io_type != XFS_IO_UNWRITTEN &&
577 578
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
579
		status = xfs_setfilesize_trans_alloc(ioend);
580

581 582
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
583
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
584

585 586 587 588 589 590 591
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
592
		ioend->io_bio->bi_status = errno_to_blk_status(status);
593
		bio_endio(ioend->io_bio);
594 595
		return status;
	}
596

597
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
598
	submit_bio(ioend->io_bio);
599
	return 0;
600 601
}

602 603 604 605 606 607
static void
xfs_init_bio_from_bh(
	struct bio		*bio,
	struct buffer_head	*bh)
{
	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
608
	bio_set_dev(bio, bh->b_bdev);
609
}
610

611 612 613 614 615 616 617 618 619
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
	unsigned int		type,
	xfs_off_t		offset,
	struct buffer_head	*bh)
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
620

621
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	xfs_init_bio_from_bh(bio, bh);

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
	ioend->io_type = type;
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	INIT_WORK(&ioend->io_work, xfs_end_io);
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
	struct buffer_head	*bh)
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
	xfs_init_bio_from_bh(new, bh);

	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
656
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
657
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
658
	submit_bio(ioend->io_bio);
659
	ioend->io_bio = new;
660 661 662 663 664 665
}

/*
 * Test to see if we've been building up a completion structure for
 * earlier buffers -- if so, we try to append to this ioend if we
 * can, otherwise we finish off any current ioend and start another.
666 667
 * Return the ioend we finished off so that the caller can submit it
 * once it has finished processing the dirty page.
668 669 670 671 672
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
	struct buffer_head	*bh,
673
	xfs_off_t		offset,
674
	struct xfs_writepage_ctx *wpc,
675
	struct writeback_control *wbc,
676
	struct list_head	*iolist)
677
{
678
	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
679 680
	    bh->b_blocknr != wpc->last_block + 1 ||
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
681 682
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
683
		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
684 685
	}

686 687 688 689 690 691
	/*
	 * If the buffer doesn't fit into the bio we need to allocate a new
	 * one.  This shouldn't happen more than once for a given buffer.
	 */
	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
		xfs_chain_bio(wpc->ioend, wbc, bh);
692

693 694
	wpc->ioend->io_size += bh->b_size;
	wpc->last_block = bh->b_blocknr;
695
	xfs_start_buffer_writeback(bh);
696 697
}

698 699
STATIC void
xfs_map_buffer(
C
Christoph Hellwig 已提交
700
	struct inode		*inode,
701
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
702
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
703
	xfs_off_t		offset)
704 705
{
	sector_t		bn;
706
	struct xfs_mount	*m = XFS_I(inode)->i_mount;
C
Christoph Hellwig 已提交
707 708
	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
709

C
Christoph Hellwig 已提交
710 711
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
712

713
	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
714
	      ((offset - iomap_offset) >> inode->i_blkbits);
715

C
Christoph Hellwig 已提交
716
	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
717 718 719 720 721

	bh->b_blocknr = bn;
	set_buffer_mapped(bh);
}

L
Linus Torvalds 已提交
722 723
STATIC void
xfs_map_at_offset(
C
Christoph Hellwig 已提交
724
	struct inode		*inode,
L
Linus Torvalds 已提交
725
	struct buffer_head	*bh,
C
Christoph Hellwig 已提交
726
	struct xfs_bmbt_irec	*imap,
C
Christoph Hellwig 已提交
727
	xfs_off_t		offset)
L
Linus Torvalds 已提交
728
{
C
Christoph Hellwig 已提交
729 730
	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
L
Linus Torvalds 已提交
731

C
Christoph Hellwig 已提交
732
	xfs_map_buffer(inode, bh, imap, offset);
L
Linus Torvalds 已提交
733 734
	set_buffer_mapped(bh);
	clear_buffer_delay(bh);
735
	clear_buffer_unwritten(bh);
736 737 738 739 740 741 742 743

