ds.c 40.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/perf_event.h>
7
#include <asm/insn.h>
8

9
#include "../perf_event.h"
10 11 12 13 14

/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

#define BTS_BUFFER_SIZE		(PAGE_SIZE << 4)
15
#define PEBS_BUFFER_SIZE	(PAGE_SIZE << 4)
16
#define PEBS_FIXUP_SIZE		PAGE_SIZE
17 18 19 20 21 22 23 24 25 26 27 28

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
53 54
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
55 56
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

57 58
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
75 76
};

77 78 79
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
80 81 82 83 84 85 86 87 88 89 90 91 92 93
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
94 95
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

134
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
135 136 137
{
	union perf_mem_data_src dse;

138 139 140 141 142 143
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
144 145 146 147 148 149 150 151 152

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
153 154 155 156 157 158
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
159 160 161
	return dse.val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
177
	if (x86_pmu.pebs_no_tlb) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

217 218 219 220
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
221 222 223 224 225 226
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
227
	u64 real_ip, tsx_tuning;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
243 244
};

245 246
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

247 248 249 250 251 252 253 254 255 256 257 258 259
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

260
void init_debug_store_on_cpu(int cpu)
261 262 263 264 265 266 267 268 269 270 271
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

272
void fini_debug_store_on_cpu(int cpu)
273 274 275 276 277 278 279
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

280 281
static DEFINE_PER_CPU(void *, insn_buffer);

282 283 284
static int alloc_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
285
	int node = cpu_to_node(cpu);
286
	int max;
287
	void *buffer, *ibuffer;
288 289 290 291

	if (!x86_pmu.pebs)
		return 0;

292
	buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
293 294 295
	if (unlikely(!buffer))
		return -ENOMEM;

296 297 298 299 300 301 302 303 304 305 306 307 308
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
			kfree(buffer);
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}

309
	max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
310 311 312 313 314 315 316 317 318

	ds->pebs_buffer_base = (u64)(unsigned long)buffer;
	ds->pebs_index = ds->pebs_buffer_base;
	ds->pebs_absolute_maximum = ds->pebs_buffer_base +
		max * x86_pmu.pebs_record_size;

	return 0;
}

319 320 321 322 323 324 325
static void release_pebs_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.pebs)
		return;

326 327 328
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

329 330 331 332
	kfree((void *)(unsigned long)ds->pebs_buffer_base);
	ds->pebs_buffer_base = 0;
}

333 334 335
static int alloc_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
336
	int node = cpu_to_node(cpu);
337 338 339 340 341 342
	int max, thresh;
	void *buffer;

	if (!x86_pmu.bts)
		return 0;

343 344 345
	buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
346
		return -ENOMEM;
347
	}
348 349 350 351 352 353 354 355 356 357 358 359 360 361

	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	thresh = max / 16;

	ds->bts_buffer_base = (u64)(unsigned long)buffer;
	ds->bts_index = ds->bts_buffer_base;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
		max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
		thresh * BTS_RECORD_SIZE;

	return 0;
}

362 363 364 365 366 367 368 369 370 371 372
static void release_bts_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds || !x86_pmu.bts)
		return;

	kfree((void *)(unsigned long)ds->bts_buffer_base);
	ds->bts_buffer_base = 0;
}

373 374
static int alloc_ds_buffer(int cpu)
{
375
	int node = cpu_to_node(cpu);
376 377
	struct debug_store *ds;

378
	ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	if (unlikely(!ds))
		return -ENOMEM;

	per_cpu(cpu_hw_events, cpu).ds = ds;

	return 0;
}

static void release_ds_buffer(int cpu)
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	per_cpu(cpu_hw_events, cpu).ds = NULL;
	kfree(ds);
}

398
void release_ds_buffers(void)
399 400 401 402 403 404 405 406 407 408 409
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

	get_online_cpus();
	for_each_online_cpu(cpu)
		fini_debug_store_on_cpu(cpu);

	for_each_possible_cpu(cpu) {
410 411
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
412
		release_ds_buffer(cpu);
413 414 415 416
	}
	put_online_cpus();
}

