xfs_file.c 42.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
40
#include "xfs_iomap.h"
L
Linus Torvalds 已提交
41 42

#include <linux/dcache.h>
43
#include <linux/falloc.h>
44
#include <linux/pagevec.h>
45
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
46

47
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
48

49 50 51 52 53 54 55 56 57 58
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
59
		inode_lock(VFS_I(ip));
60 61 62 63 64 65 66 67 68 69
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
70
		inode_unlock(VFS_I(ip));
71 72 73 74 75 76 77 78 79
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
80
		inode_unlock(VFS_I(ip));
81 82
}

83
/*
84 85
 * Clear the specified ranges to zero through either the pagecache or DAX.
 * Holes and unwritten extents will be left as-is as they already are zeroed.
86
 */
87
int
88
xfs_zero_range(
89
	struct xfs_inode	*ip,
90 91 92
	xfs_off_t		pos,
	xfs_off_t		count,
	bool			*did_zero)
93
{
94
	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
95 96
}

97 98 99 100 101 102 103 104
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

105 106 107
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
108 109 110 111 112 113
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
114 115 116
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
117 118 119 120 121 122 123 124 125 126 127
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
128
	return xfs_trans_commit(tp);
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
157
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 159
}

160 161 162
STATIC int
xfs_file_fsync(
	struct file		*file,
163 164
	loff_t			start,
	loff_t			end,
165 166
	int			datasync)
{
167 168
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
169
	struct xfs_mount	*mp = ip->i_mount;
170 171
	int			error = 0;
	int			log_flushed = 0;
172
	xfs_lsn_t		lsn = 0;
173

C
Christoph Hellwig 已提交
174
	trace_xfs_file_fsync(ip);
175

176 177 178 179
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

180
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
181
		return -EIO;
182 183 184

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

199
	/*
200 201 202 203 204 205 206 207 208 209 210
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
211 212
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
213 214
	if (xfs_ipincount(ip)) {
		if (!datasync ||
215
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 217
			lsn = ip->i_itemp->ili_last_lsn;
	}
218

219
	if (lsn) {
220
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 222 223
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
224

225 226 227 228 229 230 231 232 233 234 235 236
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
237

D
Dave Chinner 已提交
238
	return error;
239 240
}

241
STATIC ssize_t
242
xfs_file_dio_aio_read(
243
	struct kiocb		*iocb,
A
Al Viro 已提交
244
	struct iov_iter		*to)
245
{
246 247
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
248
	struct xfs_inode	*ip = XFS_I(inode);
249
	loff_t			isize = i_size_read(inode);
250
	size_t			count = iov_iter_count(to);
251
	struct iov_iter		data;
252
	struct xfs_buftarg	*target;
253 254
	ssize_t			ret = 0;

255
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
256

257 258
	if (!count)
		return 0; /* skip atime */
259

260 261 262 263
	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;
264

265 266 267 268 269
	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
		if (iocb->ki_pos == isize)
			return 0;
		return -EINVAL;
270 271
	}

272 273
	file_accessed(iocb->ki_filp);

274
	/*
275 276 277 278 279 280 281 282
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
283 284
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
285
	if (mapping->nrpages) {
286
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
287 288
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

289 290 291 292 293 294 295 296 297 298 299
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
300 301
		if (mapping->nrpages) {
			ret = filemap_write_and_wait(mapping);
302 303 304 305
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
306 307 308 309 310 311

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
312
			ret = invalidate_inode_pages2(mapping);
313 314
			WARN_ON_ONCE(ret);
			ret = 0;
315
		}
316
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
317
	}
318

319
	data = *to;
320 321 322 323 324
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, NULL, NULL, 0);
	if (ret > 0) {
		iocb->ki_pos += ret;
		iov_iter_advance(to, ret);
325
	}
326
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
327

328 329 330
	return ret;
}

331
static noinline ssize_t
332 333 334 335
xfs_file_dax_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
336
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
337 338 339 340 341 342 343 344 345
	size_t			count = iov_iter_count(to);
	ssize_t			ret = 0;

	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
346
	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
347 348
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

349
	file_accessed(iocb->ki_filp);
350 351 352 353 354 355 356 357 358 359 360 361
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
362

