xfs_aops.c 29.8 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4
 * Copyright (c) 2016-2018 Christoph Hellwig.
5
 * All Rights Reserved.
L
Linus Torvalds 已提交
6 7
 */
#include "xfs.h"
8
#include "xfs_shared.h"
9 10 11
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
12 13
#include "xfs_mount.h"
#include "xfs_inode.h"
14
#include "xfs_trans.h"
15
#include "xfs_inode_item.h"
16
#include "xfs_alloc.h"
L
Linus Torvalds 已提交
17 18
#include "xfs_error.h"
#include "xfs_iomap.h"
C
Christoph Hellwig 已提交
19
#include "xfs_trace.h"
20
#include "xfs_bmap.h"
D
Dave Chinner 已提交
21
#include "xfs_bmap_util.h"
22
#include "xfs_bmap_btree.h"
23
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
24 25
#include <linux/writeback.h>

26 27 28 29 30 31
/*
 * structure owned by writepages passed to individual writepage calls
 */
struct xfs_writepage_ctx {
	struct xfs_bmbt_irec    imap;
	unsigned int		io_type;
32
	unsigned int		cow_seq;
33 34 35
	struct xfs_ioend	*ioend;
};

36
struct block_device *
C
Christoph Hellwig 已提交
37
xfs_find_bdev_for_inode(
C
Christoph Hellwig 已提交
38
	struct inode		*inode)
C
Christoph Hellwig 已提交
39
{
C
Christoph Hellwig 已提交
40
	struct xfs_inode	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
41 42
	struct xfs_mount	*mp = ip->i_mount;

43
	if (XFS_IS_REALTIME_INODE(ip))
C
Christoph Hellwig 已提交
44 45 46 47 48
		return mp->m_rtdev_targp->bt_bdev;
	else
		return mp->m_ddev_targp->bt_bdev;
}

49 50 51 52 53 54 55 56 57 58 59 60 61
struct dax_device *
xfs_find_daxdev_for_inode(
	struct inode		*inode)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;

	if (XFS_IS_REALTIME_INODE(ip))
		return mp->m_rtdev_targp->bt_daxdev;
	else
		return mp->m_ddev_targp->bt_daxdev;
}

62 63 64 65 66 67
static void
xfs_finish_page_writeback(
	struct inode		*inode,
	struct bio_vec		*bvec,
	int			error)
{
68 69
	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);

70 71 72 73 74
	if (error) {
		SetPageError(bvec->bv_page);
		mapping_set_error(inode->i_mapping, -EIO);
	}

75 76
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
77

78
	if (!iop || atomic_dec_and_test(&iop->write_count))
79
		end_page_writeback(bvec->bv_page);
80 81 82 83 84 85
}

/*
 * We're now finished for good with this ioend structure.  Update the page
 * state, release holds on bios, and finally free up memory.  Do not use the
 * ioend after this.
86
 */
87 88
STATIC void
xfs_destroy_ioend(
89 90
	struct xfs_ioend	*ioend,
	int			error)
91
{
92
	struct inode		*inode = ioend->io_inode;
93 94 95 96
	struct bio		*bio = &ioend->io_inline_bio;
	struct bio		*last = ioend->io_bio, *next;
	u64			start = bio->bi_iter.bi_sector;
	bool			quiet = bio_flagged(bio, BIO_QUIET);
97

98
	for (bio = &ioend->io_inline_bio; bio; bio = next) {
99 100 101
		struct bio_vec	*bvec;
		int		i;

102 103 104 105 106 107 108 109
		/*
		 * For the last bio, bi_private points to the ioend, so we
		 * need to explicitly end the iteration here.
		 */
		if (bio == last)
			next = NULL;
		else
			next = bio->bi_private;
C
Christoph Hellwig 已提交
110

111
		/* walk each page on bio, ending page IO on them */
112 113
		bio_for_each_segment_all(bvec, bio, i)
			xfs_finish_page_writeback(inode, bvec, error);
114
		bio_put(bio);
115
	}
116 117 118 119 120

	if (unlikely(error && !quiet)) {
		xfs_err_ratelimited(XFS_I(inode)->i_mount,
			"writeback error on sector %llu", start);
	}
121 122
}

C
Christoph Hellwig 已提交
123 124 125 126 127 128 129 130 131
/*
 * Fast and loose check if this write could update the on-disk inode size.
 */
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
{
	return ioend->io_offset + ioend->io_size >
		XFS_I(ioend->io_inode)->i_d.di_size;
}

