xfs_file.c 39.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
40
#include "xfs_iomap.h"
41
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
42 43

#include <linux/dcache.h>
44
#include <linux/falloc.h>
45
#include <linux/pagevec.h>
46
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
47

48
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
49

50
/*
51 52
 * Clear the specified ranges to zero through either the pagecache or DAX.
 * Holes and unwritten extents will be left as-is as they already are zeroed.
53
 */
54
int
55
xfs_zero_range(
56
	struct xfs_inode	*ip,
57 58 59
	xfs_off_t		pos,
	xfs_off_t		count,
	bool			*did_zero)
60
{
61
	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 63
}

64 65 66 67 68 69 70 71
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

72 73 74
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
75 76 77 78 79 80
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
81 82 83
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
84 85 86 87 88 89 90 91 92 93 94
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
95
	return xfs_trans_commit(tp);
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
124
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 126
}

127 128 129
STATIC int
xfs_file_fsync(
	struct file		*file,
130 131
	loff_t			start,
	loff_t			end,
132 133
	int			datasync)
{
134 135
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
136
	struct xfs_mount	*mp = ip->i_mount;
137 138
	int			error = 0;
	int			log_flushed = 0;
139
	xfs_lsn_t		lsn = 0;
140

C
Christoph Hellwig 已提交
141
	trace_xfs_file_fsync(ip);
142

143 144 145 146
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

147
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
148
		return -EIO;
149 150 151

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

152 153 154 155 156 157 158 159 160 161
	/*
	 * If we have an RT and/or log subvolume we need to make sure to flush
	 * the write cache the device used for file data first.  This is to
	 * ensure newly written file data make it to disk before logging the new
	 * inode size in case of an extending write.
	 */
	if (XFS_IS_REALTIME_INODE(ip))
		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
	else if (mp->m_logdev_targp != mp->m_ddev_targp)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
162

163
	/*
164 165 166 167 168 169 170 171 172 173 174
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
175 176
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
177 178
	if (xfs_ipincount(ip)) {
		if (!datasync ||
179
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 181
			lsn = ip->i_itemp->ili_last_lsn;
	}
182

183
	if (lsn) {
184
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 186 187
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
188

189 190 191 192 193 194 195
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
196 197
	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
	    mp->m_logdev_targp == mp->m_ddev_targp)
198
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
199

D
Dave Chinner 已提交
200
	return error;
201 202
}

203
STATIC ssize_t
204
xfs_file_dio_aio_read(
205
	struct kiocb		*iocb,
A
Al Viro 已提交
206
	struct iov_iter		*to)
207
{
C
Christoph Hellwig 已提交
208
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
209
	size_t			count = iov_iter_count(to);
C
Christoph Hellwig 已提交
210
	ssize_t			ret;
211

212
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213

214 215
	if (!count)
		return 0; /* skip atime */
216

217 218
	file_accessed(iocb->ki_filp);

219
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
C
Christoph Hellwig 已提交
220
	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
C
Christoph Hellwig 已提交
222

223 224 225
	return ret;
}

226
static noinline ssize_t
227 228 229 230
xfs_file_dax_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
231
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 233 234 235 236 237 238 239
	size_t			count = iov_iter_count(to);
	ssize_t			ret = 0;

	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

240
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
241
	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
242
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243

244
	file_accessed(iocb->ki_filp);
245 246 247 248 249 250 251 252 253 254 255 256
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
257

258
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
A
Al Viro 已提交
259
	ret = generic_file_read_iter(iocb, to);
260
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
261 262 263 264 265 266 267 268 269

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
270 271
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
272 273 274 275 276 277 278
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

279 280 281
	if (IS_DAX(inode))
		ret = xfs_file_dax_read(iocb, to);
	else if (iocb->ki_flags & IOCB_DIRECT)
282
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
283
	else
284
		ret = xfs_file_buffered_aio_read(iocb, to);
285 286

	if (ret > 0)
287
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
288 289 290 291
	return ret;
}

/*
292 293 294 295 296 297 298 299 300
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
301 302 303
 */
int					/* error (positive) */
xfs_zero_eof(
304 305
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
306 307
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
308
{
309
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
310 311
	ASSERT(offset > isize);

312
	trace_xfs_zero_eof(ip, isize, offset - isize);
313
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
314 315
}

316 317 318
/*
 * Common pre-write limit and setup checks.
 *
319 320 321
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
322 323 324
 */
STATIC ssize_t
xfs_file_aio_write_checks(
325 326
	struct kiocb		*iocb,
	struct iov_iter		*from,
327 328
	int			*iolock)
{
329
	struct file		*file = iocb->ki_filp;
330 331
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
332
	ssize_t			error = 0;
333
	size_t			count = iov_iter_count(from);
334
	bool			drained_dio = false;
335

