xfs_file.c 42.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
40
#include "xfs_iomap.h"
41
#include "xfs_reflink.h"
L
Linus Torvalds 已提交
42 43

#include <linux/dcache.h>
44
#include <linux/falloc.h>
45
#include <linux/pagevec.h>
46
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
47

48
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
49

50 51 52 53 54 55 56 57 58 59
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
60
		inode_lock(VFS_I(ip));
61 62 63 64 65 66 67 68 69 70
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
71
		inode_unlock(VFS_I(ip));
72 73 74 75 76 77 78 79 80
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
81
		inode_unlock(VFS_I(ip));
82 83
}

84
/*
85 86
 * Clear the specified ranges to zero through either the pagecache or DAX.
 * Holes and unwritten extents will be left as-is as they already are zeroed.
87
 */
88
int
89
xfs_zero_range(
90
	struct xfs_inode	*ip,
91 92 93
	xfs_off_t		pos,
	xfs_off_t		count,
	bool			*did_zero)
94
{
95
	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 97
}

98 99 100 101 102 103 104 105
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

106 107 108
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
109 110 111 112 113 114
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
115 116 117
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
118 119 120 121 122 123 124 125 126 127 128
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
129
	return xfs_trans_commit(tp);
130 131
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
158
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 160
}

161 162 163
STATIC int
xfs_file_fsync(
	struct file		*file,
164 165
	loff_t			start,
	loff_t			end,
166 167
	int			datasync)
{
168 169
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
170
	struct xfs_mount	*mp = ip->i_mount;
171 172
	int			error = 0;
	int			log_flushed = 0;
173
	xfs_lsn_t		lsn = 0;
174

C
Christoph Hellwig 已提交
175
	trace_xfs_file_fsync(ip);
176

177 178 179 180
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

181
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
182
		return -EIO;
183 184 185

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

186 187 188 189 190 191 192 193 194 195 196 197 198 199
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

200
	/*
201 202 203 204 205 206 207 208 209 210 211
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
212 213
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
214 215
	if (xfs_ipincount(ip)) {
		if (!datasync ||
216
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 218
			lsn = ip->i_itemp->ili_last_lsn;
	}
219

220
	if (lsn) {
221
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 223 224
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
225

226 227 228 229 230 231 232 233 234 235 236 237
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
238

D
Dave Chinner 已提交
239
	return error;
240 241
}

242
STATIC ssize_t
243
xfs_file_dio_aio_read(
244
	struct kiocb		*iocb,
A
Al Viro 已提交
245
	struct iov_iter		*to)
246
{
247 248
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
249
	struct xfs_inode	*ip = XFS_I(inode);
250
	loff_t			isize = i_size_read(inode);
251
	size_t			count = iov_iter_count(to);
252
	struct iov_iter		data;
253
	struct xfs_buftarg	*target;
254 255
	ssize_t			ret = 0;

256
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
257

258 259
	if (!count)
		return 0; /* skip atime */
260

261 262 263 264
	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;
265

266 267 268 269 270
	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
		if (iocb->ki_pos == isize)
			return 0;
		return -EINVAL;
271 272
	}

273 274
	file_accessed(iocb->ki_filp);

275
	/*
276 277 278 279 280 281 282 283
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
284 285
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286
	if (mapping->nrpages) {
287
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 289
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

290 291 292 293 294 295 296 297 298 299 300
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
301 302
		if (mapping->nrpages) {
			ret = filemap_write_and_wait(mapping);
303 304 305 306
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
307 308 309 310 311 312

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
313
			ret = invalidate_inode_pages2(mapping);
314 315
			WARN_ON_ONCE(ret);
			ret = 0;
316
		}
317
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
318
	}
319

320
	data = *to;
321 322 323 324 325
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, NULL, NULL, 0);
	if (ret > 0) {
		iocb->ki_pos += ret;
		iov_iter_advance(to, ret);
326
	}
327
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
328

329 330 331
	return ret;
}

332
static noinline ssize_t
333 334 335 336
xfs_file_dax_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
337
	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
338 339 340 341 342 343 344 345 346
	size_t			count = iov_iter_count(to);
	ssize_t			ret = 0;

	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
347
	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
348 349
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

350
	file_accessed(iocb->ki_filp);
351 352 353 354 355 356 357 358 359 360 361 362
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
363