132 133 134 135 136 137 138 139
STATIC int
xfs_setfilesize_trans_alloc(
	struct xfs_ioend	*ioend)
{
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
	struct xfs_trans	*tp;
	int			error;

140 141
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
				XFS_TRANS_NOFS, &tp);
142
	if (error)
143 144 145 146
		return error;

	ioend->io_append_trans = tp;

J
Jan Kara 已提交
147
	/*
148
	 * We may pass freeze protection with a transaction.  So tell lockdep
J
Jan Kara 已提交
149 150
	 * we released it.
	 */
151
	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
152 153 154 155
	/*
	 * We hand off the transaction to the completion thread now, so
	 * clear the flag here.
	 */
156
	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
157 158 159
	return 0;
}

160
/*
161
 * Update on-disk file size now that data has been written to disk.
162
 */
163
STATIC int
164
__xfs_setfilesize(
165 166 167 168
	struct xfs_inode	*ip,
	struct xfs_trans	*tp,
	xfs_off_t		offset,
	size_t			size)
169 170 171
{
	xfs_fsize_t		isize;

172
	xfs_ilock(ip, XFS_ILOCK_EXCL);
173
	isize = xfs_new_eof(ip, offset + size);
174 175
	if (!isize) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
176
		xfs_trans_cancel(tp);
177
		return 0;
178 179
	}

180
	trace_xfs_setfilesize(ip, offset, size);
181 182 183 184 185

	ip->i_d.di_size = isize;
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

186
	return xfs_trans_commit(tp);
187 188
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
int
xfs_setfilesize(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	size_t			size)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
	if (error)
		return error;

	return __xfs_setfilesize(ip, tp, offset, size);
}

206 207
STATIC int
xfs_setfilesize_ioend(
208 209
	struct xfs_ioend	*ioend,
	int			error)
210 211 212 213 214 215 216 217 218
{
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
	struct xfs_trans	*tp = ioend->io_append_trans;

	/*
	 * The transaction may have been allocated in the I/O submission thread,
	 * thus we need to mark ourselves as being in a transaction manually.
	 * Similarly for freeze protection.
	 */
219
	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
220
	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
221

222
	/* we abort the update if there was an IO error */
223
	if (error) {
224
		xfs_trans_cancel(tp);
225
		return error;
226 227
	}

228
	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
229 230
}

231
/*
232
 * IO write completion.
233 234
 */
STATIC void
235
xfs_end_io(
236
	struct work_struct *work)
237
{
238 239 240
	struct xfs_ioend	*ioend =
		container_of(work, struct xfs_ioend, io_work);
	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
241 242
	xfs_off_t		offset = ioend->io_offset;
	size_t			size = ioend->io_size;
243
	int			error;
244

245
	/*
246
	 * Just clean up the in-memory strutures if the fs has been shut down.
247
	 */
248
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249
		error = -EIO;
250 251
		goto done;
	}
252

253
	/*
254
	 * Clean up any COW blocks on an I/O error.
255
	 */
256
	error = blk_status_to_errno(ioend->io_bio->bi_status);
257 258 259 260 261
	if (unlikely(error)) {
		switch (ioend->io_type) {
		case XFS_IO_COW:
			xfs_reflink_cancel_cow_range(ip, offset, size, true);
			break;
262
		}
263 264

		goto done;
265 266
	}

267
	/*
268
	 * Success:  commit the COW or unwritten blocks if needed.
269
	 */
270 271 272 273 274
	switch (ioend->io_type) {
	case XFS_IO_COW:
		error = xfs_reflink_end_cow(ip, offset, size);
		break;
	case XFS_IO_UNWRITTEN:
275 276
		/* writeback should never update isize */
		error = xfs_iomap_write_unwritten(ip, offset, size, false);
277 278 279 280
		break;
	default:
		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
		break;
281
	}
282

283
done:
284 285
	if (ioend->io_append_trans)
		error = xfs_setfilesize_ioend(ioend, error);
286
	xfs_destroy_ioend(ioend, error);
287 288
}

289 290 291
STATIC void
xfs_end_bio(
	struct bio		*bio)
292
{
293 294
	struct xfs_ioend	*ioend = bio->bi_private;
	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
295

296
	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
297 298 299 300
		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
	else if (ioend->io_append_trans)
		queue_work(mp->m_data_workqueue, &ioend->io_work);
	else
301
		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
302 303
}

