xfs_file.c 29.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_bit.h"
L
Linus Torvalds 已提交
21
#include "xfs_log.h"
22
#include "xfs_inum.h"
L
Linus Torvalds 已提交
23
#include "xfs_sb.h"
24
#include "xfs_ag.h"
L
Linus Torvalds 已提交
25 26 27 28 29 30
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
31
#include "xfs_inode_item.h"
32
#include "xfs_bmap.h"
L
Linus Torvalds 已提交
33
#include "xfs_error.h"
34
#include "xfs_vnodeops.h"
35
#include "xfs_da_btree.h"
36
#include "xfs_ioctl.h"
37
#include "xfs_trace.h"
L
Linus Torvalds 已提交
38 39

#include <linux/dcache.h>
40
#include <linux/falloc.h>
L
Linus Torvalds 已提交
41

42
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 *	xfs_iozero
 *
 *	xfs_iozero clears the specified range of buffer supplied,
 *	and marks all the affected blocks as valid and modified.  If
 *	an affected block is not allocated, it will be allocated.  If
 *	an affected block is not completely overwritten, and is not
 *	valid before the operation, it will be read from disk before
 *	being partially zeroed.
 */
STATIC int
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
	int			status;

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		status = pagecache_write_begin(NULL, mapping, pos, bytes,
					AOP_FLAG_UNINTERRUPTIBLE,
					&page, &fsdata);
		if (status)
			break;

		zero_user(page, offset, bytes);

		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
					page, fsdata);
		WARN_ON(status <= 0); /* can't return less than zero! */
		pos += bytes;
		count -= bytes;
		status = 0;
	} while (count);

	return (-status);
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}

156 157 158
STATIC int
xfs_file_fsync(
	struct file		*file,
159 160
	loff_t			start,
	loff_t			end,
161 162
	int			datasync)
{
163 164
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
165
	struct xfs_mount	*mp = ip->i_mount;
166 167 168
	struct xfs_trans	*tp;
	int			error = 0;
	int			log_flushed = 0;
169
	xfs_lsn_t		lsn = 0;
170

C
Christoph Hellwig 已提交
171
	trace_xfs_file_fsync(ip);
172

173 174 175 176
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

177
	if (XFS_FORCED_SHUTDOWN(mp))
178 179 180 181
		return -XFS_ERROR(EIO);

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

182 183 184 185 186 187 188 189 190 191 192 193 194 195
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

196 197 198 199 200 201 202 203 204 205 206 207 208 209
	/*
	 * We always need to make sure that the required inode state is safe on
	 * disk.  The inode might be clean but we still might need to force the
	 * log because of committed transactions that haven't hit the disk yet.
	 * Likewise, there could be unflushed non-transactional changes to the
	 * inode core that have to go to disk and this requires us to issue
	 * a synchronous transaction to capture these changes correctly.
	 *
	 * This code relies on the assumption that if the i_update_core field
	 * of the inode is clear and the inode is unpinned then it is clean
	 * and no action is required.
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);

210 211
	/*
	 * First check if the VFS inode is marked dirty.  All the dirtying
212 213
	 * of non-transactional updates do not go through mark_inode_dirty*,
	 * which allows us to distinguish between pure timestamp updates
214
	 * and i_size updates which need to be caught for fdatasync.
215
	 * After that also check for the dirty state in the XFS inode, which
216 217 218
	 * might gets cleared when the inode gets written out via the AIL
	 * or xfs_iflush_cluster.
	 */
219 220
	if (((inode->i_state & I_DIRTY_DATASYNC) ||
	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
221
	    ip->i_update_core) {
222 223 224 225 226
		/*
		 * Kick off a transaction to log the inode core to get the
		 * updates.  The sync transaction will also force the log.
		 */
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
227
		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
228
		error = xfs_trans_reserve(tp, 0,
229
				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		if (error) {
			xfs_trans_cancel(tp, 0);
			return -error;
		}
		xfs_ilock(ip, XFS_ILOCK_EXCL);