363
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
A
Al Viro 已提交
364
	ret = generic_file_read_iter(iocb, to);
365 366 367 368 369 370 371 372 373 374
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
375 376
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
377 378 379 380 381 382 383
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

384 385 386
	if (IS_DAX(inode))
		ret = xfs_file_dax_read(iocb, to);
	else if (iocb->ki_flags & IOCB_DIRECT)
387
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
388
	else
389
		ret = xfs_file_buffered_aio_read(iocb, to);
390 391

	if (ret > 0)
392
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
393 394 395
	return ret;
}

396 397
STATIC ssize_t
xfs_file_splice_read(
398 399 400 401
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
402
	unsigned int		flags)
403
{
404
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
405 406
	ssize_t			ret;

407
	XFS_STATS_INC(ip->i_mount, xs_read_calls);
408

409 410 411
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

C
Christoph Hellwig 已提交
412
	trace_xfs_file_splice_read(ip, count, *ppos);
413

414 415 416 417 418 419 420 421 422 423 424
	/*
	 * DAX inodes cannot ues the page cache for splice, so we have to push
	 * them through the VFS IO path. This means it goes through
	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
	 * cannot lock the splice operation at this level for DAX inodes.
	 */
	if (IS_DAX(VFS_I(ip))) {
		ret = default_file_splice_read(infilp, ppos, pipe, count,
					       flags);
		goto out;
	}
425

426 427
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
428
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
429 430 431
out:
	if (ret > 0)
		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
432 433 434 435
	return ret;
}

/*
436 437 438 439 440 441 442 443 444
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
445 446 447
 */
int					/* error (positive) */
xfs_zero_eof(
448 449
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
450 451
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
452
{
453
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
454 455
	ASSERT(offset > isize);

456
	trace_xfs_zero_eof(ip, isize, offset - isize);
457
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
458 459
}

460 461 462
/*
 * Common pre-write limit and setup checks.
 *
463 464 465
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
466 467 468
 */
STATIC ssize_t
xfs_file_aio_write_checks(
469 470
	struct kiocb		*iocb,
	struct iov_iter		*from,
471 472
	int			*iolock)
{
473
	struct file		*file = iocb->ki_filp;
474 475
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
476
	ssize_t			error = 0;
477
	size_t			count = iov_iter_count(from);
478
	bool			drained_dio = false;
479

480
restart:
481 482
	error = generic_write_checks(iocb, from);
	if (error <= 0)
483 484
		return error;

485
	error = xfs_break_layouts(inode, iolock, true);
486 487 488
	if (error)
		return error;

489 490 491 492 493 494 495
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
496 497 498
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
499
	 * write.  If zeroing is needed and we are currently holding the
500 501
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
502 503 504 505 506 507 508 509
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
510
	 */
511
	spin_lock(&ip->i_flags_lock);
512
	if (iocb->ki_pos > i_size_read(inode)) {
513 514
		bool	zero = false;

515
		spin_unlock(&ip->i_flags_lock);
516 517 518 519 520 521 522
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
523 524 525 526 527 528 529 530 531
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
532
			drained_dio = true;
533 534
			goto restart;
		}
535
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
536 537
		if (error)
			return error;
538 539
	} else
		spin_unlock(&ip->i_flags_lock);
540

C
Christoph Hellwig 已提交
541 542 543 544 545 546
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
547 548 549 550 551
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
552

553 554 555 556 557
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
558 559 560
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
561 562
}

563 564 565 566
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
567
 * By separating it from the buffered write path we remove all the tricky to
568 569
 * follow locking changes and looping.
 *
570 571 572 573 574 575 576 577 578 579 580 581 582
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
583
 * hitting it with a big hammer (i.e. inode_dio_wait()).
584
 *
585 586 587 588 589 590
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
591
	struct iov_iter		*from)
592 593 594 595 596 597 598
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
599
	int			unaligned_io = 0;
600
	int			iolock;
601
	size_t			count = iov_iter_count(from);
602 603
	loff_t			end;
	struct iov_iter		data;
604 605 606
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

607
	/* DIO must be aligned to device logical sector size */
608
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
E
Eric Sandeen 已提交
609
		return -EINVAL;
610

611
	/* "unaligned" here means not aligned to a filesystem block */
612 613
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask))
614 615
		unaligned_io = 1;