L
Linus Torvalds 已提交
304 305
STATIC int
xfs_map_blocks(
C
Christoph Hellwig 已提交
306
	struct xfs_writepage_ctx *wpc,
L
Linus Torvalds 已提交
307
	struct inode		*inode,
C
Christoph Hellwig 已提交
308
	loff_t			offset)
L
Linus Torvalds 已提交
309
{
C
Christoph Hellwig 已提交
310 311
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
F
Fabian Frederick 已提交
312
	ssize_t			count = i_blocksize(inode);
313
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
314
	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
C
Christoph Hellwig 已提交
315 316
	struct xfs_bmbt_irec	imap;
	int			whichfork = XFS_DATA_FORK;
317
	struct xfs_iext_cursor	icur;
318
	bool			imap_valid;
C
Christoph Hellwig 已提交
319 320
	int			error = 0;

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	/*
	 * We have to make sure the cached mapping is within EOF to protect
	 * against eofblocks trimming on file release leaving us with a stale
	 * mapping. Otherwise, a page for a subsequent file extending buffered
	 * write could get picked up by this writeback cycle and written to the
	 * wrong blocks.
	 *
	 * Note that what we really want here is a generic mapping invalidation
	 * mechanism to protect us from arbitrary extent modifying contexts, not
	 * just eofblocks.
	 */
	xfs_trim_extent_eof(&wpc->imap, ip);

	/*
	 * COW fork blocks can overlap data fork blocks even if the blocks
	 * aren't shared.  COW I/O always takes precedent, so we must always
	 * check for overlap on reflink inodes unless the mapping is already a
338 339 340 341 342 343 344 345 346 347
	 * COW one, or the COW fork hasn't changed from the last time we looked
	 * at it.
	 *
	 * It's safe to check the COW fork if_seq here without the ILOCK because
	 * we've indirectly protected against concurrent updates: writeback has
	 * the page locked, which prevents concurrent invalidations by reflink
	 * and directio and prevents concurrent buffered writes to the same
	 * page.  Changes to if_seq always happen under i_lock, which protects
	 * against concurrent updates and provides a memory barrier on the way
	 * out that ensures that we always see the current value.
348 349 350 351
	 */
	imap_valid = offset_fsb >= wpc->imap.br_startoff &&
		     offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
	if (imap_valid &&
352 353
	    (!xfs_inode_has_cow_data(ip) ||
	     wpc->io_type == XFS_IO_COW ||
354
	     wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
355 356
		return 0;

C
Christoph Hellwig 已提交
357
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
358
		return -EIO;
C
Christoph Hellwig 已提交
359

360 361 362 363 364 365
	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.  If we return without a valid map, it means we
	 * landed in a hole and we skip the block.
	 */
366
	xfs_ilock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
367 368
	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
	       (ip->i_df.if_flags & XFS_IFEXTENTS));
D
Dave Chinner 已提交
369
	ASSERT(offset <= mp->m_super->s_maxbytes);
C
Christoph Hellwig 已提交
370

371 372 373 374 375 376 377 378
	if (offset > mp->m_super->s_maxbytes - count)
		count = mp->m_super->s_maxbytes - offset;
	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);

	/*
	 * Check if this is offset is covered by a COW extents, and if yes use
	 * it directly instead of looking up anything in the data fork.
	 */
379
	if (xfs_inode_has_cow_data(ip) &&
380 381 382
	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
		cow_fsb = imap.br_startoff;
	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
383
		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
C
Christoph Hellwig 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		/*
		 * Truncate can race with writeback since writeback doesn't
		 * take the iolock and truncate decreases the file size before
		 * it starts truncating the pages between new_size and old_size.
		 * Therefore, we can end up in the situation where writeback
		 * gets a CoW fork mapping but the truncate makes the mapping
		 * invalid and we end up in here trying to get a new mapping.
		 * bail out here so that we simply never get a valid mapping
		 * and so we drop the write altogether.  The page truncation
		 * will kill the contents anyway.
		 */
		if (offset > i_size_read(inode)) {
			wpc->io_type = XFS_IO_HOLE;
			return 0;
		}
		whichfork = XFS_COW_FORK;
		wpc->io_type = XFS_IO_COW;
		goto allocate_blocks;
	}

	/*
	 * Map valid and no COW extent in the way?  We're done.
	 */
408
	if (imap_valid) {
C
Christoph Hellwig 已提交
409 410 411 412 413 414 415 416 417
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		return 0;
	}

