xfs_file.c 45.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
44
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
45

46
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
58
		inode_lock(VFS_I(ip));
59 60 61 62 63 64 65 66 67 68
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
69
		inode_unlock(VFS_I(ip));
70 71 72 73 74 75 76 77 78
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
79
		inode_unlock(VFS_I(ip));
80 81
}

82
/*
83 84 85 86 87
 * xfs_iozero clears the specified range supplied via the page cache (except in
 * the DAX case). Writes through the page cache will allocate blocks over holes,
 * though the callers usually map the holes first and avoid them. If a block is
 * not completely zeroed, then it will be read from disk before being partially
 * zeroed.
88
 *
89 90 91
 * In the DAX case, we can just directly write to the underlying pages. This
 * will not allocate blocks, but will avoid holes and unwritten extents and so
 * not do unnecessary work.
92
 */
93
int
94 95 96 97 98 99 100
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
101 102
	int			status = 0;

103 104 105 106 107 108

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

109 110
		offset = (pos & (PAGE_SIZE -1)); /* Within page */
		bytes = PAGE_SIZE - offset;
111 112 113
		if (bytes > count)
			bytes = count;

114 115 116 117 118 119 120 121 122 123 124
		if (IS_DAX(VFS_I(ip))) {
			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
						     xfs_get_blocks_direct);
			if (status)
				break;
		} else {
			status = pagecache_write_begin(NULL, mapping, pos, bytes,
						AOP_FLAG_UNINTERRUPTIBLE,
						&page, &fsdata);
			if (status)
				break;
125

126
			zero_user(page, offset, bytes);
127

128 129 130 131 132
			status = pagecache_write_end(NULL, mapping, pos, bytes,
						bytes, page, fsdata);
			WARN_ON(status <= 0); /* can't return less than zero! */
			status = 0;
		}
133 134 135 136
		pos += bytes;
		count -= bytes;
	} while (count);

137
	return status;
138 139
}

140 141 142 143 144 145 146 147
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

148 149 150
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
151 152 153 154 155 156
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
157 158 159
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
160 161 162 163 164 165 166 167 168 169 170
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
171
	return xfs_trans_commit(tp);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
200
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
201 202
}

203 204 205
STATIC int
xfs_file_fsync(
	struct file		*file,
206 207
	loff_t			start,
	loff_t			end,
208 209
	int			datasync)
{
210 211
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
212
	struct xfs_mount	*mp = ip->i_mount;
213 214
	int			error = 0;
	int			log_flushed = 0;
215
	xfs_lsn_t		lsn = 0;
216

C
Christoph Hellwig 已提交
217
	trace_xfs_file_fsync(ip);
218

219 220 221 222
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

223
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
224
		return -EIO;
225 226 227

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

242
	/*
243 244 245 246 247 248 249 250 251 252 253
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
254 255
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
256 257
	if (xfs_ipincount(ip)) {
		if (!datasync ||
258
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 260
			lsn = ip->i_itemp->ili_last_lsn;
	}
261

262
	if (lsn) {
263
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 265 266
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
267

268 269 270 271 272 273 274 275 276 277 278 279
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280

D
Dave Chinner 已提交
281
	return error;
282 283
}

284
STATIC ssize_t
285
xfs_file_dio_aio_read(
286
	struct kiocb		*iocb,
A
Al Viro 已提交
287
	struct iov_iter		*to)
288
{
289 290
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
291
	struct xfs_inode	*ip = XFS_I(inode);
292 293
	size_t			count = iov_iter_count(to);
	struct xfs_buftarg	*target;
294 295
	ssize_t			ret = 0;

296
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
297

298 299 300 301 302 303
	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;

	if (!IS_DAX(inode)) {
304
		/* DIO must be aligned to device logical sector size */
305 306
		if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
			if (iocb->ki_pos == i_size_read(inode))
307
				return 0;
E
Eric Sandeen 已提交
308
			return -EINVAL;
309 310 311
		}
	}

312
	/*
313 314 315 316 317 318 319 320
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
321 322
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
323
	if (mapping->nrpages) {
324
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
325 326
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

327 328 329 330 331 332 333 334 335 336 337
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
338 339
		if (mapping->nrpages) {
			ret = filemap_write_and_wait(mapping);
340 341 342 343
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
344 345 346 347 348 349