364
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
A
Al Viro 已提交
365
	ret = generic_file_read_iter(iocb, to);
366 367 368 369 370 371 372 373 374 375
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
376 377
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
378 379 380 381 382 383 384
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

385 386 387
	if (IS_DAX(inode))
		ret = xfs_file_dax_read(iocb, to);
	else if (iocb->ki_flags & IOCB_DIRECT)
388
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
389
	else
390
		ret = xfs_file_buffered_aio_read(iocb, to);
391 392

	if (ret > 0)
393
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
394 395 396
	return ret;
}

397 398
STATIC ssize_t
xfs_file_splice_read(
399 400 401 402
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
403
	unsigned int		flags)
404
{
405
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
406 407
	ssize_t			ret;

408
	XFS_STATS_INC(ip->i_mount, xs_read_calls);
409

410 411 412
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

C
Christoph Hellwig 已提交
413
	trace_xfs_file_splice_read(ip, count, *ppos);
414

415 416 417 418 419 420 421 422 423 424 425
	/*
	 * DAX inodes cannot ues the page cache for splice, so we have to push
	 * them through the VFS IO path. This means it goes through
	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
	 * cannot lock the splice operation at this level for DAX inodes.
	 */
	if (IS_DAX(VFS_I(ip))) {
		ret = default_file_splice_read(infilp, ppos, pipe, count,
					       flags);
		goto out;
	}
426

427 428
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
429
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
430 431 432
out:
	if (ret > 0)
		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
433 434 435 436
	return ret;
}

/*
437 438 439 440 441 442 443 444 445
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
446 447 448
 */
int					/* error (positive) */
xfs_zero_eof(
449 450
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
451 452
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
453
{
454
	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
455 456
	ASSERT(offset > isize);

457
	trace_xfs_zero_eof(ip, isize, offset - isize);
458
	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
459 460
}

461 462 463
/*
 * Common pre-write limit and setup checks.
 *
464 465 466
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
467 468 469
 */
STATIC ssize_t
xfs_file_aio_write_checks(
470 471
	struct kiocb		*iocb,
	struct iov_iter		*from,
472 473
	int			*iolock)
{
474
	struct file		*file = iocb->ki_filp;
475 476
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
477
	ssize_t			error = 0;
478
	size_t			count = iov_iter_count(from);
479
	bool			drained_dio = false;
480

481
restart:
482 483
	error = generic_write_checks(iocb, from);
	if (error <= 0)
484 485
		return error;

486
	error = xfs_break_layouts(inode, iolock, true);
487 488 489
	if (error)
		return error;

490 491 492 493 494 495 496
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
497 498 499
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
500
	 * write.  If zeroing is needed and we are currently holding the
501 502
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
503 504 505 506 507 508 509 510
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
511
	 */
512
	spin_lock(&ip->i_flags_lock);
513
	if (iocb->ki_pos > i_size_read(inode)) {
514 515
		bool	zero = false;

516
		spin_unlock(&ip->i_flags_lock);
517 518 519 520 521 522 523
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
524 525 526 527 528 529 530 531 532
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
533
			drained_dio = true;
534 535
			goto restart;
		}
536
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
537 538
		if (error)
			return error;
539 540
	} else
		spin_unlock(&ip->i_flags_lock);
541

C
Christoph Hellwig 已提交
542 543 544 545 546 547
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
548 549 550 551 552
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
553

554 555 556 557 558
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
559 560 561
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
562 563
}

564 565 566 567
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
568
 * By separating it from the buffered write path we remove all the tricky to
569 570
 * follow locking changes and looping.
 *
571 572 573 574 575 576 577 578 579 580 581 582 583
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
584
 * hitting it with a big hammer (i.e. inode_dio_wait()).
585
 *
586 587 588 589 590 591
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
592
	struct iov_iter		*from)
593 594 595 596 597 598 599
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
600
	int			unaligned_io = 0;
601
	int			iolock;
602
	size_t			count = iov_iter_count(from);
603 604
	loff_t			end;
	struct iov_iter		data;
605 606 607
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

608
	/* DIO must be aligned to device logical sector size */
609
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
E
Eric Sandeen 已提交
610
		return -EINVAL;
611

612
	/* "unaligned" here means not aligned to a filesystem block */
613 614
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask))
615 616
		unaligned_io = 1;

617 618 619 620 621 622 623 624
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
625
		iolock = XFS_IOLOCK_EXCL;
626
	else
627 628
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
629 630 631 632 633 634

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
635 636 637 638
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
639
	}
640