616 617 618 619 620 621 622 623
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
624
		iolock = XFS_IOLOCK_EXCL;
625
	else
626 627
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
628 629 630 631 632 633

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
634 635 636 637
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
638
	}
639

640
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
641
	if (ret)
642
		goto out;
643
	count = iov_iter_count(from);
644
	end = iocb->ki_pos + count - 1;
645

646
	/*
647
	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
648
	 */
649
	if (mapping->nrpages) {
650
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
651
		if (ret)
652
			goto out;
653
		/*
654 655 656
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
657
		 */
658
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
659 660
		WARN_ON_ONCE(ret);
		ret = 0;
661 662
	}

663 664 665 666 667
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
668
		inode_dio_wait(inode);
669
	else if (iolock == XFS_IOLOCK_EXCL) {
670
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
671
		iolock = XFS_IOLOCK_SHARED;
672 673
	}

C
Christoph Hellwig 已提交
674
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
675

676
	data = *from;
677 678 679
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, xfs_end_io_direct_write,
			NULL, DIO_ASYNC_EXTEND);
680 681 682 683

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
684
					      iocb->ki_pos >> PAGE_SHIFT,
685
					      end >> PAGE_SHIFT);
686 687 688
	}

	if (ret > 0) {
689
		iocb->ki_pos += ret;
690 691
		iov_iter_advance(from, ret);
	}
692 693 694
out:
	xfs_rw_iunlock(ip, iolock);

695
	/*
696 697
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
698
	 */
699 700 701 702
	ASSERT(ret < 0 || ret == count);
	return ret;
}

703
static noinline ssize_t
704 705 706 707
xfs_file_dax_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
708
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
709
	struct xfs_inode	*ip = XFS_I(inode);
710
	int			iolock = XFS_IOLOCK_EXCL;
711 712 713
	ssize_t			ret, error = 0;
	size_t			count;
	loff_t			pos;
714 715 716 717 718 719

	xfs_rw_ilock(ip, iolock);
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

720 721
	pos = iocb->ki_pos;
	count = iov_iter_count(from);
722

723
	trace_xfs_file_dax_write(ip, count, pos);
724

725 726 727 728
	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
		i_size_write(inode, iocb->ki_pos);
		error = xfs_setfilesize(ip, pos, ret);
729 730 731 732
	}

out:
	xfs_rw_iunlock(ip, iolock);
733
	return error ? error : ret;
734 735
}

736
STATIC ssize_t
737
xfs_file_buffered_aio_write(
738
	struct kiocb		*iocb,
739
	struct iov_iter		*from)
740 741 742 743
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
744
	struct xfs_inode	*ip = XFS_I(inode);
745 746
	ssize_t			ret;
	int			enospc = 0;
747
	int			iolock = XFS_IOLOCK_EXCL;
748

749
	xfs_rw_ilock(ip, iolock);
750

751
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
752
	if (ret)
753
		goto out;
754 755

	/* We can write back this queue in page reclaim */
756
	current->backing_dev_info = inode_to_bdi(inode);
757 758

write_retry:
C
Christoph Hellwig 已提交
759
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
760
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
761
	if (likely(ret >= 0))
762
		iocb->ki_pos += ret;
763

764
	/*
765 766 767 768 769 770 771
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
772
	 */
773 774 775 776 777 778 779
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

780
		enospc = 1;
D
Dave Chinner 已提交
781
		xfs_flush_inodes(ip->i_mount);
782 783 784
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
785
		goto write_retry;
786
	}
787

788
	current->backing_dev_info = NULL;
789 790
out:
	xfs_rw_iunlock(ip, iolock);
791 792 793 794
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
795
xfs_file_write_iter(
796
	struct kiocb		*iocb,
A
Al Viro 已提交
797
	struct iov_iter		*from)
798 799 800 801 802 803
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
804
	size_t			ocount = iov_iter_count(from);
805

806
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
807 808 809 810

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
811 812
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
813

814 815 816
	if (IS_DAX(inode))
		ret = xfs_file_dax_write(iocb, from);
	else if (iocb->ki_flags & IOCB_DIRECT)
A
Al Viro 已提交
817
		ret = xfs_file_dio_aio_write(iocb, from);
818
	else
A
Al Viro 已提交
819
		ret = xfs_file_buffered_aio_write(iocb, from);
820

