xfs_file.c 45.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
44
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
45

46
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
58
		inode_lock(VFS_I(ip));
59 60 61 62 63 64 65 66 67 68
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
69
		inode_unlock(VFS_I(ip));
70 71 72 73 74 75 76 77 78
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
A
Al Viro 已提交
79
		inode_unlock(VFS_I(ip));
80 81
}

82
/*
83 84 85 86 87
 * xfs_iozero clears the specified range supplied via the page cache (except in
 * the DAX case). Writes through the page cache will allocate blocks over holes,
 * though the callers usually map the holes first and avoid them. If a block is
 * not completely zeroed, then it will be read from disk before being partially
 * zeroed.
88
 *
89 90 91
 * In the DAX case, we can just directly write to the underlying pages. This
 * will not allocate blocks, but will avoid holes and unwritten extents and so
 * not do unnecessary work.
92
 */
93
int
94 95 96 97 98 99 100
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
101 102
	int			status = 0;

103 104 105 106 107 108

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

109 110
		offset = (pos & (PAGE_SIZE -1)); /* Within page */
		bytes = PAGE_SIZE - offset;
111 112 113
		if (bytes > count)
			bytes = count;

114 115 116 117 118 119 120 121 122 123 124
		if (IS_DAX(VFS_I(ip))) {
			status = dax_zero_page_range(VFS_I(ip), pos, bytes,
						     xfs_get_blocks_direct);
			if (status)
				break;
		} else {
			status = pagecache_write_begin(NULL, mapping, pos, bytes,
						AOP_FLAG_UNINTERRUPTIBLE,
						&page, &fsdata);
			if (status)
				break;
125

126
			zero_user(page, offset, bytes);
127

128 129 130 131 132
			status = pagecache_write_end(NULL, mapping, pos, bytes,
						bytes, page, fsdata);
			WARN_ON(status <= 0); /* can't return less than zero! */
			status = 0;
		}
133 134 135 136
		pos += bytes;
		count -= bytes;
	} while (count);

137
	return status;
138 139
}

140 141 142 143 144 145 146 147
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

148 149 150
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
			0, 0, 0, &tp);
	if (error)
151 152 153 154 155 156
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
D
Dave Chinner 已提交
157 158 159
		VFS_I(ip)->i_mode &= ~S_ISUID;
		if (VFS_I(ip)->i_mode & S_IXGRP)
			VFS_I(ip)->i_mode &= ~S_ISGID;
160 161 162 163 164 165 166 167 168 169 170
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
171
	return xfs_trans_commit(tp);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
200
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
201 202
}

203 204 205
STATIC int
xfs_file_fsync(
	struct file		*file,
206 207
	loff_t			start,
	loff_t			end,
208 209
	int			datasync)
{
210 211
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
212
	struct xfs_mount	*mp = ip->i_mount;
213 214
	int			error = 0;
	int			log_flushed = 0;
215
	xfs_lsn_t		lsn = 0;
216

C
Christoph Hellwig 已提交
217
	trace_xfs_file_fsync(ip);
218

219 220 221 222
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

223
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
224
		return -EIO;
225 226 227

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

242
	/*
243 244 245 246 247 248 249 250 251 252 253
	 * All metadata updates are logged, which means that we just have to
	 * flush the log up to the latest LSN that touched the inode. If we have
	 * concurrent fsync/fdatasync() calls, we need them to all block on the
	 * log force before we clear the ili_fsync_fields field. This ensures
	 * that we don't get a racing sync operation that does not wait for the
	 * metadata to hit the journal before returning. If we race with
	 * clearing the ili_fsync_fields, then all that will happen is the log
	 * force will do nothing as the lsn will already be on disk. We can't
	 * race with setting ili_fsync_fields because that is done under
	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
	 * until after the ili_fsync_fields is cleared.
254 255
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
256 257
	if (xfs_ipincount(ip)) {
		if (!datasync ||
258
		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 260
			lsn = ip->i_itemp->ili_last_lsn;
	}
261