417
void reserve_ds_buffers(void)
418
{
419 420 421 422 423
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
424 425

	if (!x86_pmu.bts && !x86_pmu.pebs)
426
		return;
427

428 429 430 431 432 433
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

434 435 436
	get_online_cpus();

	for_each_possible_cpu(cpu) {
437 438 439 440
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
441

442 443 444 445 446
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
447

448
		if (bts_err && pebs_err)
449
			break;
450 451 452 453 454 455
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
456

457 458 459
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
460 461
	}

462 463 464 465 466 467 468 469 470 471
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

472 473 474 475 476 477 478 479 480 481 482
		for_each_online_cpu(cpu)
			init_debug_store_on_cpu(cpu);
	}

	put_online_cpus();
}

/*
 * BTS
 */

483
struct event_constraint bts_constraint =
484
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
485

486
void intel_pmu_enable_bts(u64 config)
487 488 489 490 491
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

492 493
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
494 495
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
496 497

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
498
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
499 500

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
501
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
502 503 504 505

	update_debugctlmsr(debugctlmsr);
}

506
void intel_pmu_disable_bts(void)
507
{
508
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
509 510 511 512 513 514 515 516
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
517 518
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
519 520 521 522

	update_debugctlmsr(debugctlmsr);
}

523
int intel_pmu_drain_bts_buffer(void)
524
{
525
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
526 527 528 529 530 531
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
532
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
533
	struct bts_record *at, *base, *top;
534 535 536
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
537
	unsigned long skip = 0;
538 539 540
	struct pt_regs regs;

	if (!event)
541
		return 0;
542

543
	if (!x86_pmu.bts_active)
544
		return 0;
545

546 547
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
548

549
	if (top <= base)
550
		return 0;
551

552 553
	memset(&regs, 0, sizeof(regs));

554 555
	ds->bts_index = ds->bts_buffer_base;

556
	perf_sample_data_init(&data, 0, event->hw.last_period);
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

579 580 581 582 583
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
584
	rcu_read_lock();
585 586
	perf_prepare_sample(&header, &data, event, &regs);

587 588
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
P
Peter Zijlstra 已提交
589
		goto unlock;
590

591 592 593 594 595 596
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

597 598 599 600 601 602 603 604 605 606 607
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
608 609
unlock:
	rcu_read_unlock();
610
	return 1;
611 612
}

613 614 615 616 617 618 619
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

620 621 622
/*
 * PEBS
 */
623
struct event_constraint intel_core2_pebs_event_constraints[] = {
624 625 626 627 628
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
629 630
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
631 632 633
	EVENT_CONSTRAINT_END
};

634
struct event_constraint intel_atom_pebs_event_constraints[] = {
635 636 637
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
638 639
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
640 641
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
642 643 644
	EVENT_CONSTRAINT_END
};

645
struct event_constraint intel_slm_pebs_event_constraints[] = {
646 647
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
648 649
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
650 651 652
	EVENT_CONSTRAINT_END
};

653 654 655 656 657 658
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

659 660 661 662 663 664
struct event_constraint intel_glp_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

665
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
666
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
667 668 669
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
670
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
671 672 673 674 675 676
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
677 678
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
679 680 681
	EVENT_CONSTRAINT_END
};

682
struct event_constraint intel_westmere_pebs_event_constraints[] = {
683
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
684 685 686
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
687
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
688 689 690 691 692 693
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
694 695
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
696 697 698
	EVENT_CONSTRAINT_END
};

699
struct event_constraint intel_snb_pebs_event_constraints[] = {
700
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
701
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
702
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
703 704
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
705 706 707 708
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
709 710
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
711 712 713
	EVENT_CONSTRAINT_END
};

714
struct event_constraint intel_ivb_pebs_event_constraints[] = {
715
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
716
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
717
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
718 719
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
720 721
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
722 723 724 725
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
726 727
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
728 729 730
        EVENT_CONSTRAINT_END
};

731
struct event_constraint intel_hsw_pebs_event_constraints[] = {
732
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
733 734 735
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
736 737
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
738
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
739 740 741 742 743 744 745 746 747 748
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
749 750 751 752 753
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