821
	if (ret > 0) {
822
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
823

824
		/* Handle various SYNC-type writes */
825
		ret = generic_write_sync(iocb, ret);
826
	}
827
	return ret;
828 829
}

830 831 832 833 834
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

835 836
STATIC long
xfs_file_fallocate(
837 838 839 840
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
841
{
842 843 844
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
845
	enum xfs_prealloc_flags	flags = 0;
846
	uint			iolock = XFS_IOLOCK_EXCL;
847
	loff_t			new_size = 0;
848
	bool			do_file_insert = 0;
849

850 851
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
852
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
853 854
		return -EOPNOTSUPP;

855
	xfs_ilock(ip, iolock);
856
	error = xfs_break_layouts(inode, &iolock, false);
857 858 859
	if (error)
		goto out_unlock;

860 861 862
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

863 864 865 866
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
867 868 869 870
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
871
			error = -EINVAL;
872 873 874
			goto out_unlock;
		}

875 876 877 878 879
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
880
			error = -EINVAL;
881 882 883
			goto out_unlock;
		}

884 885 886 887 888
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
910
	} else {
911 912
		flags |= XFS_PREALLOC_SET;

913 914 915
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
916
			error = inode_newsize_ok(inode, new_size);
917 918 919
			if (error)
				goto out_unlock;
		}
920

921 922 923 924 925
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
926 927 928 929
		if (error)
			goto out_unlock;
	}

930
	if (file->f_flags & O_DSYNC)
931 932 933
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
934 935 936 937 938 939 940 941 942
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
943
		error = xfs_setattr_size(ip, &iattr);
944 945
		if (error)
			goto out_unlock;
946 947
	}

948 949 950 951 952 953 954 955 956
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

957
out_unlock:
958
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
959
	return error;
960 961 962
}


L
Linus Torvalds 已提交
963
STATIC int
964
xfs_file_open(
L
Linus Torvalds 已提交
965
	struct inode	*inode,
966
	struct file	*file)
L
Linus Torvalds 已提交
967
{
968
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
969
		return -EFBIG;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
992
	mode = xfs_ilock_data_map_shared(ip);
993
	if (ip->i_d.di_nextents > 0)
994
		xfs_dir3_data_readahead(ip, 0, -1);
995 996
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
997 998 999
}

STATIC int
1000
xfs_file_release(
L
Linus Torvalds 已提交
1001 1002 1003
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1004
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1005 1006 1007
}

STATIC int
1008
xfs_file_readdir(
A
Al Viro 已提交
1009 1010
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1011
{
A
Al Viro 已提交
1012
	struct inode	*inode = file_inode(file);
1013
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1026
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1027
	 */
E
Eric Sandeen 已提交
1028
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1029

1030
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1031 1032
}

1033 1034
/*
 * This type is designed to indicate the type of offset we would like
1035
 * to search from page cache for xfs_seek_hole_data().
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1092
 * type for xfs_seek_hole_data().
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1121
	index = startoff >> PAGE_SHIFT;
1122
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1123
	end = endoff >> PAGE_SHIFT;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1262
	loff_t			start,
1263
	loff_t			end,
1264
	int			whence)
1265 1266 1267 1268 1269
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1270
	xfs_filblks_t		lastbno;
1271 1272
	int			error;

1273
	if (start >= end) {
D
Dave Chinner 已提交
1274
		error = -ENXIO;
1275
		goto out_error;
1276 1277 1278 1279 1280 1281
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1282
	fsbno = XFS_B_TO_FSBT(mp, start);
1283
	lastbno = XFS_B_TO_FSB(mp, end);
1284

1285 1286 1287 1288
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1289

1290
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1291 1292
				       XFS_BMAPI_ENTIRE);
		if (error)
1293
			goto out_error;
1294

1295 1296
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1297
			error = -ENXIO;
1298
			goto out_error;
1299 1300 1301 1302 1303 1304
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1315 1316 1317
				goto out;

			/*
1318 1319
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1320 1321 1322
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1323 1324
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1325 1326 1327 1328 1329
					goto out;
			}
		}