		/*
		 * Note - it's possible that we might have pushed ourselves out
		 * of the way during trans_reserve which would flush the inode.
		 * But there's no guarantee that the inode buffer has actually
		 * gone out yet (it's delwri).	Plus the buffer could be pinned
		 * anyway if it's part of an inode in another recent
		 * transaction.	 So we play it safe and fire off the
		 * transaction anyway.
		 */
245
		xfs_trans_ijoin(tp, ip, 0);
246
		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
247
		error = xfs_trans_commit(tp, 0);
248

249
		lsn = ip->i_itemp->ili_last_lsn;
250 251 252 253 254 255 256 257 258 259
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	} else {
		/*
		 * Timestamps/size haven't changed since last inode flush or
		 * inode transaction commit.  That means either nothing got
		 * written or a transaction committed which caught the updates.
		 * If the latter happened and the transaction hasn't hit the
		 * disk yet, the inode will be still be pinned.  If it is,
		 * force the log.
		 */
260 261
		if (xfs_ipincount(ip))
			lsn = ip->i_itemp->ili_last_lsn;
262
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
263 264
	}

265 266 267
	if (!error && lsn)
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);

268 269 270 271 272 273 274 275 276 277 278 279
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280 281 282 283

	return -error;
}

284 285
STATIC ssize_t
xfs_file_aio_read(
286 287
	struct kiocb		*iocb,
	const struct iovec	*iovp,
288 289
	unsigned long		nr_segs,
	loff_t			pos)
290 291 292
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
293 294
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
295 296
	size_t			size = 0;
	ssize_t			ret = 0;
297
	int			ioflags = 0;
298 299 300 301 302
	xfs_fsize_t		n;
	unsigned long		seg;

	XFS_STATS_INC(xs_read_calls);

303 304 305 306 307 308 309
	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

310
	/* START copy & waste from filemap.c */
311
	for (seg = 0; seg < nr_segs; seg++) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
328
		if ((iocb->ki_pos & target->bt_smask) ||
329
		    (size & target->bt_smask)) {
330
			if (iocb->ki_pos == i_size_read(inode))
331
				return 0;
332 333 334 335
			return -XFS_ERROR(EINVAL);
		}
	}

336 337
	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
	if (n <= 0 || size == 0)
338 339 340 341 342 343 344 345
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
359 360
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

361 362 363 364
		if (inode->i_mapping->nrpages) {
			ret = -xfs_flushinval_pages(ip,
					(iocb->ki_pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
365 366 367 368
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
369
		}
370
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
371
	}
372

373
	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
374

375
	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
376 377 378
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

379
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
380 381 382
	return ret;
}

383 384
STATIC ssize_t
xfs_file_splice_read(
385 386 387 388
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
389
	unsigned int		flags)
390
{
391 392
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
393 394 395
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
396 397 398 399

	if (infilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

400 401 402
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

403
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
404 405 406 407 408 409 410

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

411
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
412 413 414
	return ret;
}

415 416 417 418 419 420 421 422
/*
 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 * couuld cause lock inversions between the aio_write path and the splice path
 * if someone is doing concurrent splice(2) based writes and write(2) based
 * writes to the same inode. The only real way to fix this is to re-implement
 * the generic code here with correct locking orders.
 */
423 424
STATIC ssize_t
xfs_file_splice_write(
425 426 427 428
	struct pipe_inode_info	*pipe,
	struct file		*outfilp,
	loff_t			*ppos,
	size_t			count,
429
	unsigned int		flags)
430 431
{
	struct inode		*inode = outfilp->f_mapping->host;
432 433 434
	struct xfs_inode	*ip = XFS_I(inode);
	int			ioflags = 0;
	ssize_t			ret;
435 436

	XFS_STATS_INC(xs_write_calls);
437 438 439 440

	if (outfilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

441 442 443 444 445 446 447 448
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);

	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
449 450
	if (ret > 0)
		XFS_STATS_ADD(xs_write_bytes, ret);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return ret;
}

/*
 * This routine is called to handle zeroing any space in the last
 * block of the file that is beyond the EOF.  We do this since the
 * size is being increased without writing anything to that block
 * and we don't want anyone to read the garbage on the disk.
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
	xfs_inode_t	*ip,
	xfs_fsize_t	offset,
	xfs_fsize_t	isize)
{
	xfs_fileoff_t	last_fsb;
	xfs_mount_t	*mp = ip->i_mount;
	int		nimaps;
	int		zero_offset;
	int		zero_len;
	int		error = 0;
	xfs_bmbt_irec_t	imap;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));