778 779
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
780 781
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
782 783
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
784 785 786 787 788 789 790 791 792 793 794 795
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
796 797
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
798 799 800
	EVENT_CONSTRAINT_END
};

801
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
802 803 804
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
805
	if (!event->attr.precise_ip)
806 807 808 809
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
810 811
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
812
				return c;
813
			}
814 815 816 817 818 819
		}
	}

	return &emptyconstraint;
}

820 821 822 823 824 825 826 827 828 829
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

830 831 832 833 834 835 836 837
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
	} else {
		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
	}

	ds->pebs_interrupt_threshold = threshold;
}

static void
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
{
856 857 858 859 860 861 862
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

863 864 865 866 867 868
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

869
		update = true;
870
	}
871 872 873

	if (update)
		pebs_update_threshold(cpuc);
874 875
}

876
void intel_pmu_pebs_add(struct perf_event *event)
877
{
878 879 880 881 882 883 884 885 886
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
	if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
		cpuc->n_large_pebs++;

	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
887 888
}

889
void intel_pmu_pebs_enable(struct perf_event *event)
890
{
891
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
892
	struct hw_perf_event *hwc = &event->hw;
893
	struct debug_store *ds = cpuc->ds;
894

895 896
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

897
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
898 899 900

	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
901 902
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
903

904
	/*
905 906
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
907
	 */
908 909 910
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		ds->pebs_event_reset[hwc->idx] =
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
911 912
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
913
	}
914 915
}

916
void intel_pmu_pebs_del(struct perf_event *event)
917 918 919 920 921 922 923 924
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
	if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
		cpuc->n_large_pebs--;
925

926
	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
927 928
}

929
void intel_pmu_pebs_disable(struct perf_event *event)
930
{
931
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
932
	struct hw_perf_event *hwc = &event->hw;
933

934
	if (cpuc->n_pebs == cpuc->n_large_pebs)
935
		intel_pmu_drain_pebs_buffer();
936

937
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
938

939
	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
940
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
941
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
942 943
		cpuc->pebs_enabled &= ~(1ULL << 63);

944
	if (cpuc->enabled)
945
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
946 947 948 949

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

950
void intel_pmu_pebs_enable_all(void)
951
{
952
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
953 954 955 956 957

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

958
void intel_pmu_pebs_disable_all(void)
959
{
960
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
961 962 963 964 965

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

966 967
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
968
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
969 970 971
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
972
	int is_64bit = 0;
973
	void *kaddr;
974
	int size;
975

976 977 978 979 980 981
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
982 983 984
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
985 986 987
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
988 989 990 991 992 993 994 995 996 997
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
998
	if ((ip - to) > PEBS_FIXUP_SIZE)
999 1000 1001 1002 1003 1004
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1005
		set_linear_ip(regs, from);
1006 1007 1008
		return 1;
	}

1009
	size = ip - to;
1010
	if (!kernel_ip(ip)) {
1011
		int bytes;
1012 1013
		u8 *buf = this_cpu_read(insn_buffer);

1014
		/* 'size' must fit our buffer, see above */
1015
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1016
		if (bytes != 0)
1017 1018 1019 1020 1021 1022 1023
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1024 1025 1026 1027 1028
	do {
		struct insn insn;

		old_to = to;

1029 1030 1031
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
1032
		insn_init(&insn, kaddr, size, is_64bit);
1033
		insn_get_length(&insn);
1034 1035 1036 1037 1038 1039 1040 1041
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1042

1043
		to += insn.length;
1044
		kaddr += insn.length;
1045
		size -= insn.length;
1046 1047 1048
	} while (to < ip);

	if (to == ip) {
1049
		set_linear_ip(regs, old_to);
1050 1051 1052
		return 1;
	}

P
Peter Zijlstra 已提交
1053 1054 1055 1056
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1057 1058 1059
	return 0;
}

1060
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1061 1062 1063 1064 1065 1066 1067 1068
{
	if (pebs->tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
		return tsx.cycles_last_block;
	}
	return 0;
}

1069
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;