	/*
	 * If we don't have a valid map, now it's time to get a new one for this
	 * offset.  This will convert delayed allocations (including COW ones)
	 * into real extents.
	 */
418 419
	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
C
Christoph Hellwig 已提交
420
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
C
Christoph Hellwig 已提交
421

422 423 424
	if (imap.br_startoff > offset_fsb) {
		/* landed in a hole or beyond EOF */
		imap.br_blockcount = imap.br_startoff - offset_fsb;
C
Christoph Hellwig 已提交
425 426 427
		imap.br_startoff = offset_fsb;
		imap.br_startblock = HOLESTARTBLOCK;
		wpc->io_type = XFS_IO_HOLE;
428
	} else {
429 430 431 432 433 434 435 436 437 438
		/*
		 * Truncate to the next COW extent if there is one.  This is the
		 * only opportunity to do this because we can skip COW fork
		 * lookups for the subsequent blocks in the mapping; however,
		 * the requirement to treat the COW range separately remains.
		 */
		if (cow_fsb != NULLFILEOFF &&
		    cow_fsb < imap.br_startoff + imap.br_blockcount)
			imap.br_blockcount = cow_fsb - imap.br_startoff;

439 440 441 442 443
		if (isnullstartblock(imap.br_startblock)) {
			/* got a delalloc extent */
			wpc->io_type = XFS_IO_DELALLOC;
			goto allocate_blocks;
		}
C
Christoph Hellwig 已提交
444

445 446 447 448
		if (imap.br_state == XFS_EXT_UNWRITTEN)
			wpc->io_type = XFS_IO_UNWRITTEN;
		else
			wpc->io_type = XFS_IO_OVERWRITE;
C
Christoph Hellwig 已提交
449
	}
450

C
Christoph Hellwig 已提交
451 452 453 454
	wpc->imap = imap;
	trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
	return 0;
allocate_blocks:
455 456
	error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
			&wpc->cow_seq);
C
Christoph Hellwig 已提交
457 458
	if (error)
		return error;
459 460
	ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
	       imap.br_startoff + imap.br_blockcount <= cow_fsb);
C
Christoph Hellwig 已提交
461 462
	wpc->imap = imap;
	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
C
Christoph Hellwig 已提交
463
	return 0;
L
Linus Torvalds 已提交
464 465
}

466
/*
467 468 469 470 471 472
 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 * it, and we submit that bio. The ioend may be used for multiple bio
 * submissions, so we only want to allocate an append transaction for the ioend
 * once. In the case of multiple bio submission, each bio will take an IO
 * reference to the ioend to ensure that the ioend completion is only done once
 * all bios have been submitted and the ioend is really done.
473 474 475
 *
 * If @fail is non-zero, it means that we have a situation where some part of
 * the submission process has failed after we have marked paged for writeback
476 477 478
 * and unlocked them. In this situation, we need to fail the bio and ioend
 * rather than submit it to IO. This typically only happens on a filesystem
 * shutdown.
479
 */
480
STATIC int
481
xfs_submit_ioend(
482
	struct writeback_control *wbc,
483
	struct xfs_ioend	*ioend,
484
	int			status)
485
{
486 487
	/* Convert CoW extents to regular */
	if (!status && ioend->io_type == XFS_IO_COW) {
488 489 490 491 492 493 494 495 496 497
		/*
		 * Yuk. This can do memory allocation, but is not a
		 * transactional operation so everything is done in GFP_KERNEL
		 * context. That can deadlock, because we hold pages in
		 * writeback state and GFP_KERNEL allocations can block on them.
		 * Hence we must operate in nofs conditions here.
		 */
		unsigned nofs_flag;

		nofs_flag = memalloc_nofs_save();
498 499
		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
				ioend->io_offset, ioend->io_size);
500
		memalloc_nofs_restore(nofs_flag);
501 502
	}

503 504
	/* Reserve log space if we might write beyond the on-disk inode size. */
	if (!status &&
505
	    ioend->io_type != XFS_IO_UNWRITTEN &&
506 507
	    xfs_ioend_is_append(ioend) &&
	    !ioend->io_append_trans)
508
		status = xfs_setfilesize_trans_alloc(ioend);
509

510 511
	ioend->io_bio->bi_private = ioend;
	ioend->io_bio->bi_end_io = xfs_end_bio;
J
Jens Axboe 已提交
512
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
513