	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	if (zero_offset == 0) {
		/*
		 * There are no extra bytes in the last block on disk to
		 * zero, so return.
		 */
		return 0;
	}

	last_fsb = XFS_B_TO_FSBT(mp, isize);
	nimaps = 1;
D
Dave Chinner 已提交
489 490
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
	if (error)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		return error;
	ASSERT(nimaps > 0);
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
	if (imap.br_startblock == HOLESTARTBLOCK) {
		return 0;
	}
	/*
	 * Zero the part of the last block beyond the EOF, and write it
	 * out sync.  We need to drop the ilock while we do this so we
	 * don't deadlock when the buffer cache calls back to us.
	 */
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
	error = xfs_iozero(ip, isize, zero_len);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	ASSERT(error >= 0);
	return error;
}

/*
 * Zero any on disk space between the current EOF and the new,
 * larger EOF.  This handles the normal case of zeroing the remainder
 * of the last block in the file and the unusual case of zeroing blocks
 * out beyond the size of the file.  This second case only happens
 * with fixed size extents and when the system crashes before the inode
 * size was updated but after blocks were allocated.  If fill is set,
 * then any holes in the range are filled and zeroed.  If not, the holes
 * are left alone as holes.
 */

int					/* error (positive) */
xfs_zero_eof(
	xfs_inode_t	*ip,
	xfs_off_t	offset,		/* starting I/O offset */
	xfs_fsize_t	isize)		/* current inode size */
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_fileoff_t	start_zero_fsb;
	xfs_fileoff_t	end_zero_fsb;
	xfs_fileoff_t	zero_count_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_fileoff_t	zero_off;
	xfs_fsize_t	zero_len;
	int		nimaps;
	int		error = 0;
	xfs_bmbt_irec_t	imap;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
	 * We only zero a part of that block so it is handled specially.
	 */
	error = xfs_zero_last_block(ip, offset, isize);
	if (error) {
		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
		return error;
	}

	/*
	 * Calculate the range between the new size and the old
	 * where blocks needing to be zeroed may exist.  To get the
	 * block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back
	 * to a block boundary.  We subtract 1 in case the size is
	 * exactly on a block boundary.
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
D
Dave Chinner 已提交
582 583
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (error) {
			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
			return error;
		}
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			/*
			 * This loop handles initializing pages that were
			 * partially initialized by the code below this
			 * loop. It basically zeroes the part of the page
			 * that sits on a hole and sets the page as P_HOLE
			 * and calls remapf if it is a mapped file.
			 */
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 * Drop the inode lock while we're doing the I/O.
		 * We'll still have the iolock to protect us.
		 */
		xfs_iunlock(ip, XFS_ILOCK_EXCL);

		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
		if (error) {
			goto out_lock;
		}

		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));

		xfs_ilock(ip, XFS_ILOCK_EXCL);
	}

	return 0;

out_lock:
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	ASSERT(error >= 0);
	return error;
}

636 637 638
/*
 * Common pre-write limit and setup checks.
 *
639 640 641
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
642 643 644 645 646 647 648 649 650 651 652 653
 */
STATIC ssize_t
xfs_file_aio_write_checks(
	struct file		*file,
	loff_t			*pos,
	size_t			*count,
	int			*iolock)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	int			error = 0;

654
	xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
655
restart:
656 657
	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
	if (error) {
658
		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
659 660 661 662 663 664 665 666 667
		return error;
	}

	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
		file_update_time(file);

	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
668 669 670 671 672
	 * write.  If zeroing is needed and we are currently holding the
	 * iolock shared, we need to update it to exclusive which involves
	 * dropping all locks and relocking to maintain correct locking order.
	 * If we do this, restart the function to ensure all checks and values
	 * are still valid.
673
	 */
674
	if (*pos > i_size_read(inode)) {
675 676 677 678 679 680
		if (*iolock == XFS_IOLOCK_SHARED) {
			xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
			*iolock = XFS_IOLOCK_EXCL;
			xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
			goto restart;
		}
681
		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
682
	}
683 684 685 686 687 688 689 690 691 692 693 694 695
	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		return error;

	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
	return file_remove_suid(file);