	/*
	 * If this is a realtime file, data may be on a different device.
	 * to that pointed to from the buffer_head b_bdev currently. We can't
	 * trust that the bufferhead has a already been mapped correctly, so
	 * set the bdev now.
	 */
	bh->b_bdev = xfs_find_bdev_for_inode(inode);
L
Linus Torvalds 已提交
744 745
}

746 747 748
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
749 750
	unsigned int		offset,
	unsigned int		length)
751
{
752 753
	trace_xfs_invalidatepage(page->mapping->host, page, offset,
				 length);
754 755 756 757 758 759 760 761

	/*
	 * If we are invalidating the entire page, clear the dirty state from it
	 * so that we can check for attempts to release dirty cached pages in
	 * xfs_vm_releasepage().
	 */
	if (offset == 0 && length >= PAGE_SIZE)
		cancel_dirty_page(page);
762
	block_invalidatepage(page, offset, length);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * If the page has delalloc buffers on it, we need to punch them out before we
 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 * is done on that same region - the delalloc extent is returned when none is
 * supposed to be there.
 *
 * We prevent this by truncating away the delalloc regions on the page before
 * invalidating it. Because they are delalloc, we can do this without needing a
 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 * truncation without a transaction as there is no space left for block
 * reservation (typically why we see a ENOSPC in writeback).
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
784
	struct xfs_mount	*mp = ip->i_mount;
785
	loff_t			offset = page_offset(page);
786 787
	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
	int			error;
788

789
	if (XFS_FORCED_SHUTDOWN(mp))
790 791
		goto out_invalidate;

792
	xfs_alert(mp,
793
		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
794 795
			page, ip->i_ino, offset);

796 797 798 799
	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
			PAGE_SIZE / i_blocksize(inode));
	if (error && !XFS_FORCED_SHUTDOWN(mp))
		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
800
out_invalidate:
801
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
 * adding buffers to is cached on the writepage context, and if the new buffer
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
820 821 822
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
823
	struct writeback_control *wbc,
824 825
	struct inode		*inode,
	struct page		*page,
826
	uint64_t		end_offset)
827
{
828 829
	LIST_HEAD(submit_list);
	struct xfs_ioend	*ioend, *next;
830
	struct buffer_head	*bh;
F
Fabian Frederick 已提交
831
	ssize_t			len = i_blocksize(inode);
832
	uint64_t		file_offset;	/* file offset of page */
833
	unsigned		poffset;	/* offset into page */
834 835 836
	int			error = 0;
	int			count = 0;

837 838 839 840 841 842 843
	/*
	 * Walk the blocks on the page, and if we run off the end of the current
	 * map or find the current map invalid, grab a new one.  We only use
	 * bufferheads here to check per-block state - they no longer control
	 * the iteration through the page. This allows us to replace the
	 * bufferhead with some other state tracking mechanism in future.
	 */
844
	file_offset = page_offset(page);
845 846 847 848 849
	bh = page_buffers(page);
	for (poffset = 0;
	     poffset < PAGE_SIZE;
	     poffset += len, file_offset += len, bh = bh->b_this_page) {
		/* past the range we are writing, so nothing more to write. */
850
		if (file_offset >= end_offset)
851 852
			break;

853
		if (!buffer_uptodate(bh)) {
854 855 856 857 858 859 860
			if (PageUptodate(page))
				ASSERT(buffer_mapped(bh));
			continue;
		}

		if (wpc->imap_valid)
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
861
							 file_offset);
C
Christoph Hellwig 已提交
862 863 864 865 866 867 868 869 870 871

		/*
		 * COW fork blocks can overlap data fork blocks even if the
		 * blocks aren't shared. COW I/O always takes precedent, so we
		 * must always check for overlap on reflink inodes unless the
		 * mapping is already a COW one.
		 */
		if (!wpc->imap_valid ||
		    (xfs_is_reflink_inode(XFS_I(inode)) &&
		     wpc->io_type != XFS_IO_COW)) {
872
			error = xfs_map_blocks(wpc, inode, file_offset);
873
			if (error)
874
				goto out;
875
			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
876
							 file_offset);
877 878
		}