641
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
642
	if (ret)
643
		goto out;
644
	count = iov_iter_count(from);
645
	end = iocb->ki_pos + count - 1;
646

647
	/*
648
	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
649
	 */
650
	if (mapping->nrpages) {
651
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
652
		if (ret)
653
			goto out;
654
		/*
655 656 657
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
658
		 */
659
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
660 661
		WARN_ON_ONCE(ret);
		ret = 0;
662 663
	}

664 665 666 667 668
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
669
		inode_dio_wait(inode);
670
	else if (iolock == XFS_IOLOCK_EXCL) {
671
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
672
		iolock = XFS_IOLOCK_SHARED;
673 674
	}

C
Christoph Hellwig 已提交
675
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
676

677 678 679 680 681 682 683
	/* If this is a block-aligned directio CoW, remap immediately. */
	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
		if (ret)
			goto out;
	}

684
	data = *from;
685 686 687
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, xfs_end_io_direct_write,
			NULL, DIO_ASYNC_EXTEND);
688 689 690 691

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
692
					      iocb->ki_pos >> PAGE_SHIFT,
693
					      end >> PAGE_SHIFT);
694 695 696
	}

	if (ret > 0) {
697
		iocb->ki_pos += ret;
698 699
		iov_iter_advance(from, ret);
	}
700 701 702
out:
	xfs_rw_iunlock(ip, iolock);

703
	/*
704 705
	 * No fallback to buffered IO on errors for XFS, direct IO will either
	 * complete fully or fail.
706
	 */
707 708 709 710
	ASSERT(ret < 0 || ret == count);
	return ret;
}

711
static noinline ssize_t
712 713 714 715
xfs_file_dax_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
716
	struct inode		*inode = iocb->ki_filp->f_mapping->host;
717
	struct xfs_inode	*ip = XFS_I(inode);
718
	int			iolock = XFS_IOLOCK_EXCL;
719 720 721
	ssize_t			ret, error = 0;
	size_t			count;
	loff_t			pos;
722 723 724 725 726 727

	xfs_rw_ilock(ip, iolock);
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

728 729
	pos = iocb->ki_pos;
	count = iov_iter_count(from);
730

731
	trace_xfs_file_dax_write(ip, count, pos);
732

733 734 735 736
	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
		i_size_write(inode, iocb->ki_pos);
		error = xfs_setfilesize(ip, pos, ret);
737 738 739 740
	}

out:
	xfs_rw_iunlock(ip, iolock);
741
	return error ? error : ret;
742 743
}

744
STATIC ssize_t
745
xfs_file_buffered_aio_write(
746
	struct kiocb		*iocb,
747
	struct iov_iter		*from)
748 749 750 751
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
752
	struct xfs_inode	*ip = XFS_I(inode);
753 754
	ssize_t			ret;
	int			enospc = 0;
755
	int			iolock = XFS_IOLOCK_EXCL;
756

757
	xfs_rw_ilock(ip, iolock);
758

759
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
760
	if (ret)
761
		goto out;
762 763

	/* We can write back this queue in page reclaim */
764
	current->backing_dev_info = inode_to_bdi(inode);
765 766

write_retry:
C
Christoph Hellwig 已提交
767
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
768
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
769
	if (likely(ret >= 0))
770
		iocb->ki_pos += ret;
771

772
	/*
773 774 775 776 777 778 779
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
780
	 */
781 782 783 784 785 786 787
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

788
		enospc = 1;
D
Dave Chinner 已提交
789
		xfs_flush_inodes(ip->i_mount);
790 791 792
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
793
		goto write_retry;
794
	}
795

796
	current->backing_dev_info = NULL;
797 798
out:
	xfs_rw_iunlock(ip, iolock);
799 800 801 802
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
803
xfs_file_write_iter(
804
	struct kiocb		*iocb,
A
Al Viro 已提交
805
	struct iov_iter		*from)
806 807 808 809 810 811
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
812
	size_t			ocount = iov_iter_count(from);
813

814
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
815 816 817 818

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
819 820
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
821