	/* For RTM XABORTs also log the abort code from AX */
	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
	return txn;
}

1079 1080 1081 1082
static void setup_pebs_sample_data(struct perf_event *event,
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1083
{
1084 1085 1086 1087
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)
1088
	/*
1089 1090
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1091
	 */
1092
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1093
	struct pebs_record_skl *pebs = __pebs;
1094
	u64 sample_type;
1095 1096
	int fll, fst, dsrc;
	int fl = event->hw.flags;
1097

1098 1099 1100
	if (pebs == NULL)
		return;

1101 1102 1103 1104 1105
	sample_type = event->attr.sample_type;
	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;

	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1106

1107
	perf_sample_data_init(data, 0, event->hw.last_period);
1108

1109
	data->period = event->hw.last_period;
1110 1111

	/*
1112
	 * Use latency for weight (only avail with PEBS-LL)
1113
	 */
1114
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1115
		data->weight = pebs->lat;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	/*
	 * data.data_src encodes the data source
	 */
	if (dsrc) {
		u64 val = PERF_MEM_NA;
		if (fll)
			val = load_latency_data(pebs->dse);
		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
			val = precise_datala_hsw(event, pebs->dse);
		else if (fst)
			val = precise_store_data(pebs->dse);
1128
		data->data_src.val = val;
1129 1130
	}

1131
	/*
1132 1133 1134
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1135
	 *
1136 1137 1138 1139 1140 1141
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
	 *
	 * We must however always use BP,SP from iregs for the unwinder to stay
	 * sane; the record BP,SP can point into thin air when the record is
	 * from a previous PMI context or an (I)RET happend between the record
	 * and PMI.
1142
	 */
1143 1144 1145
	*regs = *iregs;
	regs->flags = pebs->flags;
	set_linear_ip(regs, pebs->ip);
1146

1147
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1148 1149 1150 1151 1152 1153 1154
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/*
		 * Per the above; only set BP,SP if we don't need callchains.
		 *
		 * XXX: does this make sense?
		 */
		if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
			regs->bp = pebs->bp;
			regs->sp = pebs->sp;
		}

		/*
		 * Preserve PERF_EFLAGS_VM from set_linear_ip().
		 */
		regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1169
#ifndef CONFIG_X86_32
1170 1171 1172 1173 1174 1175 1176 1177
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1178 1179 1180
#endif
	}

1181
	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1182 1183 1184 1185
		regs->ip = pebs->real_ip;
		regs->flags |= PERF_EFLAGS_EXACT;
	} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
		regs->flags |= PERF_EFLAGS_EXACT;
1186
	else
1187
		regs->flags &= ~PERF_EFLAGS_EXACT;
1188

1189
	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1190
	    x86_pmu.intel_cap.pebs_format >= 1)
1191
		data->addr = pebs->dla;
1192

1193 1194
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1195
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1196
			data->weight = intel_hsw_weight(pebs);
1197

1198
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1199
			data->txn = intel_hsw_transaction(pebs);
1200
	}
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1212
	if (has_branch_stack(event))
1213 1214 1215
		data->br_stack = &cpuc->lbr_stack;
}

1216 1217 1218 1219 1220 1221 1222
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1223 1224 1225 1226 1227 1228 1229
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1230 1231 1232 1233 1234 1235 1236
	if (base == NULL)
		return NULL;

	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
		struct pebs_record_nhm *p = at;

		if (test_bit(bit, (unsigned long *)&p->status)) {
1237 1238 1239
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1240 1241 1242 1243 1244 1245

			if (p->status == (1 << bit))
				return at;

			/* clear non-PEBS bit and re-check */
			pebs_status = p->status & cpuc->pebs_enabled;
1246
			pebs_status &= PEBS_COUNTER_MASK;
1247 1248 1249 1250 1251 1252 1253
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1254
static void __intel_pmu_pebs_event(struct perf_event *event,
1255 1256 1257
				   struct pt_regs *iregs,
				   void *base, void *top,
				   int bit, int count)
1258 1259 1260
{
	struct perf_sample_data data;
	struct pt_regs regs;
1261
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1262

