ds.c 58.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/cpu_entry_area.h>
7
#include <asm/perf_event.h>
8
#include <asm/tlbflush.h>
9
#include <asm/insn.h>
10
#include <asm/io.h>
11

12
#include "../perf_event.h"
13

14 15 16
/* Waste a full page so it can be mapped into the cpu_entry_area */
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);

17 18 19
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

20
#define PEBS_FIXUP_SIZE		PAGE_SIZE
21 22 23 24 25 26 27 28 29 30 31 32

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57 58
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
59 60
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

61 62
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79 80
};

81 82 83
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98 99
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

138
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 140 141
{
	union perf_mem_data_src dse;

142 143 144 145 146 147
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
148 149 150 151 152 153 154 155 156

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
157 158 159 160 161 162
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
163 164 165
	return dse.val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
181
	if (x86_pmu.pebs_no_tlb) {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

221 222 223 224
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
225 226 227 228 229 230
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
231
	u64 real_ip, tsx_tuning;
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
247 248
};

249 250
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

264
void init_debug_store_on_cpu(int cpu)
265 266 267 268 269 270 271 272 273 274 275
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

276
void fini_debug_store_on_cpu(int cpu)
277 278 279 280 281 282 283
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

284 285
static DEFINE_PER_CPU(void *, insn_buffer);

286
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287
{
288
	unsigned long start = (unsigned long)cea;
289 290 291 292
	phys_addr_t pa;
	size_t msz = 0;

	pa = virt_to_phys(addr);
293 294

	preempt_disable();
295 296
	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, pa, prot);
297 298 299 300 301 302 303

	/*
	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
	 * all TLB entries for it.
	 */
	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
304 305 306 307
}

static void ds_clear_cea(void *cea, size_t size)
{
308
	unsigned long start = (unsigned long)cea;
309 310
	size_t msz = 0;

311
	preempt_disable();
312 313
	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, 0, PAGE_NONE);
314 315 316

	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
317 318 319 320 321
}

static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
{
	unsigned int order = get_order(size);
322
	int node = cpu_to_node(cpu);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct page *page;

	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
	return page ? page_address(page) : NULL;
}

static void dsfree_pages(const void *buffer, size_t size)
{
	if (buffer)
		free_pages((unsigned long)buffer, get_order(size));
}

static int alloc_pebs_buffer(int cpu)
{
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	size_t bsiz = x86_pmu.pebs_buffer_size;
	int max, node = cpu_to_node(cpu);
341
	void *buffer, *insn_buff, *cea;
342 343 344 345

	if (!x86_pmu.pebs)
		return 0;

346
	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347 348 349
	if (unlikely(!buffer))
		return -ENOMEM;

350 351 352 353 354
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
355 356
		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!insn_buff) {
357
			dsfree_pages(buffer, bsiz);
358 359
			return -ENOMEM;
		}
360
		per_cpu(insn_buffer, cpu) = insn_buff;
361
	}
362 363 364 365 366
	hwev->ds_pebs_vaddr = buffer;
	/* Update the cpu entry area mapping */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds->pebs_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367
	ds->pebs_index = ds->pebs_buffer_base;
368 369
	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370 371 372
	return 0;
}

373 374
static void release_pebs_buffer(int cpu)
{
375 376
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
377

378
	if (!x86_pmu.pebs)
379 380
		return;

381 382 383
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

384 385 386 387 388
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
	hwev->ds_pebs_vaddr = NULL;
389 390
}

391 392
static int alloc_bts_buffer(int cpu)
{
393 394 395 396
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	void *buffer, *cea;
	int max;
397 398 399 400

	if (!x86_pmu.bts)
		return 0;

401
	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402 403
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404
		return -ENOMEM;
405
	}
406 407 408 409 410
	hwev->ds_bts_vaddr = buffer;
	/* Update the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds->bts_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411
	ds->bts_index = ds->bts_buffer_base;
412 413 414 415 416
	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
					max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
					(max / 16) * BTS_RECORD_SIZE;
417 418 419
	return 0;
}

420 421
static void release_bts_buffer(int cpu)
{
422 423
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
424

425
	if (!x86_pmu.bts)
426 427
		return;

428 429 430 431 432
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds_clear_cea(cea, BTS_BUFFER_SIZE);
	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
	hwev->ds_bts_vaddr = NULL;
433 434
}

435 436
static int alloc_ds_buffer(int cpu)
{
437
	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438

439
	memset(ds, 0, sizeof(*ds));
440 441 442 443 444 445 446 447 448
	per_cpu(cpu_hw_events, cpu).ds = ds;
	return 0;
}

static void release_ds_buffer(int cpu)
{
	per_cpu(cpu_hw_events, cpu).ds = NULL;
}