514 515 516 517 518 519 520
	/*
	 * If we are failing the IO now, just mark the ioend with an
	 * error and finish it. This will run IO completion immediately
	 * as there is only one reference to the ioend at this point in
	 * time.
	 */
	if (status) {
521
		ioend->io_bio->bi_status = errno_to_blk_status(status);
522
		bio_endio(ioend->io_bio);
523 524
		return status;
	}
525

526
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
527
	submit_bio(ioend->io_bio);
528
	return 0;
529 530
}

531 532 533 534 535
static struct xfs_ioend *
xfs_alloc_ioend(
	struct inode		*inode,
	unsigned int		type,
	xfs_off_t		offset,
536 537
	struct block_device	*bdev,
	sector_t		sector)
538 539 540
{
	struct xfs_ioend	*ioend;
	struct bio		*bio;
541

542
	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
543 544
	bio_set_dev(bio, bdev);
	bio->bi_iter.bi_sector = sector;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
	INIT_LIST_HEAD(&ioend->io_list);
	ioend->io_type = type;
	ioend->io_inode = inode;
	ioend->io_size = 0;
	ioend->io_offset = offset;
	INIT_WORK(&ioend->io_work, xfs_end_io);
	ioend->io_append_trans = NULL;
	ioend->io_bio = bio;
	return ioend;
}

/*
 * Allocate a new bio, and chain the old bio to the new one.
 *
 * Note that we have to do perform the chaining in this unintuitive order
 * so that the bi_private linkage is set up in the right direction for the
 * traversal in xfs_destroy_ioend().
 */
static void
xfs_chain_bio(
	struct xfs_ioend	*ioend,
	struct writeback_control *wbc,
569 570
	struct block_device	*bdev,
	sector_t		sector)
571 572 573 574
{
	struct bio *new;

	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
575 576
	bio_set_dev(new, bdev);
	new->bi_iter.bi_sector = sector;
577 578
	bio_chain(ioend->io_bio, new);
	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
J
Jens Axboe 已提交
579
	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
580
	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
581
	submit_bio(ioend->io_bio);
582
	ioend->io_bio = new;
583 584 585
}

/*
586 587
 * Test to see if we have an existing ioend structure that we could append to
 * first, otherwise finish off the current ioend and start another.
588 589 590 591
 */
STATIC void
xfs_add_to_ioend(
	struct inode		*inode,
592
	xfs_off_t		offset,
593
	struct page		*page,
594
	struct iomap_page	*iop,
595
	struct xfs_writepage_ctx *wpc,
596
	struct writeback_control *wbc,
597
	struct list_head	*iolist)
598
{
599 600 601 602 603 604 605 606 607 608
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
	unsigned		len = i_blocksize(inode);
	unsigned		poff = offset & (PAGE_SIZE - 1);
	sector_t		sector;

	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);

609
	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
610
	    sector != bio_end_sector(wpc->ioend->io_bio) ||
611
	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
612 613
		if (wpc->ioend)
			list_add(&wpc->ioend->io_list, iolist);
614 615
		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
				bdev, sector);
616 617
	}

618 619 620 621 622 623 624
	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
		if (iop)
			atomic_inc(&iop->write_count);
		if (bio_full(wpc->ioend->io_bio))
			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
		__bio_add_page(wpc->ioend->io_bio, page, len, poff);
	}
625

626
	wpc->ioend->io_size += len;
627 628
}

629 630 631
STATIC void
xfs_vm_invalidatepage(
	struct page		*page,
632 633
	unsigned int		offset,
	unsigned int		length)
634
{
635 636
	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
	iomap_invalidatepage(page, offset, length);
637 638 639
}

/*
640 641 642
 * If the page has delalloc blocks on it, we need to punch them out before we
 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
 * inode that can trip up a later direct I/O read operation on the same region.
643
 *
644 645 646 647 648
 * We prevent this by truncating away the delalloc regions on the page.  Because
 * they are delalloc, we can do this without needing a transaction. Indeed - if
 * we get ENOSPC errors, we have to be able to do this truncation without a
 * transaction as there is no space left for block reservation (typically why we
 * see a ENOSPC in writeback).
649 650 651 652 653 654 655
 */
STATIC void
xfs_aops_discard_page(
	struct page		*page)
{
	struct inode		*inode = page->mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
656
	struct xfs_mount	*mp = ip->i_mount;
657
	loff_t			offset = page_offset(page);
658 659
	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
	int			error;
660

661
	if (XFS_FORCED_SHUTDOWN(mp))
662 663
		goto out_invalidate;

664
	xfs_alert(mp,
665
		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
666 667
			page, ip->i_ino, offset);