1263 1264
	if (!intel_pmu_save_and_restart(event) &&
	    !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1265 1266
		return;

1267 1268 1269 1270 1271 1272
	while (count > 1) {
		setup_pebs_sample_data(event, iregs, at, &data, &regs);
		perf_event_output(event, &data, &regs);
		at += x86_pmu.pebs_record_size;
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1273 1274 1275
	}

	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1276

1277 1278 1279 1280 1281
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
	if (perf_event_overflow(event, &data, &regs)) {
P
Peter Zijlstra 已提交
1282
		x86_pmu_stop(event, 0);
1283 1284 1285
		return;
	}

1286 1287
}

1288 1289
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1290
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1291 1292 1293 1294 1295
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1296
	if (!x86_pmu.pebs_active)
1297 1298 1299 1300 1301
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1302 1303 1304 1305 1306 1307
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1308
		return;
1309

1310 1311
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1312
	if (!event->attr.precise_ip)
1313 1314
		return;

1315
	n = top - at;
1316 1317
	if (n <= 0)
		return;
1318

1319
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1320 1321
}

1322
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1323
{
1324
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1325
	struct debug_store *ds = cpuc->ds;
1326 1327 1328
	struct perf_event *event;
	void *base, *at, *top;
	short counts[MAX_PEBS_EVENTS] = {};
1329
	short error[MAX_PEBS_EVENTS] = {};
1330
	int bit, i;
1331 1332 1333 1334

	if (!x86_pmu.pebs_active)
		return;

1335
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1336
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1337 1338 1339

	ds->pebs_index = ds->pebs_buffer_base;

1340
	if (unlikely(base >= top))
1341 1342
		return;

1343
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1344
		struct pebs_record_nhm *p = at;
1345
		u64 pebs_status;
1346

1347 1348 1349 1350
		pebs_status = p->status & cpuc->pebs_enabled;
		pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;

		/* PEBS v3 has more accurate status bits */
1351
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1352 1353
			for_each_set_bit(bit, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
1354 1355 1356 1357 1358
				counts[bit]++;

			continue;
		}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1371
		bit = find_first_bit((unsigned long *)&pebs_status,
1372
					x86_pmu.max_pebs_events);
1373
		if (bit >= x86_pmu.max_pebs_events)
1374
			continue;
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1391 1392 1393 1394 1395
		if (p->status != (1ULL << bit)) {
			for_each_set_bit(i, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
				error[i]++;
			continue;
1396
		}
1397

1398 1399
		counts[bit]++;
	}
1400

1401
	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1402
		if ((counts[bit] == 0) && (error[bit] == 0))
1403
			continue;
1404

1405
		event = cpuc->events[bit];
1406 1407 1408 1409 1410
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1411

1412
		/* log dropped samples number */
1413
		if (error[bit]) {
1414 1415
			perf_log_lost_samples(event, error[bit]);

1416 1417 1418 1419
			if (perf_event_account_interrupt(event))
				x86_pmu_stop(event, 0);
		}

1420 1421 1422 1423
		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
					       top, bit, counts[bit]);
		}
1424 1425 1426 1427 1428 1429 1430
	}
}

/*
 * BTS, PEBS probe and setup
 */

1431
void __init intel_ds_init(void)
1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1441
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1442
	if (x86_pmu.pebs) {
1443 1444
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
		int format = x86_pmu.intel_cap.pebs_format;
1445 1446 1447

		switch (format) {
		case 0:
1448
			pr_cont("PEBS fmt0%c, ", pebs_type);
1449
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1450 1451 1452 1453 1454 1455 1456 1457
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
1458 1459 1460 1461
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1462
			pr_cont("PEBS fmt1%c, ", pebs_type);
1463 1464 1465 1466
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

1467 1468 1469
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1470
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1471 1472
			break;

1473 1474 1475 1476 1477
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1478
			x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1479 1480
			break;

1481
		default:
1482
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1483 1484 1485 1486
			x86_pmu.pebs = 0;
		}
	}
}
1487 1488 1489

void perf_restore_debug_store(void)
{
1490 1491
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

1492 1493 1494
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

1495
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1496
}