449
void release_ds_buffers(void)
450 451 452 453 454 455
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

456 457 458 459 460 461 462 463 464
	for_each_possible_cpu(cpu)
		release_ds_buffer(cpu);

	for_each_possible_cpu(cpu) {
		/*
		 * Again, ignore errors from offline CPUs, they will no longer
		 * observe cpu_hw_events.ds and not program the DS_AREA when
		 * they come up.
		 */
465
		fini_debug_store_on_cpu(cpu);
466
	}
467 468

	for_each_possible_cpu(cpu) {
469 470
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
471 472 473
	}
}

474
void reserve_ds_buffers(void)
475
{
476 477 478 479 480
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
481 482

	if (!x86_pmu.bts && !x86_pmu.pebs)
483
		return;
484

485 486 487 488 489 490
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

491
	for_each_possible_cpu(cpu) {
492 493 494 495
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
496

497 498 499 500 501
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
502

503
		if (bts_err && pebs_err)
504
			break;
505 506 507 508 509 510
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
511

512 513 514
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
515 516
	}

517 518 519 520 521 522 523 524 525 526
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

527 528 529 530 531
		for_each_possible_cpu(cpu) {
			/*
			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
			 * will get this call through intel_pmu_cpu_starting().
			 */
532
			init_debug_store_on_cpu(cpu);
533
		}
534 535 536 537 538 539 540
	}
}

/*
 * BTS
 */

541
struct event_constraint bts_constraint =
542
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543

544
void intel_pmu_enable_bts(u64 config)
545 546 547 548 549
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

550 551
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
552 553
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
554 555

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557 558

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560 561 562 563

	update_debugctlmsr(debugctlmsr);
}

564
void intel_pmu_disable_bts(void)
565
{
566
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567 568 569 570 571 572 573 574
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
575 576
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577 578 579 580

	update_debugctlmsr(debugctlmsr);
}

581
int intel_pmu_drain_bts_buffer(void)
582
{
583
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584 585 586 587 588 589
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
590
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591
	struct bts_record *at, *base, *top;
592 593 594
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
595
	unsigned long skip = 0;
596 597 598
	struct pt_regs regs;

	if (!event)
599
		return 0;
600

601
	if (!x86_pmu.bts_active)
602
		return 0;
603

604 605
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
606

607
	if (top <= base)
608
		return 0;
609

610 611
	memset(&regs, 0, sizeof(regs));

612 613
	ds->bts_index = ds->bts_buffer_base;

614
	perf_sample_data_init(&data, 0, event->hw.last_period);
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

637 638 639 640 641
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
642
	rcu_read_lock();
643 644
	perf_prepare_sample(&header, &data, event, &regs);

645 646
	if (perf_output_begin(&handle, &data, event,
			      header.size * (top - base - skip)))
P
Peter Zijlstra 已提交
647
		goto unlock;
648

649 650 651 652 653 654
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

655 656 657 658 659 660 661 662 663 664 665
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
666 667
unlock:
	rcu_read_unlock();
668
	return 1;
669 670
}

671 672
static inline void intel_pmu_drain_pebs_buffer(void)
{
673 674 675
	struct perf_sample_data data;

	x86_pmu.drain_pebs(NULL, &data);
676 677
}

678 679 680
/*
 * PEBS
 */
681
struct event_constraint intel_core2_pebs_event_constraints[] = {
682 683 684 685 686
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
687
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
688
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
689 690 691
	EVENT_CONSTRAINT_END
};

692
struct event_constraint intel_atom_pebs_event_constraints[] = {
693 694 695
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
696
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
697
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
698 699
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
700 701 702
	EVENT_CONSTRAINT_END
};

703
struct event_constraint intel_slm_pebs_event_constraints[] = {
704
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
705
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
706 707
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708 709 710
	EVENT_CONSTRAINT_END
};

711 712 713 714 715 716
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

717
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
719 720 721
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
722
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
723 724 725 726 727 728
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
729
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
731 732 733
	EVENT_CONSTRAINT_END
};

734
struct event_constraint intel_westmere_pebs_event_constraints[] = {
735
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
736 737 738
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
739
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
740 741 742 743 744 745
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
746
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
748 749 750
	EVENT_CONSTRAINT_END
};

751
struct event_constraint intel_snb_pebs_event_constraints[] = {
752
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
755
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
757 758 759 760
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761 762
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763 764 765
	EVENT_CONSTRAINT_END
};

766
struct event_constraint intel_ivb_pebs_event_constraints[] = {
767
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
770
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
772
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
774 775 776 777
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778 779
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780 781 782
        EVENT_CONSTRAINT_END
};

783
struct event_constraint intel_hsw_pebs_event_constraints[] = {
784
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785 786
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
788
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
790
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791 792 793 794 795 796 797 798 799 800
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801 802 803 804 805
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