262
	if (lsn) {
263
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 265 266
		ip->i_itemp->ili_fsync_fields = 0;
	}
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
267

268 269 270 271 272 273 274 275 276 277 278 279
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280

D
Dave Chinner 已提交
281
	return error;
282 283
}

284
STATIC ssize_t
285
xfs_file_dio_aio_read(
286
	struct kiocb		*iocb,
A
Al Viro 已提交
287
	struct iov_iter		*to)
288
{
289 290
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
291
	struct xfs_inode	*ip = XFS_I(inode);
292
	loff_t			isize = i_size_read(inode);
293
	size_t			count = iov_iter_count(to);
294
	struct iov_iter		data;
295
	struct xfs_buftarg	*target;
296 297
	ssize_t			ret = 0;

298
	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
299

300 301 302
	if (!count)
		return 0; /* skip atime */

303 304 305 306 307 308
	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;

	if (!IS_DAX(inode)) {
309
		/* DIO must be aligned to device logical sector size */
310
		if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
311
			if (iocb->ki_pos == isize)
312
				return 0;
E
Eric Sandeen 已提交
313
			return -EINVAL;
314 315 316
		}
	}

317
	/*
318 319 320 321 322 323 324 325
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
326 327
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
328
	if (mapping->nrpages) {
329
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
330 331
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

332 333 334 335 336 337 338 339 340 341 342
		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
343 344
		if (mapping->nrpages) {
			ret = filemap_write_and_wait(mapping);
345 346 347 348
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
349 350 351 352 353 354

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
355
			ret = invalidate_inode_pages2(mapping);
356 357
			WARN_ON_ONCE(ret);
			ret = 0;
358
		}
359
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
360
	}
361

362
	data = *to;
363 364 365 366 367 368 369
	if (IS_DAX(inode)) {
		ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
				NULL, 0);
	} else {
		ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
				xfs_get_blocks_direct, NULL, NULL, 0);
	}
370 371 372 373
	if (ret > 0) {
		iocb->ki_pos += ret;
		iov_iter_advance(to, ret);
	}
374 375
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

376
	file_accessed(iocb->ki_filp);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	return ret;
}

STATIC ssize_t
xfs_file_buffered_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
	ssize_t			ret;

	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);

	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_read_iter(iocb, to);
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}

STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct xfs_mount	*mp = XFS_I(file_inode(iocb->ki_filp))->i_mount;
	ssize_t			ret = 0;

	XFS_STATS_INC(mp, xs_read_calls);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

C
Christoph Hellwig 已提交
410
	if (iocb->ki_flags & IOCB_DIRECT)
411
		ret = xfs_file_dio_aio_read(iocb, to);
C
Christoph Hellwig 已提交
412
	else
413
		ret = xfs_file_buffered_aio_read(iocb, to);
414 415

	if (ret > 0)
416
		XFS_STATS_ADD(mp, xs_read_bytes, ret);
417 418 419
	return ret;
}

420 421
STATIC ssize_t
xfs_file_splice_read(
422 423 424 425
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
426
	unsigned int		flags)
427
{
428
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
429 430
	ssize_t			ret;

431
	XFS_STATS_INC(ip->i_mount, xs_read_calls);
432

433 434 435
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

C
Christoph Hellwig 已提交
436
	trace_xfs_file_splice_read(ip, count, *ppos);
437

438 439 440 441 442 443 444 445 446 447 448
	/*
	 * DAX inodes cannot ues the page cache for splice, so we have to push
	 * them through the VFS IO path. This means it goes through
	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
	 * cannot lock the splice operation at this level for DAX inodes.
	 */
	if (IS_DAX(VFS_I(ip))) {
		ret = default_file_splice_read(infilp, ppos, pipe, count,
					       flags);
		goto out;
	}
449

450 451
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
452
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
453 454 455
out:
	if (ret > 0)
		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
456 457 458 459
	return ret;
}

/*
460 461 462 463
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
464 465 466
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
467 468
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
469 470
	xfs_fsize_t		isize,
	bool			*did_zeroing)
471
{
472 473 474 475 476 477 478
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
479