668 669 670 671
	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
			PAGE_SIZE / i_blocksize(inode));
	if (error && !XFS_FORCED_SHUTDOWN(mp))
		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
672
out_invalidate:
673
	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
674 675
}

676 677 678 679
/*
 * We implement an immediate ioend submission policy here to avoid needing to
 * chain multiple ioends and hence nest mempool allocations which can violate
 * forward progress guarantees we need to provide. The current ioend we are
680
 * adding blocks to is cached on the writepage context, and if the new block
681 682 683 684 685 686 687 688 689 690 691
 * does not append to the cached ioend it will create a new ioend and cache that
 * instead.
 *
 * If a new ioend is created and cached, the old ioend is returned and queued
 * locally for submission once the entire page is processed or an error has been
 * detected.  While ioends are submitted immediately after they are completed,
 * batching optimisations are provided by higher level block plugging.
 *
 * At the end of a writeback pass, there will be a cached ioend remaining on the
 * writepage context that the caller will need to submit.
 */
692 693 694
static int
xfs_writepage_map(
	struct xfs_writepage_ctx *wpc,
695
	struct writeback_control *wbc,
696 697
	struct inode		*inode,
	struct page		*page,
698
	uint64_t		end_offset)
699
{
700
	LIST_HEAD(submit_list);
701 702
	struct iomap_page	*iop = to_iomap_page(page);
	unsigned		len = i_blocksize(inode);
703
	struct xfs_ioend	*ioend, *next;
704
	uint64_t		file_offset;	/* file offset of page */
705
	int			error = 0, count = 0, i;
706

707 708
	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
709

710
	/*
711 712 713
	 * Walk through the page to find areas to write back. If we run off the
	 * end of the current map or find the current map invalid, grab a new
	 * one.
714
	 */
715 716 717 718
	for (i = 0, file_offset = page_offset(page);
	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
	     i++, file_offset += len) {
		if (iop && !test_bit(i, iop->uptodate))
719 720
			continue;

721 722 723
		error = xfs_map_blocks(wpc, inode, file_offset);
		if (error)
			break;
724
		if (wpc->io_type == XFS_IO_HOLE)
C
Christoph Hellwig 已提交
725
			continue;
726 727
		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
				 &submit_list);
C
Christoph Hellwig 已提交
728
		count++;
729
	}
730

731
	ASSERT(wpc->ioend || list_empty(&submit_list));
732 733
	ASSERT(PageLocked(page));
	ASSERT(!PageWriteback(page));
734 735

	/*
736 737 738 739 740 741
	 * On error, we have to fail the ioend here because we may have set
	 * pages under writeback, we have to make sure we run IO completion to
	 * mark the error state of the IO appropriately, so we can't cancel the
	 * ioend directly here.  That means we have to mark this page as under
	 * writeback if we included any blocks from it in the ioend chain so
	 * that completion treats it correctly.
742
	 *
743 744
	 * If we didn't include the page in the ioend, the on error we can
	 * simply discard and unlock it as there are no other users of the page
745 746 747
	 * now.  The caller will still need to trigger submission of outstanding
	 * ioends on the writepage context so they are treated correctly on
	 * error.
748
	 */
749 750 751 752 753 754 755 756
	if (unlikely(error)) {
		if (!count) {
			xfs_aops_discard_page(page);
			ClearPageUptodate(page);
			unlock_page(page);
			goto done;
		}

757 758 759 760 761 762 763 764
		/*
		 * If the page was not fully cleaned, we need to ensure that the
		 * higher layers come back to it correctly.  That means we need
		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
		 * so another attempt to write this page in this writeback sweep
		 * will be made.
		 */
765
		set_page_writeback_keepwrite(page);
766
	} else {
767 768
		clear_page_dirty_for_io(page);
		set_page_writeback(page);
769
	}
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	unlock_page(page);

	/*
	 * Preserve the original error if there was one, otherwise catch
	 * submission errors here and propagate into subsequent ioend
	 * submissions.
	 */
	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
		int error2;

		list_del_init(&ioend->io_list);
		error2 = xfs_submit_ioend(wbc, ioend, error);
		if (error2 && !error)
			error = error2;
	}

	/*
788 789
	 * We can end up here with no error and nothing to write only if we race
	 * with a partial page truncate on a sub-page block sized filesystem.
790 791 792 793
	 */
	if (!count)
		end_page_writeback(page);
done:
794 795 796 797
	mapping_set_error(page->mapping, error);
	return error;
}