806 807 808 809
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
811
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


830 831
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
832
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
834
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
836 837 838 839 840 841 842 843 844 845 846 847
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
848 849
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850 851 852
	EVENT_CONSTRAINT_END
};

K
Kan Liang 已提交
853 854
struct event_constraint intel_icl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
855
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
K
Kan Liang 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),	/* MEM_INST_RETIRED.LOAD */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),	/* MEM_INST_RETIRED.STORE */

	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */

	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */

	/*
	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
	 * need the full constraints from the main table.
	 */

	EVENT_CONSTRAINT_END
};

873
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
874 875 876
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
877
	if (!event->attr.precise_ip)
878 879 880 881
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
882
			if (constraint_match(c, event->hw.config)) {
883
				event->hw.flags |= c->flags;
884
				return c;
885
			}
886 887 888
		}
	}

889 890 891 892 893 894 895
	/*
	 * Extended PEBS support
	 * Makes the PEBS code search the normal constraints.
	 */
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		return NULL;

896 897 898
	return &emptyconstraint;
}

899 900 901 902 903 904 905
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
906 907 908
	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
		return false;

909 910 911
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

912 913 914 915 916 917 918 919
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

920 921 922 923
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;
924 925
	int reserved;

926 927 928
	if (cpuc->n_pebs_via_pt)
		return;

929 930 931 932
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
	else
		reserved = x86_pmu.max_pebs_events;
933 934 935

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
936
			reserved * cpuc->pebs_record_size;
937
	} else {
938
		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
939 940 941 942 943
	}

	ds->pebs_interrupt_threshold = threshold;
}

944 945 946 947 948 949 950 951 952 953 954 955 956
static void adaptive_pebs_record_size_update(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
	int sz = sizeof(struct pebs_basic);

	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
		sz += sizeof(struct pebs_meminfo);
	if (pebs_data_cfg & PEBS_DATACFG_GP)
		sz += sizeof(struct pebs_gprs);
	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
		sz += sizeof(struct pebs_xmm);
	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
957
		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
958 959 960 961 962

	cpuc->pebs_record_size = sz;
}

#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
963 964
				PERF_SAMPLE_PHYS_ADDR |			     \
				PERF_SAMPLE_WEIGHT_TYPE |		     \
965 966
				PERF_SAMPLE_TRANSACTION |		     \
				PERF_SAMPLE_DATA_PAGE_SIZE)
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

static u64 pebs_update_adaptive_cfg(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	u64 sample_type = attr->sample_type;
	u64 pebs_data_cfg = 0;
	bool gprs, tsx_weight;

	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
	    attr->precise_ip > 1)
		return pebs_data_cfg;

	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;

	/*
	 * We need GPRs when:
	 * + user requested them
	 * + precise_ip < 2 for the non event IP
	 * + For RTM TSX weight we need GPRs for the abort code.
	 */
	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
	       (attr->sample_regs_intr & PEBS_GP_REGS);

991
	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
992 993 994 995 996 997 998
		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
		      x86_pmu.rtm_abort_event);

	if (gprs || (attr->precise_ip < 2) || tsx_weight)
		pebs_data_cfg |= PEBS_DATACFG_GP;

	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
K
Kan Liang 已提交
999
	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		pebs_data_cfg |= PEBS_DATACFG_XMMS;

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		/*
		 * For now always log all LBRs. Could configure this
		 * later.
		 */
		pebs_data_cfg |= PEBS_DATACFG_LBRS |
			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
	}

	return pebs_data_cfg;
}

1014
static void
1015 1016
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
		  struct perf_event *event, bool add)
1017
{
1018
	struct pmu *pmu = event->ctx->pmu;
1019 1020 1021 1022 1023 1024 1025
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

1026 1027 1028 1029 1030 1031
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

1032
		update = true;
1033
	}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
	 * iterating all remaining PEBS events to reconstruct the config.
	 */
	if (x86_pmu.intel_cap.pebs_baseline && add) {
		u64 pebs_data_cfg;

		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
		if (cpuc->n_pebs == 1) {
			cpuc->pebs_data_cfg = 0;
			cpuc->pebs_record_size = sizeof(struct pebs_basic);
		}

		pebs_data_cfg = pebs_update_adaptive_cfg(event);

		/* Update pebs_record_size if new event requires more data. */
		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
			cpuc->pebs_data_cfg |= pebs_data_cfg;
			adaptive_pebs_record_size_update();
			update = true;
		}
	}

1058 1059
	if (update)
		pebs_update_threshold(cpuc);
1060 1061
}

1062
void intel_pmu_pebs_add(struct perf_event *event)
1063
{
1064 1065 1066 1067 1068
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
1069
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1070
		cpuc->n_large_pebs++;
1071 1072
	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
		cpuc->n_pebs_via_pt++;
1073