}

696 697 698 699
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
700
 * By separating it from the buffered write path we remove all the tricky to
701 702
 * follow locking changes and looping.
 *
703 704 705 706 707 708 709 710 711 712 713 714 715
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
716
 * hitting it with a big hammer (i.e. inode_dio_wait()).
717
 *
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos,
	size_t			ocount,
	int			*iolock)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	size_t			count = ocount;
737
	int			unaligned_io = 0;
738 739 740 741 742 743 744
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	*iolock = 0;
	if ((pos & target->bt_smask) || (count & target->bt_smask))
		return -XFS_ERROR(EINVAL);

745 746 747
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

748 749 750 751 752 753 754 755
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
756 757 758
		*iolock = XFS_IOLOCK_EXCL;
	else
		*iolock = XFS_IOLOCK_SHARED;
759 760 761 762 763 764 765 766 767 768 769 770
	xfs_rw_ilock(ip, *iolock);

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
	if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
	}
771

772
	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
773
	if (ret)
774 775 776 777 778 779 780 781 782
		return ret;

	if (mapping->nrpages) {
		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
							FI_REMAPF_LOCKED);
		if (ret)
			return ret;
	}

783 784 785 786 787
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
788
		inode_dio_wait(inode);
789
	else if (*iolock == XFS_IOLOCK_EXCL) {
790 791 792 793 794 795 796 797 798 799 800 801 802
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		*iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, iovp,
			&nr_segs, pos, &iocb->ki_pos, count, ocount);

	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}

803
STATIC ssize_t
804
xfs_file_buffered_aio_write(
805 806
	struct kiocb		*iocb,
	const struct iovec	*iovp,
807
	unsigned long		nr_segs,
808 809 810
	loff_t			pos,
	size_t			ocount,
	int			*iolock)
811 812 813 814
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
815
	struct xfs_inode	*ip = XFS_I(inode);
816 817 818
	ssize_t			ret;
	int			enospc = 0;
	size_t			count = ocount;
819

820
	*iolock = XFS_IOLOCK_EXCL;
821
	xfs_rw_ilock(ip, *iolock);
822

823
	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
824
	if (ret)
825
		return ret;
826 827 828 829 830

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

write_retry:
831 832 833 834 835 836 837 838 839 840 841 842 843
	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
			pos, &iocb->ki_pos, count, ret);
	/*
	 * if we just got an ENOSPC, flush the inode now we aren't holding any
	 * page locks and retry *once*
	 */
	if (ret == -ENOSPC && !enospc) {
		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
		if (ret)
			return ret;
		enospc = 1;
		goto write_retry;
844 845
	}
	current->backing_dev_info = NULL;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

STATIC ssize_t
xfs_file_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	int			iolock;
	size_t			ocount = 0;

	XFS_STATS_INC(xs_write_calls);

	BUG_ON(iocb->ki_pos != pos);

	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
	if (ret)
		return ret;

	if (ocount == 0)
		return 0;

	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (unlikely(file->f_flags & O_DIRECT))
		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
882
						ocount, &iolock);
883 884
	else
		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
885
						ocount, &iolock);
886 887

	if (ret <= 0)
888
		goto out_unlock;
889

890 891
	XFS_STATS_ADD(xs_write_bytes, ret);

892 893 894
	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
		loff_t end = pos + ret - 1;
895
		int error;
896

897
		xfs_rw_iunlock(ip, iolock);
898
		error = xfs_file_fsync(file, pos, end,
899
				      (file->f_flags & __O_SYNC) ? 0 : 1);
900
		xfs_rw_ilock(ip, iolock);
901 902
		if (error)
			ret = error;
903 904
	}

905
out_unlock:
906
	xfs_rw_iunlock(ip, iolock);
907
	return ret;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922
STATIC long
xfs_file_fallocate(
	struct file	*file,
	int		mode,
	loff_t		offset,
	loff_t		len)
{
	struct inode	*inode = file->f_path.dentry->d_inode;
	long		error;
	loff_t		new_size = 0;
	xfs_flock64_t	bf;
	xfs_inode_t	*ip = XFS_I(inode);
	int		cmd = XFS_IOC_RESVSP;
923
	int		attr_flags = XFS_ATTR_NOLOCK;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
		return -EOPNOTSUPP;

	bf.l_whence = 0;
	bf.l_start = offset;
	bf.l_len = len;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	if (mode & FALLOC_FL_PUNCH_HOLE)
		cmd = XFS_IOC_UNRESVSP;