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
350
			ret = invalidate_inode_pages2(mapping);
351 352
			WARN_ON_ONCE(ret);
			ret = 0;
353
		}
354
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
355
	}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	ret = generic_file_read_iter(iocb, to);
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);

	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_read_iter(iocb, to);
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_mount	*mp = XFS_I(file_inode(iocb->ki_filp))->i_mount;
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

C
Christoph Hellwig 已提交
393
	if (iocb->ki_flags & IOCB_DIRECT)
394
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
395
	else
396
		ret = xfs_file_buffered_aio_read(iocb, to);
397 398

	if (ret > 0)
399
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
400 401 402
	return ret;
}

403 404
STATIC ssize_t
xfs_file_splice_read(
405 406 407 408
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
409
	unsigned int		flags)
410
{
411
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
412 413
	ssize_t			ret;

414
	XFS_STATS_INC(ip->i_mount, xs_read_calls);
415

416 417 418
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

C
Christoph Hellwig 已提交
419
	trace_xfs_file_splice_read(ip, count, *ppos);
420

421 422 423 424 425 426 427 428 429 430 431
	/*
	 * DAX inodes cannot ues the page cache for splice, so we have to push
	 * them through the VFS IO path. This means it goes through
	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
	 * cannot lock the splice operation at this level for DAX inodes.
	 */
	if (IS_DAX(VFS_I(ip))) {
		ret = default_file_splice_read(infilp, ppos, pipe, count,
					       flags);
		goto out;
	}
432

433 434
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
435
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
436 437 438
out:
	if (ret > 0)
		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
439 440 441 442
	return ret;
}

/*
443 444 445 446
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
447 448 449
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
450 451
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
452 453
	xfs_fsize_t		isize,
	bool			*did_zeroing)
454
{
455 456 457 458 459 460 461
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
462

463
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
464
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
465
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
466
	if (error)
467
		return error;
468

469
	ASSERT(nimaps > 0);
470

471 472 473 474
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
475
	if (imap.br_startblock == HOLESTARTBLOCK)
476 477 478 479 480
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
481
	*did_zeroing = true;
482
	return xfs_iozero(ip, isize, zero_len);
483 484 485
}

/*
486 487 488 489 490 491 492 493 494
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
495 496 497
 */
int					/* error (positive) */
xfs_zero_eof(
498 499
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
500 501
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
502
{
503 504 505 506 507 508 509 510 511 512 513 514
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
515 516
	ASSERT(offset > isize);

517 518
	trace_xfs_zero_eof(ip, isize, offset - isize);

519 520
	/*
	 * First handle zeroing the block on which isize resides.
521
	 *
522 523
	 * We only zero a part of that block so it is handled specially.
	 */
524
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
525
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
526 527
		if (error)
			return error;
528 529 530
	}

	/*
531 532 533 534 535 536 537
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
555 556

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
557 558
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
559 560
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
561
			return error;
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
582 583
		if (error)
			return error;
584

585
		*did_zeroing = true;
586 587 588 589 590 591 592
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

593 594 595
/*
 * Common pre-write limit and setup checks.
 *
596 597 598
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
599 600 601
 */
STATIC ssize_t
xfs_file_aio_write_checks(
602 603
	struct kiocb		*iocb,
	struct iov_iter		*from,
604 605
	int			*iolock)
{
606
	struct file		*file = iocb->ki_filp;
607 608
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
609
	ssize_t			error = 0;
610
	size_t			count = iov_iter_count(from);
611
	bool			drained_dio = false;
612

613
restart:
614 615
	error = generic_write_checks(iocb, from);
	if (error <= 0)
616 617
		return error;

618
	error = xfs_break_layouts(inode, iolock, true);
619 620 621
	if (error)
		return error;

622 623 624 625 626 627 628
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
629 630 631
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
632
	 * write.  If zeroing is needed and we are currently holding the
633 634
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
635 636 637 638 639 640 641 642
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
643
	 */
644
	spin_lock(&ip->i_flags_lock);
645
	if (iocb->ki_pos > i_size_read(inode)) {
646 647
		bool	zero = false;

648
		spin_unlock(&ip->i_flags_lock);
649 650 651 652 653 654 655
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
656 657 658 659 660 661 662 663 664
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
665
			drained_dio = true;
666 667
			goto restart;
		}
668
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
669 670
		if (error)
			return error;
671 672
	} else
		spin_unlock(&ip->i_flags_lock);
673