1074
	pebs_update_state(needed_cb, cpuc, event, true);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!is_pebs_pt(event))
		return;

	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
}

static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	struct debug_store *ds = cpuc->ds;

	if (!is_pebs_pt(event))
		return;

	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;

	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;

	wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
}

1105
void intel_pmu_pebs_enable(struct perf_event *event)
1106
{
1107
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1108
	struct hw_perf_event *hwc = &event->hw;
1109
	struct debug_store *ds = cpuc->ds;
1110

1111 1112
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

1113
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1114

K
Kan Liang 已提交
1115
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1116
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1117 1118
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
1119

1120 1121 1122 1123 1124 1125 1126 1127
	if (x86_pmu.intel_cap.pebs_baseline) {
		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
		}
	}

1128
	/*
1129 1130
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1131
	 */
1132
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1133 1134 1135 1136 1137
		unsigned int idx = hwc->idx;

		if (idx >= INTEL_PMC_IDX_FIXED)
			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
		ds->pebs_event_reset[idx] =
1138
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1139 1140
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
1141
	}
1142 1143

	intel_pmu_pebs_via_pt_enable(event);
1144 1145
}

1146
void intel_pmu_pebs_del(struct perf_event *event)
1147 1148 1149 1150 1151 1152
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
1153
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1154
		cpuc->n_large_pebs--;
1155 1156
	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
		cpuc->n_pebs_via_pt--;
1157

1158
	pebs_update_state(needed_cb, cpuc, event, false);
1159 1160
}

1161
void intel_pmu_pebs_disable(struct perf_event *event)
1162
{
1163
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164
	struct hw_perf_event *hwc = &event->hw;
1165

1166 1167
	if (cpuc->n_pebs == cpuc->n_large_pebs &&
	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1168
		intel_pmu_drain_pebs_buffer();
1169

1170
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1171

K
Kan Liang 已提交
1172 1173
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
	    (x86_pmu.version < 5))
1174
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1175
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1176 1177
		cpuc->pebs_enabled &= ~(1ULL << 63);

1178 1179
	intel_pmu_pebs_via_pt_disable(event);

1180
	if (cpuc->enabled)
1181
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1182 1183 1184 1185

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

1186
void intel_pmu_pebs_enable_all(void)
1187
{
1188
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189 1190 1191 1192 1193

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

1194
void intel_pmu_pebs_disable_all(void)
1195
{
1196
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1197 1198 1199 1200 1201

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

1202 1203
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
1204
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1205 1206 1207
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
1208
	int is_64bit = 0;
1209
	void *kaddr;
1210
	int size;
1211

1212 1213 1214 1215 1216 1217
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
1218 1219 1220
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
1221 1222 1223
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
1234
	if ((ip - to) > PEBS_FIXUP_SIZE)
1235 1236 1237 1238 1239 1240
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1241
		set_linear_ip(regs, from);
1242 1243 1244
		return 1;
	}

1245
	size = ip - to;
1246
	if (!kernel_ip(ip)) {
1247
		int bytes;
1248 1249
		u8 *buf = this_cpu_read(insn_buffer);

1250
		/* 'size' must fit our buffer, see above */
1251
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1252
		if (bytes != 0)
1253 1254 1255 1256 1257 1258 1259
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1260 1261 1262 1263 1264
	do {
		struct insn insn;

		old_to = to;

1265
#ifdef CONFIG_X86_64
1266
		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1267
#endif
1268
		insn_init(&insn, kaddr, size, is_64bit);
1269
		insn_get_length(&insn);
1270 1271 1272 1273 1274 1275 1276 1277
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1278

1279
		to += insn.length;
1280
		kaddr += insn.length;
1281
		size -= insn.length;
1282 1283 1284
	} while (to < ip);

	if (to == ip) {
1285
		set_linear_ip(regs, old_to);
1286 1287 1288
		return 1;
	}

P
Peter Zijlstra 已提交
1289 1290 1291 1292
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1293 1294 1295
	return 0;
}

1296
static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1297
{
1298 1299
	if (tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1300 1301 1302 1303 1304
		return tsx.cycles_last_block;
	}
	return 0;
}

1305
static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1306
{
1307
	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1308 1309

	/* For RTM XABORTs also log the abort code from AX */
1310 1311
	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1312 1313 1314
	return txn;
}

1315 1316 1317 1318 1319 1320 1321
static inline u64 get_pebs_status(void *n)
{
	if (x86_pmu.intel_cap.pebs_format < 4)
		return ((struct pebs_record_nhm *)n)->status;
	return ((struct pebs_basic *)n)->applicable_counters;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)

static u64 get_data_src(struct perf_event *event, u64 aux)
{
	u64 val = PERF_MEM_NA;
	int fl = event->hw.flags;
	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);