C
Christoph Hellwig 已提交
879 880 881 882
		if (!wpc->imap_valid || wpc->io_type == XFS_IO_HOLE)
			continue;

		lock_buffer(bh);
883
		xfs_map_at_offset(inode, bh, &wpc->imap, file_offset);
884
		xfs_add_to_ioend(inode, bh, file_offset, wpc, wbc, &submit_list);
C
Christoph Hellwig 已提交
885
		count++;
886
	}
887

888
	ASSERT(wpc->ioend || list_empty(&submit_list));
889

890
out:
891
	/*
892 893 894 895 896 897 898 899 900
	 * On error, we have to fail the ioend here because we have locked
	 * buffers in the ioend. If we don't do this, we'll deadlock
	 * invalidating the page as that tries to lock the buffers on the page.
	 * Also, because we may have set pages under writeback, we have to make
	 * sure we run IO completion to mark the error state of the IO
	 * appropriately, so we can't cancel the ioend directly here. That means
	 * we have to mark this page as under writeback if we included any
	 * buffers from it in the ioend chain so that completion treats it
	 * correctly.
901
	 *
902 903 904 905 906
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
	 * or it's buffers right now. The caller will still need to trigger
	 * submission of outstanding ioends on the writepage context so they are
	 * treated correctly on error.
907
	 */
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	if (count) {
		xfs_start_page_writeback(page, !error);

		/*
		 * Preserve the original error if there was one, otherwise catch
		 * submission errors here and propagate into subsequent ioend
		 * submissions.
		 */
		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
			int error2;

			list_del_init(&ioend->io_list);
			error2 = xfs_submit_ioend(wbc, ioend, error);
			if (error2 && !error)
				error = error2;
		}
	} else if (error) {
925 926 927
		xfs_aops_discard_page(page);
		ClearPageUptodate(page);
		unlock_page(page);
928 929 930 931 932 933 934 935
	} else {
		/*
		 * We can end up here with no error and nothing to write if we
		 * race with a partial page truncate on a sub-page block sized
		 * filesystem. In that case we need to mark the page clean.
		 */
		xfs_start_page_writeback(page, 1);
		end_page_writeback(page);
936
	}
937

938 939 940 941
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
942
/*
943 944 945 946 947 948
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
 * For any other dirty buffer heads on the page we should flush them.
L
Linus Torvalds 已提交
949 950
 */
STATIC int
951
xfs_do_writepage(
952
	struct page		*page,
953 954
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
955
{
956
	struct xfs_writepage_ctx *wpc = data;
957
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
958
	loff_t			offset;
959
	uint64_t              end_offset;
960
	pgoff_t                 end_index;
961

962
	trace_xfs_writepage(inode, page, 0, 0);
963

964 965
	ASSERT(page_has_buffers(page));

966 967 968
	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
969 970 971
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
972
	 *
973 974
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
975
	 */
976 977
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
978
		goto redirty;
L
Linus Torvalds 已提交
979

980
	/*
981 982
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
983
	 */
984
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
985
		goto redirty;
986

987
	/*
988 989
	 * Is this page beyond the end of the file?
	 *
990 991 992 993 994 995 996 997 998 999
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
1000
	offset = i_size_read(inode);
1001
	end_index = offset >> PAGE_SHIFT;
1002
	if (page->index < end_index)
1003
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
1016
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1017 1018

		/*
1019 1020 1021 1022
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
1034
		 */
1035 1036
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
1037
			goto redirty;
1038 1039 1040 1041 1042

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
1043
		 * that is not a multiple of the page size, the remaining
1044 1045 1046
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
1047
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1048 1049 1050

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
1051 1052
	}

1053
	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1054

1055
redirty:
1056 1057 1058 1059 1060
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
1072 1073 1074
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1075 1076
}

1077 1078 1079 1080 1081
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
1082 1083 1084 1085 1086
	struct xfs_writepage_ctx wpc = {
		.io_type = XFS_IO_INVALID,
	};
	int			ret;