336
restart:
337 338
	error = generic_write_checks(iocb, from);
	if (error <= 0)
339 340
		return error;

341
	error = xfs_break_layouts(inode, iolock);
342 343 344
	if (error)
		return error;

345 346 347 348
	/*
	 * For changing security info in file_remove_privs() we need i_rwsem
	 * exclusively.
	 */
349
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
350
		xfs_iunlock(ip, *iolock);
351
		*iolock = XFS_IOLOCK_EXCL;
352
		xfs_ilock(ip, *iolock);
353 354
		goto restart;
	}
355 356 357
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
358
	 * write.  If zeroing is needed and we are currently holding the
359 360
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
361 362 363 364 365 366 367 368
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
369
	 */
370
	spin_lock(&ip->i_flags_lock);
371
	if (iocb->ki_pos > i_size_read(inode)) {
372 373
		bool	zero = false;

374
		spin_unlock(&ip->i_flags_lock);
375 376
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
377
				xfs_iunlock(ip, *iolock);
378
				*iolock = XFS_IOLOCK_EXCL;
379
				xfs_ilock(ip, *iolock);
380 381
				iov_iter_reexpand(from, count);
			}
382 383 384 385 386 387 388 389 390
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
391
			drained_dio = true;
392 393
			goto restart;
		}
394
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
395 396
		if (error)
			return error;
397 398
	} else
		spin_unlock(&ip->i_flags_lock);
399

C
Christoph Hellwig 已提交
400 401 402 403 404 405
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
406 407 408 409 410
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
411

412 413 414 415 416
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
417 418 419
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
420 421
}

C
Christoph Hellwig 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static int
xfs_dio_write_end_io(
	struct kiocb		*iocb,
	ssize_t			size,
	unsigned		flags)
{
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_inode	*ip = XFS_I(inode);
	loff_t			offset = iocb->ki_pos;
	bool			update_size = false;
	int			error = 0;

	trace_xfs_end_io_direct_write(ip, offset, size);

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (size <= 0)
		return size;

	/*
	 * We need to update the in-core inode size here so that we don't end up
	 * with the on-disk inode size being outside the in-core inode size. We
	 * have no other method of updating EOF for AIO, so always do it here
	 * if necessary.
	 *
	 * We need to lock the test/set EOF update as we can be racing with
	 * other IO completions here to update the EOF. Failing to serialise
	 * here can result in EOF moving backwards and Bad Things Happen when
	 * that occurs.
	 */
	spin_lock(&ip->i_flags_lock);
	if (offset + size > i_size_read(inode)) {
		i_size_write(inode, offset + size);
		update_size = true;
	}
	spin_unlock(&ip->i_flags_lock);

	if (flags & IOMAP_DIO_COW) {
		error = xfs_reflink_end_cow(ip, offset, size);
		if (error)
			return error;
	}

	if (flags & IOMAP_DIO_UNWRITTEN)
		error = xfs_iomap_write_unwritten(ip, offset, size);
	else if (update_size)
		error = xfs_setfilesize(ip, offset, size);

	return error;
}

474 475 476 477
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
478
 * By separating it from the buffered write path we remove all the tricky to
479 480
 * follow locking changes and looping.
 *
481 482 483 484 485 486 487 488 489 490 491 492 493
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
494
 * hitting it with a big hammer (i.e. inode_dio_wait()).
495
 *
496 497 498 499 500 501
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
502
	struct iov_iter		*from)
503 504 505 506 507 508 509
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
510
	int			unaligned_io = 0;
511
	int			iolock;
512
	size_t			count = iov_iter_count(from);
C
Christoph Hellwig 已提交
513
	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
514 515
					mp->m_rtdev_targp : mp->m_ddev_targp;

516
	/* DIO must be aligned to device logical sector size */
517
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
E
Eric Sandeen 已提交
518
		return -EINVAL;
519

520
	/*
521 522 523 524 525
	 * Don't take the exclusive iolock here unless the I/O is unaligned to
	 * the file system block size.  We don't need to consider the EOF
	 * extension case here because xfs_file_aio_write_checks() will relock
	 * the inode as necessary for EOF zeroing cases and fill out the new
	 * inode size as appropriate.
526
	 */
527 528 529
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
		unaligned_io = 1;
530
		iolock = XFS_IOLOCK_EXCL;
531
	} else {
532
		iolock = XFS_IOLOCK_SHARED;
533
	}
534