	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
		val = load_latency_data(aux);
	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
		val = precise_datala_hsw(event, aux);
	else if (fst)
		val = precise_store_data(aux);
	return val;
}

1342 1343 1344 1345
#define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
				 PERF_SAMPLE_PHYS_ADDR |	\
				 PERF_SAMPLE_DATA_PAGE_SIZE)

1346
static void setup_pebs_fixed_sample_data(struct perf_event *event,
1347 1348 1349
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1350 1351
{
	/*
1352 1353
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1354
	 */
1355
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1356
	struct pebs_record_skl *pebs = __pebs;
1357
	u64 sample_type;
1358
	int fll;
1359

1360 1361 1362
	if (pebs == NULL)
		return;

1363
	sample_type = event->attr.sample_type;
1364
	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1365

1366
	perf_sample_data_init(data, 0, event->hw.last_period);
1367

1368
	data->period = event->hw.last_period;
1369 1370

	/*
1371
	 * Use latency for weight (only avail with PEBS-LL)
1372
	 */
1373 1374
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
		data->weight.full = pebs->lat;
1375 1376 1377 1378

	/*
	 * data.data_src encodes the data source
	 */
1379 1380
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		data->data_src.val = get_data_src(event, pebs->dse);
1381

1382 1383 1384
	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
I
Ingo Molnar 已提交
1385
	 * previous PMI context or an (I)RET happened between the record and
1386 1387 1388 1389 1390
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

1391
	/*
1392 1393 1394
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1395
	 *
1396
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1397
	 */
1398
	*regs = *iregs;
1399 1400 1401 1402 1403 1404 1405

	/*
	 * Initialize regs_>flags from PEBS,
	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
	 * i.e., do not rely on it being zero:
	 */
	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1406

1407
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1408 1409 1410 1411 1412 1413 1414
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1415 1416
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;
1417

1418
#ifndef CONFIG_X86_32
1419 1420 1421 1422 1423 1424 1425 1426
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1427 1428 1429
#endif
	}

1430
	if (event->attr.precise_ip > 1) {
1431 1432 1433 1434 1435
		/*
		 * Haswell and later processors have an 'eventing IP'
		 * (real IP) which fixes the off-by-1 skid in hardware.
		 * Use it when precise_ip >= 2 :
		 */
1436 1437 1438 1439
		if (x86_pmu.intel_cap.pebs_format >= 2) {
			set_linear_ip(regs, pebs->real_ip);
			regs->flags |= PERF_EFLAGS_EXACT;
		} else {
1440
			/* Otherwise, use PEBS off-by-1 IP: */
1441 1442
			set_linear_ip(regs, pebs->ip);

1443 1444 1445 1446 1447
			/*
			 * With precise_ip >= 2, try to fix up the off-by-1 IP
			 * using the LBR. If successful, the fixup function
			 * corrects regs->ip and calls set_linear_ip() on regs:
			 */
1448 1449 1450
			if (intel_pmu_pebs_fixup_ip(regs))
				regs->flags |= PERF_EFLAGS_EXACT;
		}
1451 1452 1453 1454 1455
	} else {
		/*
		 * When precise_ip == 1, return the PEBS off-by-1 IP,
		 * no fixup attempted:
		 */
1456
		set_linear_ip(regs, pebs->ip);
1457
	}
1458

1459

1460
	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1461
	    x86_pmu.intel_cap.pebs_format >= 1)
1462
		data->addr = pebs->dla;
1463

1464 1465
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1466 1467
		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1468

1469
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1470 1471
			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
							      pebs->ax);
1472
	}
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1484
	if (has_branch_stack(event))
1485 1486 1487
		data->br_stack = &cpuc->lbr_stack;
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static void adaptive_pebs_save_regs(struct pt_regs *regs,
				    struct pebs_gprs *gprs)
{
	regs->ax = gprs->ax;
	regs->bx = gprs->bx;
	regs->cx = gprs->cx;
	regs->dx = gprs->dx;
	regs->si = gprs->si;
	regs->di = gprs->di;
	regs->bp = gprs->bp;
	regs->sp = gprs->sp;
#ifndef CONFIG_X86_32
	regs->r8 = gprs->r8;
	regs->r9 = gprs->r9;
	regs->r10 = gprs->r10;
	regs->r11 = gprs->r11;
	regs->r12 = gprs->r12;
	regs->r13 = gprs->r13;
	regs->r14 = gprs->r14;
	regs->r15 = gprs->r15;
#endif
}