1087
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1088
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1089 1090 1091
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
1092 1093
}

D
Dan Williams 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
STATIC int
xfs_dax_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
	return dax_writeback_mapping_range(mapping,
			xfs_find_bdev_for_inode(mapping->host), wbc);
}

1104 1105
/*
 * Called to move a page into cleanable state - and from there
1106
 * to be released. The page should already be clean. We always
1107 1108
 * have buffer heads in this call.
 *
1109
 * Returns 1 if the page is ok to release, 0 otherwise.
1110 1111
 */
STATIC int
1112
xfs_vm_releasepage(
1113 1114 1115
	struct page		*page,
	gfp_t			gfp_mask)
{
1116
	int			delalloc, unwritten;
1117

1118
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1119

1120 1121 1122 1123
	/*
	 * mm accommodates an old ext3 case where clean pages might not have had
	 * the dirty bit cleared. Thus, it can send actual dirty pages to
	 * ->releasepage() via shrink_active_list(). Conversely,
1124 1125
	 * block_invalidatepage() can send pages that are still marked dirty but
	 * otherwise have invalidated buffers.
1126
	 *
1127
	 * We want to release the latter to avoid unnecessary buildup of the
1128 1129 1130 1131 1132 1133 1134
	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
	 * that are entirely invalidated and need to be released.  Hence the
	 * only time we should get dirty pages here is through
	 * shrink_active_list() and so we can simply skip those now.
	 *
	 * warn if we've left any lingering delalloc/unwritten buffers on clean
	 * or invalidated pages we are about to release.
1135
	 */
1136 1137 1138
	if (PageDirty(page))
		return 0;

1139
	xfs_count_page_state(page, &delalloc, &unwritten);
1140

1141
	if (WARN_ON_ONCE(delalloc))
1142
		return 0;
1143
	if (WARN_ON_ONCE(unwritten))
1144 1145 1146 1147 1148
		return 0;

	return try_to_free_buffers(page);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
 * is, so that we can avoid repeated get_blocks calls.
 *
 * If the mapping spans EOF, then we have to break the mapping up as the mapping
 * for blocks beyond EOF must be marked new so that sub block regions can be
 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
 * was just allocated or is unwritten, otherwise the callers would overwrite
 * existing data with zeros. Hence we have to split the mapping into a range up
 * to and including EOF, and a second mapping for beyond EOF.
 */
static void
xfs_map_trim_size(
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
	struct xfs_bmbt_irec	*imap,
	xfs_off_t		offset,
	ssize_t			size)
{
	xfs_off_t		mapping_size;

	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
	mapping_size <<= inode->i_blkbits;

	ASSERT(mapping_size > 0);
	if (mapping_size > size)
		mapping_size = size;
	if (offset < i_size_read(inode) &&
D
Darrick J. Wong 已提交
1178
	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1179 1180
		/* limit mapping to block that spans EOF */
		mapping_size = roundup_64(i_size_read(inode) - offset,
F
Fabian Frederick 已提交
1181
					  i_blocksize(inode));
1182 1183 1184 1185 1186 1187 1188
	}
	if (mapping_size > LONG_MAX)
		mapping_size = LONG_MAX;

	bh_result->b_size = mapping_size;
}

1189
static int
C
Christoph Hellwig 已提交
1190
xfs_get_blocks(
L
Linus Torvalds 已提交
1191 1192 1193
	struct inode		*inode,
	sector_t		iblock,
	struct buffer_head	*bh_result,
C
Christoph Hellwig 已提交
1194
	int			create)
L
Linus Torvalds 已提交
1195
{
C
Christoph Hellwig 已提交
1196 1197 1198 1199 1200
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb, end_fsb;
	int			error = 0;
	int			lockmode = 0;
C
Christoph Hellwig 已提交
1201
	struct xfs_bmbt_irec	imap;
C
Christoph Hellwig 已提交
1202
	int			nimaps = 1;
1203 1204
	xfs_off_t		offset;
	ssize_t			size;
C
Christoph Hellwig 已提交
1205