535
	xfs_ilock(ip, iolock);
536

537
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
538
	if (ret)
539
		goto out;
540
	count = iov_iter_count(from);
541

542 543
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
544 545
	 * otherwise demote the lock if we had to take the exclusive lock
	 * for other reasons in xfs_file_aio_write_checks.
546 547
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
548
		inode_dio_wait(inode);
549
	else if (iolock == XFS_IOLOCK_EXCL) {
550
		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
551
		iolock = XFS_IOLOCK_SHARED;
552 553
	}

C
Christoph Hellwig 已提交
554
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
555

556 557 558 559 560 561 562
	/* If this is a block-aligned directio CoW, remap immediately. */
	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
		if (ret)
			goto out;
	}

C
Christoph Hellwig 已提交
563
	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
564
out:
565
	xfs_iunlock(ip, iolock);
566

567
	/*
568 569
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
570
	 */
571 572 573 574
	ASSERT(ret < 0 || ret == count);
	return ret;
}

575
static noinline ssize_t
576 577 578 579
xfs_file_dax_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
580
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
581
	struct xfs_inode	*ip = XFS_I(inode);
582
	int			iolock = XFS_IOLOCK_EXCL;
583 584 585
	ssize_t			ret, error = 0;
	size_t			count;
	loff_t			pos;
586

587
	xfs_ilock(ip, iolock);
588 589 590 591
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

592 593
	pos = iocb->ki_pos;
	count = iov_iter_count(from);
594

595
	trace_xfs_file_dax_write(ip, count, pos);
596
	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
597 598 599
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
		i_size_write(inode, iocb->ki_pos);
		error = xfs_setfilesize(ip, pos, ret);
600 601
	}
out:
602
	xfs_iunlock(ip, iolock);
603
	return error ? error : ret;
604 605
}

606
STATIC ssize_t
607
xfs_file_buffered_aio_write(
608
	struct kiocb		*iocb,
609
	struct iov_iter		*from)
610 611 612 613
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
614
	struct xfs_inode	*ip = XFS_I(inode);
615 616
	ssize_t			ret;
	int			enospc = 0;
617
	int			iolock = XFS_IOLOCK_EXCL;
618

619
	xfs_ilock(ip, iolock);
620

621
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
622
	if (ret)
623
		goto out;
624 625

	/* We can write back this queue in page reclaim */
626
	current->backing_dev_info = inode_to_bdi(inode);
627 628

write_retry:
C
Christoph Hellwig 已提交
629
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
630
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
631
	if (likely(ret >= 0))
632
		iocb->ki_pos += ret;
633

634
	/*
635 636 637 638 639 640 641
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
642
	 */
643 644 645 646
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
647 648 649
		enospc = xfs_inode_free_quota_cowblocks(ip);
		if (enospc)
			goto write_retry;
650 651 652
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

653
		enospc = 1;
D
Dave Chinner 已提交
654
		xfs_flush_inodes(ip->i_mount);
655 656 657
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
658
		goto write_retry;
659
	}
660

661
	current->backing_dev_info = NULL;
662
out:
663
	xfs_iunlock(ip, iolock);
664 665 666 667
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
668
xfs_file_write_iter(
669
	struct kiocb		*iocb,
A
Al Viro 已提交
670
	struct iov_iter		*from)
671 672 673 674 675 676
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
677
	size_t			ocount = iov_iter_count(from);
678

679
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
680 681 682 683

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
684 685
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
686

687 688
	if (IS_DAX(inode))
		ret = xfs_file_dax_write(iocb, from);
689 690 691 692 693 694 695
	else if (iocb->ki_flags & IOCB_DIRECT) {
		/*
		 * Allow a directio write to fall back to a buffered
		 * write *only* in the case that we're doing a reflink
		 * CoW.  In all other directio scenarios we do not
		 * allow an operation to fall back to buffered mode.
		 */
A
Al Viro 已提交
696
		ret = xfs_file_dio_aio_write(iocb, from);
697 698 699 700
		if (ret == -EREMCHG)
			goto buffered;
	} else {
buffered:
A
Al Viro 已提交
701
		ret = xfs_file_buffered_aio_write(iocb, from);
702
	}
703

704
	if (ret > 0) {
705
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
706

707
		/* Handle various SYNC-type writes */
708
		ret = generic_write_sync(iocb, ret);
709
	}
710
	return ret;
711 712
}

713 714 715
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
716
		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
717

718 719
STATIC long
xfs_file_fallocate(
720 721 722 723
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
724
{
725 726 727
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
728
	enum xfs_prealloc_flags	flags = 0;
729
	uint			iolock = XFS_IOLOCK_EXCL;
730
	loff_t			new_size = 0;
731
	bool			do_file_insert = 0;
732