/*
 * With adaptive PEBS the layout depends on what fields are configured.
 */

static void setup_pebs_adaptive_sample_data(struct perf_event *event,
					    struct pt_regs *iregs, void *__pebs,
					    struct perf_sample_data *data,
					    struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct pebs_basic *basic = __pebs;
	void *next_record = basic + 1;
	u64 sample_type;
	u64 format_size;
	struct pebs_meminfo *meminfo = NULL;
	struct pebs_gprs *gprs = NULL;
	struct x86_perf_regs *perf_regs;

	if (basic == NULL)
		return;

	perf_regs = container_of(regs, struct x86_perf_regs, regs);
	perf_regs->xmm_regs = NULL;

	sample_type = event->attr.sample_type;
	format_size = basic->format_size;
	perf_sample_data_init(data, 0, event->hw.last_period);
	data->period = event->hw.last_period;

	if (event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(basic->tsc);

	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
	 * previous PMI context or an (I)RET happened between the record and
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

	*regs = *iregs;
	/* The ip in basic is EventingIP */
	set_linear_ip(regs, basic->ip);
	regs->flags = PERF_EFLAGS_EXACT;

	/*
	 * The record for MEMINFO is in front of GP
	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
	 * Save the pointer here but process later.
	 */
	if (format_size & PEBS_DATACFG_MEMINFO) {
		meminfo = next_record;
		next_record = meminfo + 1;
	}

	if (format_size & PEBS_DATACFG_GP) {
		gprs = next_record;
		next_record = gprs + 1;

		if (event->attr.precise_ip < 2) {
			set_linear_ip(regs, gprs->ip);
			regs->flags &= ~PERF_EFLAGS_EXACT;
		}

		if (sample_type & PERF_SAMPLE_REGS_INTR)
			adaptive_pebs_save_regs(regs, gprs);
	}

	if (format_size & PEBS_DATACFG_MEMINFO) {
1581 1582
		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
			data->weight.full = meminfo->latency ?:
1583 1584 1585 1586 1587
				intel_get_tsx_weight(meminfo->tsx_tuning);

		if (sample_type & PERF_SAMPLE_DATA_SRC)
			data->data_src.val = get_data_src(event, meminfo->aux);

1588
		if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
			data->addr = meminfo->address;

		if (sample_type & PERF_SAMPLE_TRANSACTION)
			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
							  gprs ? gprs->ax : 0);
	}

	if (format_size & PEBS_DATACFG_XMMS) {
		struct pebs_xmm *xmm = next_record;

		next_record = xmm + 1;
		perf_regs->xmm_regs = xmm->xmm;
	}

	if (format_size & PEBS_DATACFG_LBRS) {
1604
		struct lbr_entry *lbr = next_record;
1605 1606
		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
					& 0xff) + 1;
1607
		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

		if (has_branch_stack(event)) {
			intel_pmu_store_pebs_lbrs(lbr);
			data->br_stack = &cpuc->lbr_stack;
		}
	}

	WARN_ONCE(next_record != __pebs + (format_size >> 48),
			"PEBS record size %llu, expected %llu, config %llx\n",
			format_size >> 48,
			(u64)(next_record - __pebs),
			basic->format_size);
}

1622 1623 1624 1625 1626 1627 1628
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1629 1630 1631 1632 1633 1634 1635
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1636 1637 1638
	if (base == NULL)
		return NULL;

1639 1640
	for (at = base; at < top; at += cpuc->pebs_record_size) {
		unsigned long status = get_pebs_status(at);
1641

1642
		if (test_bit(bit, (unsigned long *)&status)) {
1643 1644 1645
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1646

1647
			if (status == (1 << bit))
1648 1649 1650
				return at;

			/* clear non-PEBS bit and re-check */
1651
			pebs_status = status & cpuc->pebs_enabled;
1652
			pebs_status &= PEBS_COUNTER_MASK;
1653 1654 1655 1656 1657 1658 1659
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668
void intel_pmu_auto_reload_read(struct perf_event *event)
{
	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));

	perf_pmu_disable(event->pmu);
	intel_pmu_drain_pebs_buffer();
	perf_pmu_enable(event->pmu);
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * Special variant of intel_pmu_save_and_restart() for auto-reload.
 */
static int
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - x86_pmu.cntval_bits;
	u64 period = hwc->sample_period;
	u64 prev_raw_count, new_raw_count;
	s64 new, old;

	WARN_ON(!period);

	/*
	 * drain_pebs() only happens when the PMU is disabled.
	 */
	WARN_ON(this_cpu_read(cpu_hw_events.enabled));

	prev_raw_count = local64_read(&hwc->prev_count);
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
	local64_set(&hwc->prev_count, new_raw_count);