480
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
481
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
482
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
483
	if (error)
484
		return error;
485

486
	ASSERT(nimaps > 0);
487

488 489 490 491
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
492
	if (imap.br_startblock == HOLESTARTBLOCK)
493 494 495 496 497
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
498
	*did_zeroing = true;
499
	return xfs_iozero(ip, isize, zero_len);
500 501 502
}

/*
503 504 505 506 507 508 509 510 511
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
512 513 514
 */
int					/* error (positive) */
xfs_zero_eof(
515 516
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
517 518
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
519
{
520 521 522 523 524 525 526 527 528 529 530 531
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
532 533
	ASSERT(offset > isize);

534 535
	trace_xfs_zero_eof(ip, isize, offset - isize);

536 537
	/*
	 * First handle zeroing the block on which isize resides.
538
	 *
539 540
	 * We only zero a part of that block so it is handled specially.
	 */
541
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
542
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
543 544
		if (error)
			return error;
545 546 547
	}

	/*
548 549 550 551 552 553 554
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
572 573

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
574 575
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
576 577
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
578
			return error;
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
599 600
		if (error)
			return error;
601

602
		*did_zeroing = true;
603 604 605 606 607 608 609
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

610 611 612
/*
 * Common pre-write limit and setup checks.
 *
613 614 615
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
616 617 618
 */
STATIC ssize_t
xfs_file_aio_write_checks(
619 620
	struct kiocb		*iocb,
	struct iov_iter		*from,
621 622
	int			*iolock)
{
623
	struct file		*file = iocb->ki_filp;
624 625
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
626
	ssize_t			error = 0;
627
	size_t			count = iov_iter_count(from);
628
	bool			drained_dio = false;
629

630
restart:
631 632
	error = generic_write_checks(iocb, from);
	if (error <= 0)
633 634
		return error;

635
	error = xfs_break_layouts(inode, iolock, true);
636 637 638
	if (error)
		return error;

639 640 641 642 643 644 645
	/* For changing security info in file_remove_privs() we need i_mutex */
	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
		xfs_rw_iunlock(ip, *iolock);
		*iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, *iolock);
		goto restart;
	}
646 647 648
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
649
	 * write.  If zeroing is needed and we are currently holding the
650 651
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
652 653 654 655 656 657 658 659
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
660
	 */
661
	spin_lock(&ip->i_flags_lock);
662
	if (iocb->ki_pos > i_size_read(inode)) {
663 664
		bool	zero = false;

665
		spin_unlock(&ip->i_flags_lock);
666 667 668 669 670 671 672
		if (!drained_dio) {
			if (*iolock == XFS_IOLOCK_SHARED) {
				xfs_rw_iunlock(ip, *iolock);
				*iolock = XFS_IOLOCK_EXCL;
				xfs_rw_ilock(ip, *iolock);
				iov_iter_reexpand(from, count);
			}
673 674 675 676 677 678 679 680 681
			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
682
			drained_dio = true;
683 684
			goto restart;
		}
685
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
686 687
		if (error)
			return error;
688 689
	} else
		spin_unlock(&ip->i_flags_lock);
690

C
Christoph Hellwig 已提交
691 692 693 694 695 696
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
697 698 699 700 701
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
702

703 704 705 706 707
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
708 709 710
	if (!IS_NOSEC(inode))
		return file_remove_privs(file);
	return 0;
711 712
}

713 714 715 716
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
717
 * By separating it from the buffered write path we remove all the tricky to
718 719
 * follow locking changes and looping.
 *
720 721 722 723 724 725 726 727 728 729 730 731 732
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
733
 * hitting it with a big hammer (i.e. inode_dio_wait()).
734
 *
735 736 737 738 739 740
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
741
	struct iov_iter		*from)
742 743 744 745 746 747 748
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
749
	int			unaligned_io = 0;
750
	int			iolock;
751
	size_t			count = iov_iter_count(from);
752 753
	loff_t			end;
	struct iov_iter		data;
754 755 756
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