C
Christoph Hellwig 已提交
674 675 676 677 678 679
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
680 681 682 683 684
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
685

686 687 688 689 690
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
691 692 693
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
694 695
}

696 697 698 699
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
700
 * By separating it from the buffered write path we remove all the tricky to
701 702
 * follow locking changes and looping.
 *
703 704 705 706 707 708 709 710 711 712 713 714 715
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
716
 * hitting it with a big hammer (i.e. inode_dio_wait()).
717
 *
718 719 720 721 722 723
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
724
	struct iov_iter		*from)
725 726 727 728 729 730 731
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
732
	int			unaligned_io = 0;
733
	int			iolock;
734
	size_t			count = iov_iter_count(from);
735 736
	loff_t			end;
	struct iov_iter		data;
737 738 739
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

740
	/* DIO must be aligned to device logical sector size */
741 742
	if (!IS_DAX(inode) &&
	    ((iocb->ki_pos | count) & target->bt_logical_sectormask))
E
Eric Sandeen 已提交
743
		return -EINVAL;
744

745
	/* "unaligned" here means not aligned to a filesystem block */
746 747
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask))
748 749
		unaligned_io = 1;

750 751 752 753 754 755 756 757
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
758
		iolock = XFS_IOLOCK_EXCL;
759
	else
760 761
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
762 763 764 765 766 767

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
768 769 770 771
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
772
	}
773

774
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
775
	if (ret)
776
		goto out;
777
	count = iov_iter_count(from);
778
	end = iocb->ki_pos + count - 1;
779

780
	/*
781
	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
782
	 */
783
	if (mapping->nrpages) {
784
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
785
		if (ret)
786
			goto out;
787
		/*
788 789 790
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
791
		 */
792
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
793 794
		WARN_ON_ONCE(ret);
		ret = 0;
795 796
	}

797 798 799 800 801
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
802
		inode_dio_wait(inode);
803
	else if (iolock == XFS_IOLOCK_EXCL) {
804
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
805
		iolock = XFS_IOLOCK_SHARED;
806 807
	}

C
Christoph Hellwig 已提交
808
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
809

810
	data = *from;
811
	ret = mapping->a_ops->direct_IO(iocb, &data);
812 813 814 815

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
816
					      iocb->ki_pos >> PAGE_SHIFT,
817
					      end >> PAGE_SHIFT);
818 819 820
	}

	if (ret > 0) {
821
		iocb->ki_pos += ret;
822 823
		iov_iter_advance(from, ret);
	}
824 825 826
out:
	xfs_rw_iunlock(ip, iolock);

827 828 829 830 831
	/*
	 * No fallback to buffered IO on errors for XFS. DAX can result in
	 * partial writes, but direct IO will either complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
832 833 834
	return ret;
}

835
STATIC ssize_t
836
xfs_file_buffered_aio_write(
837
	struct kiocb		*iocb,
838
	struct iov_iter		*from)
839 840 841 842
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
843
	struct xfs_inode	*ip = XFS_I(inode);
844 845
	ssize_t			ret;
	int			enospc = 0;
846
	int			iolock = XFS_IOLOCK_EXCL;
847

848
	xfs_rw_ilock(ip, iolock);
849

850
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
851
	if (ret)
852
		goto out;
853 854

	/* We can write back this queue in page reclaim */
855
	current->backing_dev_info = inode_to_bdi(inode);
856 857

write_retry:
C
Christoph Hellwig 已提交
858
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
859
	ret = generic_perform_write(file, from, iocb->ki_pos);
860
	if (likely(ret >= 0))
861
		iocb->ki_pos += ret;
862

863
	/*
864 865 866 867 868 869 870
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
871
	 */
872 873 874 875 876 877 878
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

879
		enospc = 1;
D
Dave Chinner 已提交
880
		xfs_flush_inodes(ip->i_mount);
881 882 883
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
884
		goto write_retry;
885
	}
886

887
	current->backing_dev_info = NULL;
888 889
out:
	xfs_rw_iunlock(ip, iolock);
890 891 892 893
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
894
xfs_file_write_iter(
895
	struct kiocb		*iocb,
A
Al Viro 已提交
896
	struct iov_iter		*from)
897 898 899 900 901 902
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
903
	size_t			ocount = iov_iter_count(from);
904