	/*
	 * Since the counter increments a negative counter value and
	 * overflows on the sign switch, giving the interval:
	 *
	 *   [-period, 0]
	 *
	 * the difference between two consequtive reads is:
	 *
	 *   A) value2 - value1;
	 *      when no overflows have happened in between,
	 *
	 *   B) (0 - value1) + (value2 - (-period));
	 *      when one overflow happened in between,
	 *
	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
	 *      when @n overflows happened in between.
	 *
	 * Here A) is the obvious difference, B) is the extension to the
	 * discrete interval, where the first term is to the top of the
	 * interval and the second term is from the bottom of the next
	 * interval and C) the extension to multiple intervals, where the
	 * middle term is the whole intervals covered.
	 *
	 * An equivalent of C, by reduction, is:
	 *
	 *   value2 - value1 + n * period
	 */
	new = ((s64)(new_raw_count << shift) >> shift);
	old = ((s64)(prev_raw_count << shift) >> shift);
	local64_add(new - old + count * period, &event->count);

1723 1724
	local64_set(&hwc->period_left, -new);

1725 1726 1727 1728 1729
	perf_event_update_userpage(event);

	return 0;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static __always_inline void
__intel_pmu_pebs_event(struct perf_event *event,
		       struct pt_regs *iregs,
		       struct perf_sample_data *data,
		       void *base, void *top,
		       int bit, int count,
		       void (*setup_sample)(struct perf_event *,
					    struct pt_regs *,
					    void *,
					    struct perf_sample_data *,
					    struct pt_regs *))
1741
{
1742
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1743
	struct hw_perf_event *hwc = &event->hw;
1744 1745
	struct x86_perf_regs perf_regs;
	struct pt_regs *regs = &perf_regs.regs;
1746
	void *at = get_next_pebs_record_by_bit(base, top, bit);
P
Peter Zijlstra 已提交
1747
	static struct pt_regs dummy_iregs;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		/*
		 * Now, auto-reload is only enabled in fixed period mode.
		 * The reload value is always hwc->sample_period.
		 * May need to change it, if auto-reload is enabled in
		 * freq mode later.
		 */
		intel_pmu_save_and_restart_reload(event, count);
	} else if (!intel_pmu_save_and_restart(event))
1758 1759
		return;

1760 1761 1762
	if (!iregs)
		iregs = &dummy_iregs;

1763
	while (count > 1) {
1764 1765
		setup_sample(event, iregs, at, data, regs);
		perf_event_output(event, data, regs);
1766
		at += cpuc->pebs_record_size;
1767 1768
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1769 1770
	}

1771
	setup_sample(event, iregs, at, data, regs);
1772 1773 1774 1775 1776 1777 1778
	if (iregs == &dummy_iregs) {
		/*
		 * The PEBS records may be drained in the non-overflow context,
		 * e.g., large PEBS + context switch. Perf should treat the
		 * last record the same as other PEBS records, and doesn't
		 * invoke the generic overflow handler.
		 */
1779
		perf_event_output(event, data, regs);
1780 1781 1782 1783 1784
	} else {
		/*
		 * All but the last records are processed.
		 * The last one is left to be able to call the overflow handler.
		 */
1785
		if (perf_event_overflow(event, data, regs))
1786
			x86_pmu_stop(event, 0);
1787
	}
1788 1789
}

1790
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1791
{
1792
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1793 1794 1795 1796 1797
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1798
	if (!x86_pmu.pebs_active)
1799 1800 1801 1802 1803
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1804 1805 1806 1807 1808 1809
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1810
		return;
1811

1812 1813
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1814
	if (!event->attr.precise_ip)
1815 1816
		return;

1817
	n = top - at;
1818 1819 1820
	if (n <= 0) {
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
1821
		return;
1822
	}
1823

1824
	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1825
			       setup_pebs_fixed_sample_data);
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
{
	struct perf_event *event;
	int bit;

	/*
	 * The drain_pebs() could be called twice in a short period
	 * for auto-reload event in pmu::read(). There are no
	 * overflows have happened in between.
	 * It needs to call intel_pmu_save_and_restart_reload() to
	 * update the event->count for this case.
	 */
	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
		event = cpuc->events[bit];
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
	}
}

1847
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1848
{
1849
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1850
	struct debug_store *ds = cpuc->ds;
1851 1852
	struct perf_event *event;
	void *base, *at, *top;
1853 1854 1855 1856
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	int bit, i, size;
	u64 mask;
1857 1858 1859 1860

	if (!x86_pmu.pebs_active)
		return;

1861
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1862
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1863 1864 1865

	ds->pebs_index = ds->pebs_buffer_base;

1866 1867 1868 1869 1870 1871 1872
	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
	size = x86_pmu.max_pebs_events;
	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
	}

1873
	if (unlikely(base >= top)) {
1874
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
1875
		return;
1876
	}
1877

1878
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1879
		struct pebs_record_nhm *p = at;
1880
		u64 pebs_status;
1881