733 734
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
735
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
736 737
		return -EOPNOTSUPP;

738
	xfs_ilock(ip, iolock);
739
	error = xfs_break_layouts(inode, &iolock);
740 741 742
	if (error)
		goto out_unlock;

743 744 745
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

746 747 748 749
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
750 751 752 753
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
754
			error = -EINVAL;
755 756 757
			goto out_unlock;
		}

758 759 760 761 762
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
763
			error = -EINVAL;
764 765 766
			goto out_unlock;
		}

767 768 769 770 771
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
793
	} else {
794 795
		flags |= XFS_PREALLOC_SET;

796 797 798
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
799
			error = inode_newsize_ok(inode, new_size);
800 801 802
			if (error)
				goto out_unlock;
		}
803

804 805
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
806 807 808 809 810 811
		else {
			if (mode & FALLOC_FL_UNSHARE_RANGE) {
				error = xfs_reflink_unshare(ip, offset, len);
				if (error)
					goto out_unlock;
			}
812 813
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
814
		}
815 816 817 818
		if (error)
			goto out_unlock;
	}

819
	if (file->f_flags & O_DSYNC)
820 821 822
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
823 824 825 826 827 828 829 830 831
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
832
		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
833 834
		if (error)
			goto out_unlock;
835 836
	}

837 838 839 840 841 842 843 844 845
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

846
out_unlock:
847
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
848
	return error;
849 850
}

851 852 853 854 855 856 857 858
STATIC int
xfs_file_clone_range(
	struct file	*file_in,
	loff_t		pos_in,
	struct file	*file_out,
	loff_t		pos_out,
	u64		len)
{
859
	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
860 861 862 863 864 865 866 867 868 869 870 871 872
				     len, false);
}

STATIC ssize_t
xfs_file_dedupe_range(
	struct file	*src_file,
	u64		loff,
	u64		len,
	struct file	*dst_file,
	u64		dst_loff)
{
	int		error;

873
	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
874 875 876 877
				     len, true);
	if (error)
		return error;
	return len;
878
}
879

L
Linus Torvalds 已提交
880
STATIC int
881
xfs_file_open(
L
Linus Torvalds 已提交
882
	struct inode	*inode,
883
	struct file	*file)
L
Linus Torvalds 已提交
884
{
885
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
886
		return -EFBIG;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
909
	mode = xfs_ilock_data_map_shared(ip);
910
	if (ip->i_d.di_nextents > 0)
911
		xfs_dir3_data_readahead(ip, 0, -1);
912 913
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
914 915 916
}

STATIC int
917
xfs_file_release(
L
Linus Torvalds 已提交
918 919 920
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
921
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
922 923 924
}

STATIC int
925
xfs_file_readdir(
A
Al Viro 已提交
926 927
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
928
{
A
Al Viro 已提交
929
	struct inode	*inode = file_inode(file);
930
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
931 932 933 934 935 936 937 938 939 940 941 942
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
943
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
944
	 */
E
Eric Sandeen 已提交
945
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
946

947
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
948 949
}

950 951
/*
 * This type is designed to indicate the type of offset we would like
952
 * to search from page cache for xfs_seek_hole_data().
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1009
 * type for xfs_seek_hole_data().
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1038
	index = startoff >> PAGE_SHIFT;
1039
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1040
	end = endoff >> PAGE_SHIFT;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1179
	loff_t			start,
1180
	loff_t			end,
1181
	int			whence)
1182 1183 1184 1185 1186
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1187
	xfs_filblks_t		lastbno;
1188 1189
	int			error;

1190
	if (start >= end) {
D
Dave Chinner 已提交
1191
		error = -ENXIO;
1192
		goto out_error;
1193 1194 1195 1196 1197 1198
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1199
	fsbno = XFS_B_TO_FSBT(mp, start);
1200
	lastbno = XFS_B_TO_FSB(mp, end);
1201

1202 1203 1204 1205
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1206

1207
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1208 1209
				       XFS_BMAPI_ENTIRE);
		if (error)
1210
			goto out_error;
1211

1212 1213
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1214
			error = -ENXIO;
1215
			goto out_error;
1216 1217 1218 1219 1220 1221
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1232 1233 1234
				goto out;

			/*
1235 1236
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1237 1238 1239
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1240 1241
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1242 1243 1244 1245 1246
					goto out;
			}
		}

		/*
1247 1248
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1249
		 */
1250
		if (nmap == 1) {
1251 1252 1253 1254 1255 1256
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1257
				offset = end;
1258 1259 1260 1261 1262 1263
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1264
			error = -ENXIO;
1265
			goto out_error;
1266 1267
		}