L
Linus Torvalds 已提交
798
/*
799 800 801 802 803
 * Write out a dirty page.
 *
 * For delalloc space on the page we need to allocate space and flush it.
 * For unwritten space on the page we need to start the conversion to
 * regular allocated space.
L
Linus Torvalds 已提交
804 805
 */
STATIC int
806
xfs_do_writepage(
807
	struct page		*page,
808 809
	struct writeback_control *wbc,
	void			*data)
L
Linus Torvalds 已提交
810
{
811
	struct xfs_writepage_ctx *wpc = data;
812
	struct inode		*inode = page->mapping->host;
L
Linus Torvalds 已提交
813
	loff_t			offset;
814
	uint64_t              end_offset;
815
	pgoff_t                 end_index;
816

817
	trace_xfs_writepage(inode, page, 0, 0);
818 819 820 821

	/*
	 * Refuse to write the page out if we are called from reclaim context.
	 *
822 823 824
	 * This avoids stack overflows when called from deeply used stacks in
	 * random callers for direct reclaim or memcg reclaim.  We explicitly
	 * allow reclaim from kswapd as the stack usage there is relatively low.
825
	 *
826 827
	 * This should never happen except in the case of a VM regression so
	 * warn about it.
828
	 */
829 830
	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
			PF_MEMALLOC))
831
		goto redirty;
L
Linus Torvalds 已提交
832

833
	/*
834 835
	 * Given that we do not allow direct reclaim to call us, we should
	 * never be called while in a filesystem transaction.
836
	 */
837
	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
838
		goto redirty;
839

840
	/*
841 842
	 * Is this page beyond the end of the file?
	 *
843 844 845 846 847 848 849 850 851 852
	 * The page index is less than the end_index, adjust the end_offset
	 * to the highest offset that this page should represent.
	 * -----------------------------------------------------
	 * |			file mapping	       | <EOF> |
	 * -----------------------------------------------------
	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
	 * ^--------------------------------^----------|--------
	 * |     desired writeback range    |      see else    |
	 * ---------------------------------^------------------|
	 */
853
	offset = i_size_read(inode);
854
	end_index = offset >> PAGE_SHIFT;
855
	if (page->index < end_index)
856
		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
857 858 859 860 861 862 863 864 865 866 867 868
	else {
		/*
		 * Check whether the page to write out is beyond or straddles
		 * i_size or not.
		 * -------------------------------------------------------
		 * |		file mapping		        | <EOF>  |
		 * -------------------------------------------------------
		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
		 * ^--------------------------------^-----------|---------
		 * |				    |      Straddles     |
		 * ---------------------------------^-----------|--------|
		 */
869
		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
870 871

		/*
872 873 874 875
		 * Skip the page if it is fully outside i_size, e.g. due to a
		 * truncate operation that is in progress. We must redirty the
		 * page so that reclaim stops reclaiming it. Otherwise
		 * xfs_vm_releasepage() is called on it and gets confused.
876 877 878 879 880 881 882 883 884 885 886
		 *
		 * Note that the end_index is unsigned long, it would overflow
		 * if the given offset is greater than 16TB on 32-bit system
		 * and if we do check the page is fully outside i_size or not
		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
		 * will be evaluated to 0.  Hence this page will be redirtied
		 * and be written out repeatedly which would result in an
		 * infinite loop, the user program that perform this operation
		 * will hang.  Instead, we can verify this situation by checking
		 * if the page to write is totally beyond the i_size or if it's
		 * offset is just equal to the EOF.
887
		 */
888 889
		if (page->index > end_index ||
		    (page->index == end_index && offset_into_page == 0))
890
			goto redirty;
891 892 893 894 895

		/*
		 * The page straddles i_size.  It must be zeroed out on each
		 * and every writepage invocation because it may be mmapped.
		 * "A file is mapped in multiples of the page size.  For a file
896
		 * that is not a multiple of the page size, the remaining
897 898 899
		 * memory is zeroed when mapped, and writes to that region are
		 * not written out to the file."
		 */
900
		zero_user_segment(page, offset_into_page, PAGE_SIZE);
901 902 903

		/* Adjust the end_offset to the end of file */
		end_offset = offset;
L
Linus Torvalds 已提交
904 905
	}

906
	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
907

908
redirty:
909 910 911 912 913
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