757
	/* DIO must be aligned to device logical sector size */
758 759
	if (!IS_DAX(inode) &&
	    ((iocb->ki_pos | count) & target->bt_logical_sectormask))
E
Eric Sandeen 已提交
760
		return -EINVAL;
761

762
	/* "unaligned" here means not aligned to a filesystem block */
763 764
	if ((iocb->ki_pos & mp->m_blockmask) ||
	    ((iocb->ki_pos + count) & mp->m_blockmask))
765 766
		unaligned_io = 1;

767 768 769 770 771 772 773 774
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
775
		iolock = XFS_IOLOCK_EXCL;
776
	else
777 778
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
779 780 781 782 783 784

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
785 786 787 788
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
789
	}
790

791
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
792
	if (ret)
793
		goto out;
794
	count = iov_iter_count(from);
795
	end = iocb->ki_pos + count - 1;
796

797
	/*
798
	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
799
	 */
800
	if (mapping->nrpages) {
801
		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
802
		if (ret)
803
			goto out;
804
		/*
805 806 807
		 * Invalidate whole pages. This can return an error if we fail
		 * to invalidate a page, but this should never happen on XFS.
		 * Warn if it does fail.
808
		 */
809
		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
810 811
		WARN_ON_ONCE(ret);
		ret = 0;
812 813
	}

814 815 816 817 818
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
819
		inode_dio_wait(inode);
820
	else if (iolock == XFS_IOLOCK_EXCL) {
821
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
822
		iolock = XFS_IOLOCK_SHARED;
823 824
	}

C
Christoph Hellwig 已提交
825
	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
826

827
	data = *from;
828 829 830 831 832 833 834 835
	if (IS_DAX(inode)) {
		ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
				xfs_end_io_direct_write, 0);
	} else {
		ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
				xfs_get_blocks_direct, xfs_end_io_direct_write,
				NULL, DIO_ASYNC_EXTEND);
	}
836 837 838 839

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
840
					      iocb->ki_pos >> PAGE_SHIFT,
841
					      end >> PAGE_SHIFT);
842 843 844
	}

	if (ret > 0) {
845
		iocb->ki_pos += ret;
846 847
		iov_iter_advance(from, ret);
	}
848 849 850
out:
	xfs_rw_iunlock(ip, iolock);

851 852 853 854 855
	/*
	 * No fallback to buffered IO on errors for XFS. DAX can result in
	 * partial writes, but direct IO will either complete fully or fail.
	 */
	ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
856 857 858
	return ret;
}

859
STATIC ssize_t
860
xfs_file_buffered_aio_write(
861
	struct kiocb		*iocb,
862
	struct iov_iter		*from)
863 864 865 866
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
867
	struct xfs_inode	*ip = XFS_I(inode);
868 869
	ssize_t			ret;
	int			enospc = 0;
870
	int			iolock = XFS_IOLOCK_EXCL;
871

872
	xfs_rw_ilock(ip, iolock);
873

874
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
875
	if (ret)
876
		goto out;
877 878

	/* We can write back this queue in page reclaim */
879
	current->backing_dev_info = inode_to_bdi(inode);
880 881

write_retry:
C
Christoph Hellwig 已提交
882
	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
883
	ret = generic_perform_write(file, from, iocb->ki_pos);
884
	if (likely(ret >= 0))
885
		iocb->ki_pos += ret;
886

887
	/*
888 889 890 891 892 893 894
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
895
	 */
896 897 898 899 900 901 902
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

903
		enospc = 1;
D
Dave Chinner 已提交
904
		xfs_flush_inodes(ip->i_mount);
905 906 907
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
908
		goto write_retry;
909
	}
910

911
	current->backing_dev_info = NULL;
912 913
out:
	xfs_rw_iunlock(ip, iolock);
914 915 916 917
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
918
xfs_file_write_iter(
919
	struct kiocb		*iocb,
A
Al Viro 已提交
920
	struct iov_iter		*from)
921 922 923 924 925 926
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
927
	size_t			ocount = iov_iter_count(from);
928

929
	XFS_STATS_INC(ip->i_mount, xs_write_calls);
930 931 932 933

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
934 935
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
936