905
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
906 907 908 909

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
910 911
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
912

913
	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
A
Al Viro 已提交
914
		ret = xfs_file_dio_aio_write(iocb, from);
915
	else
A
Al Viro 已提交
916
		ret = xfs_file_buffered_aio_write(iocb, from);
917

918
	if (ret > 0) {
919
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
920

921
		/* Handle various SYNC-type writes */
922
		ret = generic_write_sync(iocb, ret);
923
	}
924
	return ret;
925 926
}

927 928 929 930 931
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

932 933
STATIC long
xfs_file_fallocate(
934 935 936 937
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
938
{
939 940 941
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
942
	enum xfs_prealloc_flags	flags = 0;
943
	uint			iolock = XFS_IOLOCK_EXCL;
944
	loff_t			new_size = 0;
945
	bool			do_file_insert = 0;
946

947 948
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
949
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
950 951
		return -EOPNOTSUPP;

952
	xfs_ilock(ip, iolock);
953
	error = xfs_break_layouts(inode, &iolock, false);
954 955 956
	if (error)
		goto out_unlock;

957 958 959
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

960 961 962 963
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
964 965 966 967
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
968
			error = -EINVAL;
969 970 971
			goto out_unlock;
		}

972 973 974 975 976
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
977
			error = -EINVAL;
978 979 980
			goto out_unlock;
		}

981 982 983 984 985
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
1007
	} else {
1008 1009
		flags |= XFS_PREALLOC_SET;

1010 1011 1012
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
1013
			error = inode_newsize_ok(inode, new_size);
1014 1015 1016
			if (error)
				goto out_unlock;
		}
1017

1018 1019 1020 1021 1022
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
1023 1024 1025 1026
		if (error)
			goto out_unlock;
	}

1027
	if (file->f_flags & O_DSYNC)
1028 1029 1030
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
1040
		error = xfs_setattr_size(ip, &iattr);
1041 1042
		if (error)
			goto out_unlock;
1043 1044
	}

1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

1054
out_unlock:
1055
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
1056
	return error;
1057 1058 1059
}


L
Linus Torvalds 已提交
1060
STATIC int
1061
xfs_file_open(
L
Linus Torvalds 已提交
1062
	struct inode	*inode,
1063
	struct file	*file)
L
Linus Torvalds 已提交
1064
{
1065
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1066
		return -EFBIG;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1089
	mode = xfs_ilock_data_map_shared(ip);
1090
	if (ip->i_d.di_nextents > 0)
1091
		xfs_dir3_data_readahead(ip, 0, -1);
1092 1093
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1094 1095 1096
}

STATIC int
1097
xfs_file_release(
L
Linus Torvalds 已提交
1098 1099 1100
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1101
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1102 1103 1104
}

STATIC int
1105
xfs_file_readdir(
A
Al Viro 已提交
1106 1107
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1108
{
A
Al Viro 已提交
1109
	struct inode	*inode = file_inode(file);
1110
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1123
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1124
	 */
E
Eric Sandeen 已提交
1125
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1126

1127
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1128 1129
}

1130 1131
/*
 * This type is designed to indicate the type of offset we would like
1132
 * to search from page cache for xfs_seek_hole_data().
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1189
 * type for xfs_seek_hole_data().
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1218
	index = startoff >> PAGE_SHIFT;
1219
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1220
	end = endoff >> PAGE_SHIFT;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1359
	loff_t			start,
1360
	loff_t			end,
1361
	int			whence)
1362 1363 1364 1365 1366
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1367
	xfs_filblks_t		lastbno;
1368 1369
	int			error;

1370
	if (start >= end) {
D
Dave Chinner 已提交
1371
		error = -ENXIO;
1372
		goto out_error;
1373 1374 1375 1376 1377 1378
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1379
	fsbno = XFS_B_TO_FSBT(mp, start);
1380
	lastbno = XFS_B_TO_FSB(mp, end);
1381

1382 1383 1384 1385
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1386

1387
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1388 1389
				       XFS_BMAPI_ENTIRE);
		if (error)
1390
			goto out_error;
1391

1392 1393
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1394
			error = -ENXIO;
1395
			goto out_error;
1396 1397 1398 1399 1400 1401
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1412 1413 1414
				goto out;

			/*
1415 1416
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1417 1418 1419
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1420 1421
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1422 1423 1424 1425 1426
					goto out;
			}
		}