		/*
1330 1331
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1332
		 */
1333
		if (nmap == 1) {
1334 1335 1336 1337 1338 1339
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1340
				offset = end;
1341 1342 1343 1344 1345 1346
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1347
			error = -ENXIO;
1348
			goto out_error;
1349 1350
		}

1351 1352 1353 1354
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1355
		 * if the next reading offset is not at or beyond EOF.
1356 1357 1358
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1359
		if (start >= end) {
1360
			if (whence == SEEK_HOLE) {
1361
				offset = end;
1362 1363 1364
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1365
			error = -ENXIO;
1366
			goto out_error;
1367
		}
1368 1369
	}

1370 1371
out:
	/*
1372
	 * If at this point we have found the hole we wanted, the returned
1373
	 * offset may be bigger than the file size as it may be aligned to
1374
	 * page boundary for unwritten extents.  We need to deal with this
1375 1376
	 * situation in particular.
	 */
1377
	if (whence == SEEK_HOLE)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1411
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1412 1413

out_unlock:
1414
	xfs_iunlock(ip, lock);
1415 1416

	if (error)
D
Dave Chinner 已提交
1417
		return error;
1418 1419 1420 1421 1422 1423 1424
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1425
	int		whence)
1426
{
1427
	switch (whence) {
1428 1429 1430
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1431
		return generic_file_llseek(file, offset, whence);
1432
	case SEEK_HOLE:
1433
	case SEEK_DATA:
1434
		return xfs_seek_hole_data(file, offset, whence);
1435 1436 1437 1438 1439
	default:
		return -EINVAL;
	}
}

1440 1441 1442 1443 1444
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1445
 *   sb_start_pagefault(vfs, freeze)
1446
 *     i_mmaplock (XFS - truncate serialisation)
1447 1448
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1449 1450
 */

1451 1452 1453 1454 1455
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1456 1457
 */
STATIC int
1458
xfs_filemap_page_mkwrite(
1459 1460 1461
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1462
	struct inode		*inode = file_inode(vma->vm_file);
1463
	int			ret;
1464

1465
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1466

1467
	sb_start_pagefault(inode->i_sb);
1468
	file_update_time(vma->vm_file);
1469
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1470

1471
	if (IS_DAX(inode)) {
1472
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1473
	} else {
1474
		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1475 1476 1477 1478 1479 1480 1481
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1482 1483
}

1484
STATIC int
1485
xfs_filemap_fault(
1486 1487 1488
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1489
	struct inode		*inode = file_inode(vma->vm_file);
1490
	int			ret;
1491

1492
	trace_xfs_filemap_fault(XFS_I(inode));
1493

1494
	/* DAX can shortcut the normal fault path on write faults! */
1495
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1496
		return xfs_filemap_page_mkwrite(vma, vmf);
1497

1498 1499 1500 1501 1502 1503 1504 1505
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1506
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1507 1508 1509
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1510

1511 1512 1513
	return ret;
}

1514 1515 1516 1517 1518 1519 1520
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1537 1538 1539 1540 1541
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1542
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
R
Ross Zwisler 已提交
1543
	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
M
Matthew Wilcox 已提交
1544 1545
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1546 1547
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1548 1549 1550 1551

	return ret;
}

1552 1553 1554
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1555 1556
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1579 1580
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1581 1582
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1583
	return ret;
1584

M
Matthew Wilcox 已提交
1585 1586
}

1587 1588
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1589
	.pmd_fault	= xfs_filemap_pmd_fault,
1590 1591
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1592
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1603
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1604
	return 0;
1605 1606
}

1607
const struct file_operations xfs_file_operations = {
1608
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1609
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1610
	.write_iter	= xfs_file_write_iter,
1611
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1612
	.splice_write	= iter_file_splice_write,
1613
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1614
#ifdef CONFIG_COMPAT
1615
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1616
#endif
1617 1618 1619 1620
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1621
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1622 1623
};

1624
const struct file_operations xfs_dir_file_operations = {
1625
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1626
	.read		= generic_read_dir,
1627
	.iterate_shared	= xfs_file_readdir,
1628
	.llseek		= generic_file_llseek,
1629
	.unlocked_ioctl	= xfs_file_ioctl,
1630
#ifdef CONFIG_COMPAT
1631
	.compat_ioctl	= xfs_file_compat_ioctl,
1632
#endif
1633
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1634
};