C
Christoph Hellwig 已提交
1206
	BUG_ON(create);
1207

C
Christoph Hellwig 已提交
1208
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
1209
		return -EIO;
L
Linus Torvalds 已提交
1210

1211
	offset = (xfs_off_t)iblock << inode->i_blkbits;
F
Fabian Frederick 已提交
1212
	ASSERT(bh_result->b_size >= i_blocksize(inode));
1213
	size = bh_result->b_size;
1214

C
Christoph Hellwig 已提交
1215
	if (offset >= i_size_read(inode))
1216 1217
		return 0;

1218 1219
	/*
	 * Direct I/O is usually done on preallocated files, so try getting
1220
	 * a block mapping without an exclusive lock first.
1221
	 */
1222
	lockmode = xfs_ilock_data_map_shared(ip);
1223

D
Dave Chinner 已提交
1224
	ASSERT(offset <= mp->m_super->s_maxbytes);
1225
	if (offset > mp->m_super->s_maxbytes - size)
D
Dave Chinner 已提交
1226
		size = mp->m_super->s_maxbytes - offset;
C
Christoph Hellwig 已提交
1227 1228 1229
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
	offset_fsb = XFS_B_TO_FSBT(mp, offset);

1230 1231
	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
			&nimaps, 0);
L
Linus Torvalds 已提交
1232
	if (error)
C
Christoph Hellwig 已提交
1233
		goto out_unlock;
1234
	if (!nimaps) {
C
Christoph Hellwig 已提交
1235 1236 1237
		trace_xfs_get_blocks_notfound(ip, offset, size);
		goto out_unlock;
	}
L
Linus Torvalds 已提交
1238

1239 1240 1241 1242 1243
	trace_xfs_get_blocks_found(ip, offset, size,
		imap.br_state == XFS_EXT_UNWRITTEN ?
			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
	xfs_iunlock(ip, lockmode);

1244
	/* trim mapping down to size requested */
1245
	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1246

1247 1248 1249 1250
	/*
	 * For unwritten extents do not report a disk address in the buffered
	 * read case (treat as if we're reading into a hole).
	 */
1251
	if (xfs_bmap_is_real_extent(&imap))
1252
		xfs_map_buffer(inode, bh_result, &imap, offset);
L
Linus Torvalds 已提交
1253

1254 1255 1256 1257
	/*
	 * If this is a realtime file, data may be on a different device.
	 * to that pointed to from the buffer_head b_bdev currently.
	 */
C
Christoph Hellwig 已提交
1258
	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
L
Linus Torvalds 已提交
1259
	return 0;
C
Christoph Hellwig 已提交
1260 1261 1262

out_unlock:
	xfs_iunlock(ip, lockmode);
D
Dave Chinner 已提交
1263
	return error;
L
Linus Torvalds 已提交
1264 1265 1266
}

STATIC sector_t
1267
xfs_vm_bmap(
L
Linus Torvalds 已提交
1268 1269 1270
	struct address_space	*mapping,
	sector_t		block)
{
C
Christoph Hellwig 已提交
1271
	struct xfs_inode	*ip = XFS_I(mapping->host);
L
Linus Torvalds 已提交
1272

C
Christoph Hellwig 已提交
1273
	trace_xfs_vm_bmap(ip);
1274 1275 1276

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1277
	 * bypasses the file system for actual I/O.  We really can't allow
1278
	 * that on reflinks inodes, so we have to skip out here.  And yes,
1279 1280 1281 1282
	 * 0 is the magic code for a bmap error.
	 *
	 * Since we don't pass back blockdev info, we can't return bmap
	 * information for rt files either.
1283
	 */
1284
	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1285
		return 0;
C
Christoph Hellwig 已提交
1286
	return iomap_bmap(mapping, block, &xfs_iomap_ops);
L
Linus Torvalds 已提交
1287 1288 1289
}