937
	if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
A
Al Viro 已提交
938
		ret = xfs_file_dio_aio_write(iocb, from);
939
	else
A
Al Viro 已提交
940
		ret = xfs_file_buffered_aio_write(iocb, from);
941

942
	if (ret > 0) {
943
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
944

945
		/* Handle various SYNC-type writes */
946
		ret = generic_write_sync(iocb, ret);
947
	}
948
	return ret;
949 950
}

951 952 953 954 955
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

956 957
STATIC long
xfs_file_fallocate(
958 959 960 961
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
962
{
963 964 965
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
966
	enum xfs_prealloc_flags	flags = 0;
967
	uint			iolock = XFS_IOLOCK_EXCL;
968
	loff_t			new_size = 0;
969
	bool			do_file_insert = 0;
970

971 972
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
973
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
974 975
		return -EOPNOTSUPP;

976
	xfs_ilock(ip, iolock);
977
	error = xfs_break_layouts(inode, &iolock, false);
978 979 980
	if (error)
		goto out_unlock;

981 982 983
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

984 985 986 987
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
988 989 990 991
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
992
			error = -EINVAL;
993 994 995
			goto out_unlock;
		}

996 997 998 999 1000
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
1001
			error = -EINVAL;
1002 1003 1004
			goto out_unlock;
		}

1005 1006 1007 1008 1009
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
1031
	} else {
1032 1033
		flags |= XFS_PREALLOC_SET;

1034 1035 1036
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
1037
			error = inode_newsize_ok(inode, new_size);
1038 1039 1040
			if (error)
				goto out_unlock;
		}
1041

1042 1043 1044 1045 1046
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
1047 1048 1049 1050
		if (error)
			goto out_unlock;
	}

1051
	if (file->f_flags & O_DSYNC)
1052 1053 1054
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
1064
		error = xfs_setattr_size(ip, &iattr);
1065 1066
		if (error)
			goto out_unlock;
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

1078
out_unlock:
1079
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
1080
	return error;
1081 1082 1083
}


L
Linus Torvalds 已提交
1084
STATIC int
1085
xfs_file_open(
L
Linus Torvalds 已提交
1086
	struct inode	*inode,
1087
	struct file	*file)
L
Linus Torvalds 已提交
1088
{
1089
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1090
		return -EFBIG;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1113
	mode = xfs_ilock_data_map_shared(ip);
1114
	if (ip->i_d.di_nextents > 0)
1115
		xfs_dir3_data_readahead(ip, 0, -1);
1116 1117
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1118 1119 1120
}

STATIC int
1121
xfs_file_release(
L
Linus Torvalds 已提交
1122 1123 1124
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1125
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1126 1127 1128
}

STATIC int
1129
xfs_file_readdir(
A
Al Viro 已提交
1130 1131
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1132
{
A
Al Viro 已提交
1133
	struct inode	*inode = file_inode(file);
1134
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1147
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1148
	 */
E
Eric Sandeen 已提交
1149
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1150

1151
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1152 1153
}

1154 1155
/*
 * This type is designed to indicate the type of offset we would like
1156
 * to search from page cache for xfs_seek_hole_data().
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1213
 * type for xfs_seek_hole_data().
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

1242
	index = startoff >> PAGE_SHIFT;
1243
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1244
	end = endoff >> PAGE_SHIFT;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * caller must lock inode with xfs_ilock_data_map_shared,
 * can we craft an appropriate ASSERT?
 *
 * end is because the VFS-level lseek interface is defined such that any
 * offset past i_size shall return -ENXIO, but we use this for quota code
 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
 */
loff_t
__xfs_seek_hole_data(
	struct inode		*inode,
1383
	loff_t			start,
1384
	loff_t			end,
1385
	int			whence)
1386 1387 1388 1389 1390
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fileoff_t		fsbno;
1391
	xfs_filblks_t		lastbno;
1392 1393
	int			error;