914 915 916 917 918 919
STATIC int
xfs_vm_writepage(
	struct page		*page,
	struct writeback_control *wbc)
{
	struct xfs_writepage_ctx wpc = {
C
Christoph Hellwig 已提交
920
		.io_type = XFS_IO_HOLE,
921 922 923 924
	};
	int			ret;

	ret = xfs_do_writepage(page, wbc, &wpc);
925 926 927
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
928 929
}

930 931 932 933 934
STATIC int
xfs_vm_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
935
	struct xfs_writepage_ctx wpc = {
C
Christoph Hellwig 已提交
936
		.io_type = XFS_IO_HOLE,
937 938 939
	};
	int			ret;

940
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
941
	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
942 943 944
	if (wpc.ioend)
		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
	return ret;
945 946
}

D
Dan Williams 已提交
947 948 949 950 951 952 953 954 955 956
STATIC int
xfs_dax_writepages(
	struct address_space	*mapping,
	struct writeback_control *wbc)
{
	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
	return dax_writeback_mapping_range(mapping,
			xfs_find_bdev_for_inode(mapping->host), wbc);
}

957
STATIC int
958
xfs_vm_releasepage(
959 960 961
	struct page		*page,
	gfp_t			gfp_mask)
{
962
	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
963
	return iomap_releasepage(page, gfp_mask);
L
Linus Torvalds 已提交
964 965 966
}

STATIC sector_t
967
xfs_vm_bmap(
L
Linus Torvalds 已提交
968 969 970
	struct address_space	*mapping,
	sector_t		block)
{
C
Christoph Hellwig 已提交
971
	struct xfs_inode	*ip = XFS_I(mapping->host);
L
Linus Torvalds 已提交
972

C
Christoph Hellwig 已提交
973
	trace_xfs_vm_bmap(ip);
974 975 976

	/*
	 * The swap code (ab-)uses ->bmap to get a block mapping and then
977
	 * bypasses the file system for actual I/O.  We really can't allow
978
	 * that on reflinks inodes, so we have to skip out here.  And yes,
979 980 981 982
	 * 0 is the magic code for a bmap error.
	 *
	 * Since we don't pass back blockdev info, we can't return bmap
	 * information for rt files either.
983
	 */
984
	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
985
		return 0;
C
Christoph Hellwig 已提交
986
	return iomap_bmap(mapping, block, &xfs_iomap_ops);
L
Linus Torvalds 已提交
987 988 989
}

STATIC int
990
xfs_vm_readpage(
L
Linus Torvalds 已提交
991 992 993
	struct file		*unused,
	struct page		*page)
{
994
	trace_xfs_vm_readpage(page->mapping->host, 1);
995
	return iomap_readpage(page, &xfs_iomap_ops);
L
Linus Torvalds 已提交
996 997 998
}

STATIC int
999
xfs_vm_readpages(
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004
	struct file		*unused,
	struct address_space	*mapping,
	struct list_head	*pages,
	unsigned		nr_pages)
{
1005
	trace_xfs_vm_readpages(mapping->host, nr_pages);
1006
	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1007 1008
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static int
xfs_iomap_swapfile_activate(
	struct swap_info_struct		*sis,
	struct file			*swap_file,
	sector_t			*span)
{
	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
}

1019
const struct address_space_operations xfs_address_space_operations = {
1020 1021 1022
	.readpage		= xfs_vm_readpage,
	.readpages		= xfs_vm_readpages,
	.writepage		= xfs_vm_writepage,
1023
	.writepages		= xfs_vm_writepages,
1024
	.set_page_dirty		= iomap_set_page_dirty,
1025 1026
	.releasepage		= xfs_vm_releasepage,
	.invalidatepage		= xfs_vm_invalidatepage,
1027
	.bmap			= xfs_vm_bmap,
D
Dan Williams 已提交
1028
	.direct_IO		= noop_direct_IO,
1029 1030
	.migratepage		= iomap_migrate_page,
	.is_partially_uptodate  = iomap_is_partially_uptodate,
1031
	.error_remove_page	= generic_error_remove_page,
1032
	.swap_activate		= xfs_iomap_swapfile_activate,
L
Linus Torvalds 已提交
1033
};
D
Dan Williams 已提交
1034 1035 1036 1037 1038 1039

const struct address_space_operations xfs_dax_aops = {
	.writepages		= xfs_dax_writepages,
	.direct_IO		= noop_direct_IO,
	.set_page_dirty		= noop_set_page_dirty,
	.invalidatepage		= noop_invalidatepage,
1040
	.swap_activate		= xfs_iomap_swapfile_activate,
D
Dan Williams 已提交
1041
};