822 823
	if (IS_DAX(inode))
		ret = xfs_file_dax_write(iocb, from);
824 825 826 827 828 829 830
	else if (iocb->ki_flags & IOCB_DIRECT) {
		/*
		 * Allow a directio write to fall back to a buffered
		 * write *only* in the case that we're doing a reflink
		 * CoW.  In all other directio scenarios we do not
		 * allow an operation to fall back to buffered mode.
		 */
A
Al Viro 已提交
831
		ret = xfs_file_dio_aio_write(iocb, from);
832 833 834 835
		if (ret == -EREMCHG)
			goto buffered;
	} else {
buffered:
A
Al Viro 已提交
836
		ret = xfs_file_buffered_aio_write(iocb, from);
837
	}
838

839
	if (ret > 0) {
840
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
841

842
		/* Handle various SYNC-type writes */
843
		ret = generic_write_sync(iocb, ret);
844
	}
845
	return ret;
846 847
}

848 849 850 851 852
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

853 854
STATIC long
xfs_file_fallocate(
855 856 857 858
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
859
{
860 861 862
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
863
	enum xfs_prealloc_flags	flags = 0;
864
	uint			iolock = XFS_IOLOCK_EXCL;
865
	loff_t			new_size = 0;
866
	bool			do_file_insert = 0;
867

868 869
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
870
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
871 872
		return -EOPNOTSUPP;

873
	xfs_ilock(ip, iolock);
874
	error = xfs_break_layouts(inode, &iolock, false);
875 876 877
	if (error)
		goto out_unlock;

878 879 880
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

881 882 883 884
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
885 886 887 888
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
889
			error = -EINVAL;
890 891 892
			goto out_unlock;
		}

893 894 895 896 897
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
898
			error = -EINVAL;
899 900 901
			goto out_unlock;
		}

902 903 904 905 906
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
928
	} else {
929 930
		flags |= XFS_PREALLOC_SET;

931 932 933
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
934
			error = inode_newsize_ok(inode, new_size);
935 936 937
			if (error)
				goto out_unlock;
		}
938

939 940 941 942 943
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
944 945 946 947
		if (error)
			goto out_unlock;
	}

948
	if (file->f_flags & O_DSYNC)
949 950 951
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
952 953 954 955 956 957 958 959 960
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
961
		error = xfs_setattr_size(ip, &iattr);
962 963
		if (error)
			goto out_unlock;
964 965
	}

966 967 968 969 970 971 972 973 974
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

975
out_unlock:
976
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
977
	return error;
978 979 980
}


L
Linus Torvalds 已提交
981
STATIC int
982
xfs_file_open(
L
Linus Torvalds 已提交
983
	struct inode	*inode,
984
	struct file	*file)
L
Linus Torvalds 已提交
985
{
986
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
987
		return -EFBIG;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1010
	mode = xfs_ilock_data_map_shared(ip);
1011
	if (ip->i_d.di_nextents > 0)
1012
		xfs_dir3_data_readahead(ip, 0, -1);
1013 1014
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1015 1016 1017
}

STATIC int
1018
xfs_file_release(
L
Linus Torvalds 已提交
1019 1020 1021
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1022
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1023 1024 1025
}

STATIC int
1026
xfs_file_readdir(
A
Al Viro 已提交
1027 1028
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1029
{
A
Al Viro 已提交
1030
	struct inode	*inode = file_inode(file);
1031
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1044
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1045
	 */
E
Eric Sandeen 已提交
1046
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1047

1048
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1049 1050
}

1051 1052
/*
 * This type is designed to indicate the type of offset we would like
1053
 * to search from page cache for xfs_seek_hole_data().
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1110
 * type for xfs_seek_hole_data().
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1139
	index = startoff >> PAGE_SHIFT;
1140
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1141
	end = endoff >> PAGE_SHIFT;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1280
	loff_t			start,
1281
	loff_t			end,
1282
	int			whence)
1283 1284 1285 1286 1287
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1288
	xfs_filblks_t		lastbno;
1289 1290
	int			error;

1291
	if (start >= end) {
D
Dave Chinner 已提交
1292
		error = -ENXIO;
1293
		goto out_error;
1294 1295 1296 1297 1298 1299
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1300
	fsbno = XFS_B_TO_FSBT(mp, start);
1301
	lastbno = XFS_B_TO_FSB(mp, end);
1302

1303 1304 1305 1306
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1307

1308
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1309 1310
				       XFS_BMAPI_ENTIRE);
		if (error)
1311
			goto out_error;
1312

1313 1314
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1315
			error = -ENXIO;
1316
			goto out_error;
1317 1318 1319 1320 1321 1322
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1333 1334 1335
				goto out;

			/*
1336 1337
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1338 1339 1340
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1341 1342
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1343 1344 1345 1346 1347
					goto out;
			}
		}