1394
	if (start >= end) {
D
Dave Chinner 已提交
1395
		error = -ENXIO;
1396
		goto out_error;
1397 1398 1399 1400 1401 1402
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1403
	fsbno = XFS_B_TO_FSBT(mp, start);
1404
	lastbno = XFS_B_TO_FSB(mp, end);
1405

1406 1407 1408 1409
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1410

1411
		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1412 1413
				       XFS_BMAPI_ENTIRE);
		if (error)
1414
			goto out_error;
1415

1416 1417
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1418
			error = -ENXIO;
1419
			goto out_error;
1420 1421 1422 1423 1424 1425
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1436 1437 1438
				goto out;

			/*
1439 1440
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1441 1442 1443
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1444 1445
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1446 1447 1448 1449 1450
					goto out;
			}
		}

		/*
1451 1452
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1453
		 */
1454
		if (nmap == 1) {
1455 1456 1457 1458 1459 1460
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
1461
				offset = end;
1462 1463 1464 1465 1466 1467
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1468
			error = -ENXIO;
1469
			goto out_error;
1470 1471
		}

1472 1473 1474 1475
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1476
		 * if the next reading offset is not at or beyond EOF.
1477 1478 1479
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
1480
		if (start >= end) {
1481
			if (whence == SEEK_HOLE) {
1482
				offset = end;
1483 1484 1485
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1486
			error = -ENXIO;
1487
			goto out_error;
1488
		}
1489 1490
	}

1491 1492
out:
	/*
1493
	 * If at this point we have found the hole we wanted, the returned
1494
	 * offset may be bigger than the file size as it may be aligned to
1495
	 * page boundary for unwritten extents.  We need to deal with this
1496 1497
	 * situation in particular.
	 */
1498
	if (whence == SEEK_HOLE)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		offset = min_t(loff_t, offset, end);

	return offset;

out_error:
	return error;
}

STATIC loff_t
xfs_seek_hole_data(
	struct file		*file,
	loff_t			start,
	int			whence)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	uint			lock;
	loff_t			offset, end;
	int			error = 0;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	lock = xfs_ilock_data_map_shared(ip);

	end = i_size_read(inode);
	offset = __xfs_seek_hole_data(inode, start, end, whence);
	if (offset < 0) {
		error = offset;
		goto out_unlock;
	}

J
Jie Liu 已提交
1532
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1533 1534

out_unlock:
1535
	xfs_iunlock(ip, lock);
1536 1537

	if (error)
D
Dave Chinner 已提交
1538
		return error;
1539 1540 1541 1542 1543 1544 1545
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1546
	int		whence)
1547
{
1548
	switch (whence) {
1549 1550 1551
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1552
		return generic_file_llseek(file, offset, whence);
1553
	case SEEK_HOLE:
1554
	case SEEK_DATA:
1555
		return xfs_seek_hole_data(file, offset, whence);
1556 1557 1558 1559 1560
	default:
		return -EINVAL;
	}
}

1561 1562 1563 1564 1565
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
1566
 *   sb_start_pagefault(vfs, freeze)
1567
 *     i_mmaplock (XFS - truncate serialisation)
1568 1569
 *       page_lock (MM)
 *         i_lock (XFS - extent map serialisation)
1570 1571
 */

1572 1573 1574 1575 1576
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
1577 1578
 */
STATIC int
1579
xfs_filemap_page_mkwrite(
1580 1581 1582
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1583
	struct inode		*inode = file_inode(vma->vm_file);
1584
	int			ret;
1585

1586
	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1587

1588
	sb_start_pagefault(inode->i_sb);
1589
	file_update_time(vma->vm_file);
1590
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1591

1592
	if (IS_DAX(inode)) {
1593
		ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1594
	} else {
1595
		ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1596 1597 1598 1599 1600 1601 1602
		ret = block_page_mkwrite_return(ret);
	}

	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);

	return ret;
1603 1604
}

1605
STATIC int
1606
xfs_filemap_fault(
1607 1608 1609
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
1610
	struct inode		*inode = file_inode(vma->vm_file);
1611
	int			ret;
1612