1268 1269 1270 1271
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1272
		 * if the next reading offset is not at or beyond EOF.
1273 1274 1275
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1276
		if (start >= end) {
1277
			if (whence == SEEK_HOLE) {
1278
				offset = end;
1279 1280 1281
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1282
			error = -ENXIO;
1283
			goto out_error;
1284
		}
1285 1286
	}

1287 1288
out:
	/*
1289
	 * If at this point we have found the hole we wanted, the returned
1290
	 * offset may be bigger than the file size as it may be aligned to
1291
	 * page boundary for unwritten extents.  We need to deal with this
1292 1293
	 * situation in particular.
	 */
1294
	if (whence == SEEK_HOLE)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1328
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1329 1330

out_unlock:
1331
	xfs_iunlock(ip, lock);
1332 1333

	if (error)
D
Dave Chinner 已提交
1334
		return error;
1335 1336 1337 1338 1339 1340 1341
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1342
	int		whence)
1343
{
1344
	switch (whence) {
1345 1346 1347
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1348
		return generic_file_llseek(file, offset, whence);
1349
	case SEEK_HOLE:
1350
	case SEEK_DATA:
1351
		return xfs_seek_hole_data(file, offset, whence);
1352 1353 1354 1355 1356
	default:
		return -EINVAL;
	}
}

1357 1358 1359 1360 1361
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1362
 *   sb_start_pagefault(vfs, freeze)
1363
 *     i_mmaplock (XFS - truncate serialisation)
1364 1365
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1366 1367
 */

1368 1369 1370 1371 1372
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1373 1374
 */
STATIC int
1375
xfs_filemap_page_mkwrite(
1376 1377 1378
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1379
	struct inode		*inode = file_inode(vma->vm_file);
1380
	int			ret;
1381

1382
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1383

1384
	sb_start_pagefault(inode->i_sb);
1385
	file_update_time(vma->vm_file);
1386
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1387

1388
	if (IS_DAX(inode)) {
1389
		ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
1390
	} else {
1391
		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1392 1393 1394 1395 1396 1397 1398
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1399 1400
}

1401
STATIC int
1402
xfs_filemap_fault(
1403 1404 1405
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1406
	struct inode		*inode = file_inode(vma->vm_file);
1407
	int			ret;
1408

1409
	trace_xfs_filemap_fault(XFS_I(inode));
1410

1411
	/* DAX can shortcut the normal fault path on write faults! */
1412
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1413
		return xfs_filemap_page_mkwrite(vma, vmf);
1414

1415
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
C
Christoph Hellwig 已提交
1416
	if (IS_DAX(inode))
1417
		ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
C
Christoph Hellwig 已提交
1418
	else
1419 1420
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1421

1422 1423 1424
	return ret;
}

1425 1426 1427 1428 1429 1430 1431
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1448 1449 1450 1451 1452
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1453
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1454
	ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops);
M
Matthew Wilcox 已提交
1455 1456
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1457 1458
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1459 1460 1461 1462

	return ret;
}

1463 1464 1465
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1466 1467
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1490 1491
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1492 1493
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1494
	return ret;
1495

M
Matthew Wilcox 已提交
1496 1497
}

1498 1499
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1500
	.pmd_fault	= xfs_filemap_pmd_fault,
1501 1502
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1503
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1514
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1515
	return 0;
1516 1517
}

1518
const struct file_operations xfs_file_operations = {
1519
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1520
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1521
	.write_iter	= xfs_file_write_iter,
1522
	.splice_read	= generic_file_splice_read,
A
Al Viro 已提交
1523
	.splice_write	= iter_file_splice_write,
1524
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1525
#ifdef CONFIG_COMPAT
1526
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1527
#endif
1528 1529 1530 1531
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1532
	.get_unmapped_area = thp_get_unmapped_area,
1533
	.fallocate	= xfs_file_fallocate,
1534
	.clone_file_range = xfs_file_clone_range,
1535
	.dedupe_file_range = xfs_file_dedupe_range,
L
Linus Torvalds 已提交
1536 1537
};

1538
const struct file_operations xfs_dir_file_operations = {
1539
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1540
	.read		= generic_read_dir,
1541
	.iterate_shared	= xfs_file_readdir,
1542
	.llseek		= generic_file_llseek,
1543
	.unlocked_ioctl	= xfs_file_ioctl,
1544
#ifdef CONFIG_COMPAT
1545
	.compat_ioctl	= xfs_file_compat_ioctl,
1546
#endif
1547
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1548
};