	/* check the new inode size is valid before allocating */
	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
	    offset + len > i_size_read(inode)) {
		new_size = offset + len;
		error = inode_newsize_ok(inode, new_size);
		if (error)
			goto out_unlock;
	}

946 947 948 949
	if (file->f_flags & O_DSYNC)
		attr_flags |= XFS_ATTR_SYNC;

	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
950 951 952 953 954 955 956 957 958
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
C
Christoph Hellwig 已提交
959
		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
960 961 962 963 964 965 966 967
	}

out_unlock:
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return error;
}


L
Linus Torvalds 已提交
968
STATIC int
969
xfs_file_open(
L
Linus Torvalds 已提交
970
	struct inode	*inode,
971
	struct file	*file)
L
Linus Torvalds 已提交
972
{
973
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
974
		return -EFBIG;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
	mode = xfs_ilock_map_shared(ip);
	if (ip->i_d.di_nextents > 0)
		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1002 1003 1004
}

STATIC int
1005
xfs_file_release(
L
Linus Torvalds 已提交
1006 1007 1008
	struct inode	*inode,
	struct file	*filp)
{
1009
	return -xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1010 1011 1012
}

STATIC int
1013
xfs_file_readdir(
L
Linus Torvalds 已提交
1014 1015 1016 1017
	struct file	*filp,
	void		*dirent,
	filldir_t	filldir)
{
C
Christoph Hellwig 已提交
1018
	struct inode	*inode = filp->f_path.dentry->d_inode;
1019
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	int		error;
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1033
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1034
	 */
E
Eric Sandeen 已提交
1035
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1036

1037
	error = xfs_readdir(ip, dirent, bufsize,
C
Christoph Hellwig 已提交
1038 1039 1040 1041
				(xfs_off_t *)&filp->f_pos, filldir);
	if (error)
		return -error;
	return 0;
L
Linus Torvalds 已提交
1042 1043 1044
}

STATIC int
1045
xfs_file_mmap(
L
Linus Torvalds 已提交
1046 1047 1048
	struct file	*filp,
	struct vm_area_struct *vma)
{
1049
	vma->vm_ops = &xfs_file_vm_ops;
N
Nick Piggin 已提交
1050
	vma->vm_flags |= VM_CAN_NONLINEAR;
1051

1052
	file_accessed(filp);
L
Linus Torvalds 已提交
1053 1054 1055
	return 0;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * mmap()d file has taken write protection fault and is being made
 * writable. We can set the page state up correctly for a writable
 * page, which means we can do correct delalloc accounting (ENOSPC
 * checking!) and unwritten extent mapping.
 */
STATIC int
xfs_vm_page_mkwrite(
	struct vm_area_struct	*vma,
1065
	struct vm_fault		*vmf)
1066
{
1067
	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1068 1069
}

1070
const struct file_operations xfs_file_operations = {
L
Linus Torvalds 已提交
1071 1072
	.llseek		= generic_file_llseek,
	.read		= do_sync_read,
1073
	.write		= do_sync_write,
1074 1075
	.aio_read	= xfs_file_aio_read,
	.aio_write	= xfs_file_aio_write,
1076 1077
	.splice_read	= xfs_file_splice_read,
	.splice_write	= xfs_file_splice_write,
1078
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1079
#ifdef CONFIG_COMPAT
1080
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1081
#endif
1082 1083 1084 1085
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1086
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1087 1088
};

1089
const struct file_operations xfs_dir_file_operations = {
1090
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1091
	.read		= generic_read_dir,
1092
	.readdir	= xfs_file_readdir,
1093
	.llseek		= generic_file_llseek,
1094
	.unlocked_ioctl	= xfs_file_ioctl,
1095
#ifdef CONFIG_COMPAT
1096
	.compat_ioctl	= xfs_file_compat_ioctl,
1097
#endif
1098
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1099 1100
};

1101
static const struct vm_operations_struct xfs_file_vm_ops = {
1102
	.fault		= filemap_fault,
1103
	.page_mkwrite	= xfs_vm_page_mkwrite,
1104
};