1613
	trace_xfs_filemap_fault(XFS_I(inode));
1614

1615
	/* DAX can shortcut the normal fault path on write faults! */
1616
	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1617
		return xfs_filemap_page_mkwrite(vma, vmf);
1618

1619 1620 1621 1622 1623 1624 1625 1626
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
	if (IS_DAX(inode)) {
		/*
		 * we do not want to trigger unwritten extent conversion on read
		 * faults - that is unnecessary overhead and would also require
		 * changes to xfs_get_blocks_direct() to map unwritten extent
		 * ioend for conversion on read-only mappings.
		 */
1627
		ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1628 1629 1630
	} else
		ret = filemap_fault(vma, vmf);
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1631

1632 1633 1634
	return ret;
}

1635 1636 1637 1638 1639 1640 1641
/*
 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
 * both read and write faults. Hence we need to handle both cases. There is no
 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
 * handle both cases here. @flags carries the information on the type of fault
 * occuring.
 */
M
Matthew Wilcox 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
STATIC int
xfs_filemap_pmd_fault(
	struct vm_area_struct	*vma,
	unsigned long		addr,
	pmd_t			*pmd,
	unsigned int		flags)
{
	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret;

	if (!IS_DAX(inode))
		return VM_FAULT_FALLBACK;

	trace_xfs_filemap_pmd_fault(ip);

1658 1659 1660 1661 1662
	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(inode->i_sb);
		file_update_time(vma->vm_file);
	}

M
Matthew Wilcox 已提交
1663
	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1664
	ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
M
Matthew Wilcox 已提交
1665 1666
	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);

1667 1668
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1669 1670 1671 1672

	return ret;
}

1673 1674 1675
/*
 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
 * updates on write faults. In reality, it's need to serialise against
1676 1677
 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
 * to ensure we serialise the fault barrier in place.
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
 */
static int
xfs_filemap_pfn_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{

	struct inode		*inode = file_inode(vma->vm_file);
	struct xfs_inode	*ip = XFS_I(inode);
	int			ret = VM_FAULT_NOPAGE;
	loff_t			size;

	trace_xfs_filemap_pfn_mkwrite(ip);

	sb_start_pagefault(inode->i_sb);
	file_update_time(vma->vm_file);

	/* check if the faulting page hasn't raced with truncate */
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		ret = VM_FAULT_SIGBUS;
1700 1701
	else if (IS_DAX(inode))
		ret = dax_pfn_mkwrite(vma, vmf);
1702 1703
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
	sb_end_pagefault(inode->i_sb);
M
Matthew Wilcox 已提交
1704
	return ret;
1705

M
Matthew Wilcox 已提交
1706 1707
}

1708 1709
static const struct vm_operations_struct xfs_file_vm_ops = {
	.fault		= xfs_filemap_fault,
M
Matthew Wilcox 已提交
1710
	.pmd_fault	= xfs_filemap_pmd_fault,
1711 1712
	.map_pages	= filemap_map_pages,
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1713
	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
};

STATIC int
xfs_file_mmap(
	struct file	*filp,
	struct vm_area_struct *vma)
{
	file_accessed(filp);
	vma->vm_ops = &xfs_file_vm_ops;
	if (IS_DAX(file_inode(filp)))
M
Matthew Wilcox 已提交
1724
		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1725
	return 0;
1726 1727
}

1728
const struct file_operations xfs_file_operations = {
1729
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1730
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1731
	.write_iter	= xfs_file_write_iter,
1732
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1733
	.splice_write	= iter_file_splice_write,
1734
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1735
#ifdef CONFIG_COMPAT
1736
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1737
#endif
1738 1739 1740 1741
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1742
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1743 1744
};

1745
const struct file_operations xfs_dir_file_operations = {
1746
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1747
	.read		= generic_read_dir,
1748
	.iterate_shared	= xfs_file_readdir,
1749
	.llseek		= generic_file_llseek,
1750
	.unlocked_ioctl	= xfs_file_ioctl,
1751
#ifdef CONFIG_COMPAT
1752
	.compat_ioctl	= xfs_file_compat_ioctl,
1753
#endif
1754
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1755
};