		/*
1427 1428
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1429
		 */
1430
		if (nmap == 1) {
1431 1432 1433 1434 1435 1436
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1437
				offset = end;
1438 1439 1440 1441 1442 1443
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1444
			error = -ENXIO;
1445
			goto out_error;
1446 1447
		}

1448 1449 1450 1451
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1452
		 * if the next reading offset is not at or beyond EOF.
1453 1454 1455
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1456
		if (start >= end) {
1457
			if (whence == SEEK_HOLE) {
1458
				offset = end;
1459 1460 1461
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1462
			error = -ENXIO;
1463
			goto out_error;
1464
		}
1465 1466
	}

1467 1468
out:
	/*
1469
	 * If at this point we have found the hole we wanted, the returned
1470
	 * offset may be bigger than the file size as it may be aligned to
1471
	 * page boundary for unwritten extents.  We need to deal with this
1472 1473
	 * situation in particular.
	 */
1474
	if (whence == SEEK_HOLE)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1508
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1509 1510

out_unlock:
1511
	xfs_iunlock(ip, lock);
1512 1513

	if (error)
D
Dave Chinner 已提交
1514
		return error;
1515 1516 1517 1518 1519 1520 1521
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1522
	int		whence)
1523
{
1524
	switch (whence) {
1525 1526 1527
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1528
		return generic_file_llseek(file, offset, whence);
1529
	case SEEK_HOLE:
1530
	case SEEK_DATA:
1531
		return xfs_seek_hole_data(file, offset, whence);
1532 1533 1534 1535 1536
	default:
		return -EINVAL;
	}
}

1537 1538 1539 1540 1541
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1542
 *   sb_start_pagefault(vfs, freeze)
1543
 *     i_mmaplock (XFS - truncate serialisation)
1544 1545
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1546 1547
 */

1548 1549 1550 1551 1552
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1553 1554
 */
STATIC int
1555
xfs_filemap_page_mkwrite(
1556 1557 1558
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1559
	struct inode		*inode = file_inode(vma->vm_file);
1560
	int			ret;
1561

1562
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1563

1564
	sb_start_pagefault(inode->i_sb);
1565
	file_update_time(vma->vm_file);
1566
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1567

1568
	if (IS_DAX(inode)) {
1569
		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1570
	} else {
1571
		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1572 1573 1574 1575 1576 1577 1578
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1579 1580
}

1581
STATIC int
1582
xfs_filemap_fault(
1583 1584 1585
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1586
	struct inode		*inode = file_inode(vma->vm_file);
1587
	int			ret;
1588

1589
	trace_xfs_filemap_fault(XFS_I(inode));
1590

1591
	/* DAX can shortcut the normal fault path on write faults! */
1592
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1593
		return xfs_filemap_page_mkwrite(vma, vmf);
1594

1595 1596 1597 1598 1599 1600 1601 1602
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1603
		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1604 1605 1606
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1607

1608 1609 1610
	return ret;
}

1611 1612 1613 1614 1615 1616 1617
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1634 1635 1636 1637 1638
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1639
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1640
	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
M
Matthew Wilcox 已提交
1641 1642
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1643 1644
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1645 1646 1647 1648

	return ret;
}

1649 1650 1651
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1652 1653
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1676 1677
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1678 1679
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1680
	return ret;
1681

M
Matthew Wilcox 已提交
1682 1683
}

1684 1685
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1686
	.pmd_fault	= xfs_filemap_pmd_fault,
1687 1688
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1689
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1700
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1701
	return 0;
1702 1703
}

1704
const struct file_operations xfs_file_operations = {
1705
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1706
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1707
	.write_iter	= xfs_file_write_iter,
1708
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1709
	.splice_write	= iter_file_splice_write,
1710
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1711
#ifdef CONFIG_COMPAT
1712
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1713
#endif
1714 1715 1716 1717
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1718
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1719 1720
};

1721
const struct file_operations xfs_dir_file_operations = {
1722
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1723
	.read		= generic_read_dir,
1724
	.iterate_shared	= xfs_file_readdir,
1725
	.llseek		= generic_file_llseek,
1726
	.unlocked_ioctl	= xfs_file_ioctl,
1727
#ifdef CONFIG_COMPAT
1728
	.compat_ioctl	= xfs_file_compat_ioctl,
1729
#endif
1730
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1731
};