STATIC int
1290
xfs_vm_readpage(
L
Linus Torvalds 已提交
1291 1292 1293
	struct file		*unused,
	struct page		*page)
{
1294
	trace_xfs_vm_readpage(page->mapping->host, 1);
1295 1296
	if (i_blocksize(page->mapping->host) == PAGE_SIZE)
		return iomap_readpage(page, &xfs_iomap_ops);
1297
	return mpage_readpage(page, xfs_get_blocks);
L
Linus Torvalds 已提交
1298 1299 1300
}

STATIC int
1301
xfs_vm_readpages(
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1307
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1308 1309
	if (i_blocksize(mapping->host) == PAGE_SIZE)
		return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1310
	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
L
Linus Torvalds 已提交
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * This is basically a copy of __set_page_dirty_buffers() with one
 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
 * dirty, we'll never be able to clean them because we don't write buffers
 * beyond EOF, and that means we can't invalidate pages that span EOF
 * that have been marked dirty. Further, the dirty state can leak into
 * the file interior if the file is extended, resulting in all sorts of
 * bad things happening as the state does not match the underlying data.
 *
 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
 * this only exist because of bufferheads and how the generic code manages them.
 */
STATIC int
xfs_vm_set_page_dirty(
	struct page		*page)
{
	struct address_space	*mapping = page->mapping;
	struct inode		*inode = mapping->host;
	loff_t			end_offset;
	loff_t			offset;
	int			newly_dirty;

	if (unlikely(!mapping))
		return !TestSetPageDirty(page);

	end_offset = i_size_read(inode);
	offset = page_offset(page);

	spin_lock(&mapping->private_lock);
	if (page_has_buffers(page)) {
		struct buffer_head *head = page_buffers(page);
		struct buffer_head *bh = head;

		do {
			if (offset < end_offset)
				set_buffer_dirty(bh);
			bh = bh->b_this_page;
F
Fabian Frederick 已提交
1350
			offset += i_blocksize(inode);
1351 1352
		} while (bh != head);
	}
1353
	/*
1354 1355
	 * Lock out page->mem_cgroup migration to keep PageDirty
	 * synchronized with per-memcg dirty page counters.
1356
	 */
J
Johannes Weiner 已提交
1357
	lock_page_memcg(page);
1358 1359 1360
	newly_dirty = !TestSetPageDirty(page);
	spin_unlock(&mapping->private_lock);

M
Matthew Wilcox 已提交
1361 1362
	if (newly_dirty)
		__set_page_dirty(page, mapping, 1);
J
Johannes Weiner 已提交
1363
	unlock_page_memcg(page);
1364 1365
	if (newly_dirty)
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1366 1367 1368
	return newly_dirty;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static int
xfs_iomap_swapfile_activate(
	struct swap_info_struct		*sis,
	struct file			*swap_file,
	sector_t			*span)
{
	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
}

1379
const struct address_space_operations xfs_address_space_operations = {
1380 1381 1382
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1383
	.writepages		= xfs_vm_writepages,
1384
	.set_page_dirty		= xfs_vm_set_page_dirty,
1385 1386
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1387
	.bmap			= xfs_vm_bmap,
D
Dan Williams 已提交
1388
	.direct_IO		= noop_direct_IO,
1389
	.migratepage		= buffer_migrate_page,
1390
	.is_partially_uptodate  = block_is_partially_uptodate,
1391
	.error_remove_page	= generic_error_remove_page,
1392
	.swap_activate		= xfs_iomap_swapfile_activate,
L
Linus Torvalds 已提交
1393
};
D
Dan Williams 已提交
1394 1395 1396 1397 1398 1399

const struct address_space_operations xfs_dax_aops = {
	.writepages		= xfs_dax_writepages,
	.direct_IO		= noop_direct_IO,
	.set_page_dirty		= noop_set_page_dirty,
	.invalidatepage		= noop_invalidatepage,
1400
	.swap_activate		= xfs_iomap_swapfile_activate,
D
Dan Williams 已提交
1401
};