1882
		pebs_status = p->status & cpuc->pebs_enabled;
1883
		pebs_status &= mask;
1884 1885

		/* PEBS v3 has more accurate status bits */
1886
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1887
			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1888 1889 1890 1891 1892
				counts[bit]++;

			continue;
		}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1905
		bit = find_first_bit((unsigned long *)&pebs_status,
1906
					x86_pmu.max_pebs_events);
1907
		if (bit >= x86_pmu.max_pebs_events)
1908
			continue;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1925
		if (pebs_status != (1ULL << bit)) {
1926
			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1927 1928
				error[i]++;
			continue;
1929
		}
1930

1931 1932
		counts[bit]++;
	}
1933

1934
	for_each_set_bit(bit, (unsigned long *)&mask, size) {
1935
		if ((counts[bit] == 0) && (error[bit] == 0))
1936
			continue;
1937

1938
		event = cpuc->events[bit];
1939 1940 1941 1942 1943
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1944

1945
		/* log dropped samples number */
1946
		if (error[bit]) {
1947 1948
			perf_log_lost_samples(event, error[bit]);

1949
			if (iregs && perf_event_account_interrupt(event))
1950 1951 1952
				x86_pmu_stop(event, 0);
		}

1953
		if (counts[bit]) {
1954
			__intel_pmu_pebs_event(event, iregs, data, base,
1955 1956
					       top, bit, counts[bit],
					       setup_pebs_fixed_sample_data);
1957
		}
1958 1959 1960
	}
}

1961
static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
{
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event;
	void *base, *at, *top;
	int bit, size;
	u64 mask;

	if (!x86_pmu.pebs_active)
		return;

	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;

	ds->pebs_index = ds->pebs_buffer_base;

	mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
	       (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
	size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;

	if (unlikely(base >= top)) {
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
		return;
	}

	for (at = base; at < top; at += cpuc->pebs_record_size) {
		u64 pebs_status;

		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
		pebs_status &= mask;

		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
			counts[bit]++;
	}

	for_each_set_bit(bit, (unsigned long *)&mask, size) {
		if (counts[bit] == 0)
			continue;

		event = cpuc->events[bit];
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;

2009
		__intel_pmu_pebs_event(event, iregs, data, base,
2010 2011 2012 2013 2014
				       top, bit, counts[bit],
				       setup_pebs_adaptive_sample_data);
	}
}

2015 2016 2017 2018
/*
 * BTS, PEBS probe and setup
 */

2019
void __init intel_ds_init(void)
2020 2021 2022 2023 2024 2025 2026 2027 2028
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2029
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2030
	if (x86_pmu.version <= 4)
2031
		x86_pmu.pebs_no_isolation = 1;
2032

2033
	if (x86_pmu.pebs) {
2034
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2035
		char *pebs_qual = "";
2036
		int format = x86_pmu.intel_cap.pebs_format;
2037

2038 2039 2040
		if (format < 4)
			x86_pmu.intel_cap.pebs_baseline = 0;

2041 2042
		switch (format) {
		case 0:
2043
			pr_cont("PEBS fmt0%c, ", pebs_type);
2044
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2045 2046 2047 2048 2049 2050 2051 2052
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2053 2054 2055 2056
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
2057
			pr_cont("PEBS fmt1%c, ", pebs_type);
2058 2059 2060 2061
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

2062 2063 2064
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2065
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2066 2067
			break;

2068 2069 2070 2071 2072
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2073
			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2074 2075
			break;

2076 2077 2078 2079 2080 2081 2082 2083 2084
		case 4:
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
			if (x86_pmu.intel_cap.pebs_baseline) {
				x86_pmu.large_pebs_flags |=
					PERF_SAMPLE_BRANCH_STACK |
					PERF_SAMPLE_TIME;
				x86_pmu.flags |= PMU_FL_PEBS_ALL;
				pebs_qual = "-baseline";
2085
				x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			} else {
				/* Only basic record supported */
				x86_pmu.large_pebs_flags &=
					~(PERF_SAMPLE_ADDR |
					  PERF_SAMPLE_TIME |
					  PERF_SAMPLE_DATA_SRC |
					  PERF_SAMPLE_TRANSACTION |
					  PERF_SAMPLE_REGS_USER |
					  PERF_SAMPLE_REGS_INTR);
			}
			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2097 2098 2099 2100 2101 2102

			if (x86_pmu.intel_cap.pebs_output_pt_available) {
				pr_cont("PEBS-via-PT, ");
				x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
			}

2103 2104
			break;

2105
		default:
2106
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2107 2108 2109 2110
			x86_pmu.pebs = 0;
		}
	}
}
2111 2112 2113

void perf_restore_debug_store(void)
{
2114 2115
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

2116 2117 2118
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

2119
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2120
}