		/*
1348 1349
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1350
		 */
1351
		if (nmap == 1) {
1352 1353 1354 1355 1356 1357
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1358
				offset = end;
1359 1360 1361 1362 1363 1364
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1365
			error = -ENXIO;
1366
			goto out_error;
1367 1368
		}

1369 1370 1371 1372
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1373
		 * if the next reading offset is not at or beyond EOF.
1374 1375 1376
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1377
		if (start >= end) {
1378
			if (whence == SEEK_HOLE) {
1379
				offset = end;
1380 1381 1382
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1383
			error = -ENXIO;
1384
			goto out_error;
1385
		}
1386 1387
	}

1388 1389
out:
	/*
1390
	 * If at this point we have found the hole we wanted, the returned
1391
	 * offset may be bigger than the file size as it may be aligned to
1392
	 * page boundary for unwritten extents.  We need to deal with this
1393 1394
	 * situation in particular.
	 */
1395
	if (whence == SEEK_HOLE)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1429
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1430 1431

out_unlock:
1432
	xfs_iunlock(ip, lock);
1433 1434

	if (error)
D
Dave Chinner 已提交
1435
		return error;
1436 1437 1438 1439 1440 1441 1442
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1443
	int		whence)
1444
{
1445
	switch (whence) {
1446 1447 1448
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1449
		return generic_file_llseek(file, offset, whence);
1450
	case SEEK_HOLE:
1451
	case SEEK_DATA:
1452
		return xfs_seek_hole_data(file, offset, whence);
1453 1454 1455 1456 1457
	default:
		return -EINVAL;
	}
}

1458 1459 1460 1461 1462
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1463
 *   sb_start_pagefault(vfs, freeze)
1464
 *     i_mmaplock (XFS - truncate serialisation)
1465 1466
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1467 1468
 */

1469 1470 1471 1472 1473
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1474 1475
 */
STATIC int
1476
xfs_filemap_page_mkwrite(
1477 1478 1479
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1480
	struct inode		*inode = file_inode(vma->vm_file);
1481
	int			ret;
1482

1483
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1484

1485
	sb_start_pagefault(inode->i_sb);
1486
	file_update_time(vma->vm_file);
1487
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1488

1489
	if (IS_DAX(inode)) {
1490
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1491
	} else {
1492
		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1493 1494 1495 1496 1497 1498 1499
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1500 1501
}

1502
STATIC int
1503
xfs_filemap_fault(
1504 1505 1506
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1507
	struct inode		*inode = file_inode(vma->vm_file);
1508
	int			ret;
1509

1510
	trace_xfs_filemap_fault(XFS_I(inode));
1511

1512
	/* DAX can shortcut the normal fault path on write faults! */
1513
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1514
		return xfs_filemap_page_mkwrite(vma, vmf);
1515

1516 1517 1518 1519 1520 1521 1522 1523
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1524
		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1525 1526 1527
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1528

1529 1530 1531
	return ret;
}

1532 1533 1534 1535 1536 1537 1538
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1555 1556 1557 1558 1559
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1560
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
R
Ross Zwisler 已提交
1561
	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
M
Matthew Wilcox 已提交
1562 1563
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1564 1565
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1566 1567 1568 1569

	return ret;
}

1570 1571 1572
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1573 1574
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1597 1598
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1599 1600
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1601
	return ret;
1602

M
Matthew Wilcox 已提交
1603 1604
}

1605 1606
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1607
	.pmd_fault	= xfs_filemap_pmd_fault,
1608 1609
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1610
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1621
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1622
	return 0;
1623 1624
}

1625
const struct file_operations xfs_file_operations = {
1626
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1627
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1628
	.write_iter	= xfs_file_write_iter,
1629
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1630
	.splice_write	= iter_file_splice_write,
1631
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1632
#ifdef CONFIG_COMPAT
1633
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1634
#endif
1635 1636 1637 1638
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1639
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1640 1641
};

1642
const struct file_operations xfs_dir_file_operations = {
1643
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1644
	.read		= generic_read_dir,
1645
	.iterate_shared	= xfs_file_readdir,
1646
	.llseek		= generic_file_llseek,
1647
	.unlocked_ioctl	= xfs_file_ioctl,
1648
#ifdef CONFIG_COMPAT
1649
	.compat_ioctl	= xfs_file_compat_ioctl,
1650
#endif
1651
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1652
};