ds.c 57.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/cpu_entry_area.h>
7
#include <asm/perf_event.h>
8
#include <asm/tlbflush.h>
9
#include <asm/insn.h>
10
#include <asm/io.h>
11

12
#include "../perf_event.h"
13

14 15 16
/* Waste a full page so it can be mapped into the cpu_entry_area */
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);

17 18 19
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

20
#define PEBS_FIXUP_SIZE		PAGE_SIZE
21 22 23 24 25 26 27 28 29 30 31 32

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57 58
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
59 60
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

61 62
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79 80
};

81 82 83
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98 99
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

138
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 140 141
{
	union perf_mem_data_src dse;

142 143 144 145 146 147
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
148 149 150 151 152 153 154 155 156

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
157 158 159 160 161 162
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
163 164 165
	return dse.val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
181
	if (x86_pmu.pebs_no_tlb) {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

221 222 223 224
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
225 226 227 228 229 230
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
231
	u64 real_ip, tsx_tuning;
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
247 248
};

249 250
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

264
void init_debug_store_on_cpu(int cpu)
265 266 267 268 269 270 271 272 273 274 275
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

276
void fini_debug_store_on_cpu(int cpu)
277 278 279 280 281 282 283
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

284 285
static DEFINE_PER_CPU(void *, insn_buffer);

286
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287
{
288
	unsigned long start = (unsigned long)cea;
289 290 291 292
	phys_addr_t pa;
	size_t msz = 0;

	pa = virt_to_phys(addr);
293 294

	preempt_disable();
295 296
	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, pa, prot);
297 298 299 300 301 302 303

	/*
	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
	 * all TLB entries for it.
	 */
	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
304 305 306 307
}

static void ds_clear_cea(void *cea, size_t size)
{
308
	unsigned long start = (unsigned long)cea;
309 310
	size_t msz = 0;

311
	preempt_disable();
312 313
	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, 0, PAGE_NONE);
314 315 316

	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
317 318 319 320 321
}

static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
{
	unsigned int order = get_order(size);
322
	int node = cpu_to_node(cpu);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct page *page;

	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
	return page ? page_address(page) : NULL;
}

static void dsfree_pages(const void *buffer, size_t size)
{
	if (buffer)
		free_pages((unsigned long)buffer, get_order(size));
}

static int alloc_pebs_buffer(int cpu)
{
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	size_t bsiz = x86_pmu.pebs_buffer_size;
	int max, node = cpu_to_node(cpu);
341
	void *buffer, *insn_buff, *cea;
342 343 344 345

	if (!x86_pmu.pebs)
		return 0;

346
	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347 348 349
	if (unlikely(!buffer))
		return -ENOMEM;

350 351 352 353 354
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
355 356
		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!insn_buff) {
357
			dsfree_pages(buffer, bsiz);
358 359
			return -ENOMEM;
		}
360
		per_cpu(insn_buffer, cpu) = insn_buff;
361
	}
362 363 364 365 366
	hwev->ds_pebs_vaddr = buffer;
	/* Update the cpu entry area mapping */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds->pebs_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367
	ds->pebs_index = ds->pebs_buffer_base;
368 369
	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370 371 372
	return 0;
}

373 374
static void release_pebs_buffer(int cpu)
{
375 376
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
377

378
	if (!x86_pmu.pebs)
379 380
		return;

381 382 383
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

384 385 386 387 388
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
	hwev->ds_pebs_vaddr = NULL;
389 390
}

391 392
static int alloc_bts_buffer(int cpu)
{
393 394 395 396
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	void *buffer, *cea;
	int max;
397 398 399 400

	if (!x86_pmu.bts)
		return 0;

401
	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402 403
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404
		return -ENOMEM;
405
	}
406 407 408 409 410
	hwev->ds_bts_vaddr = buffer;
	/* Update the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds->bts_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411
	ds->bts_index = ds->bts_buffer_base;
412 413 414 415 416
	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
					max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
					(max / 16) * BTS_RECORD_SIZE;
417 418 419
	return 0;
}

420 421
static void release_bts_buffer(int cpu)
{
422 423
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
424

425
	if (!x86_pmu.bts)
426 427
		return;

428 429 430 431 432
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds_clear_cea(cea, BTS_BUFFER_SIZE);
	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
	hwev->ds_bts_vaddr = NULL;
433 434
}

435 436
static int alloc_ds_buffer(int cpu)
{
437
	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438

439
	memset(ds, 0, sizeof(*ds));
440 441 442 443 444 445 446 447 448
	per_cpu(cpu_hw_events, cpu).ds = ds;
	return 0;
}

static void release_ds_buffer(int cpu)
{
	per_cpu(cpu_hw_events, cpu).ds = NULL;
}

449
void release_ds_buffers(void)
450 451 452 453 454 455
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

456 457 458 459 460 461 462 463 464
	for_each_possible_cpu(cpu)
		release_ds_buffer(cpu);

	for_each_possible_cpu(cpu) {
		/*
		 * Again, ignore errors from offline CPUs, they will no longer
		 * observe cpu_hw_events.ds and not program the DS_AREA when
		 * they come up.
		 */
465
		fini_debug_store_on_cpu(cpu);
466
	}
467 468

	for_each_possible_cpu(cpu) {
469 470
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
471 472 473
	}
}

474
void reserve_ds_buffers(void)
475
{
476 477 478 479 480
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
481 482

	if (!x86_pmu.bts && !x86_pmu.pebs)
483
		return;
484

485 486 487 488 489 490
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

491
	for_each_possible_cpu(cpu) {
492 493 494 495
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
496

497 498 499 500 501
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
502

503
		if (bts_err && pebs_err)
504
			break;
505 506 507 508 509 510
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
511

512 513 514
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
515 516
	}

517 518 519 520 521 522 523 524 525 526
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

527 528 529 530 531
		for_each_possible_cpu(cpu) {
			/*
			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
			 * will get this call through intel_pmu_cpu_starting().
			 */
532
			init_debug_store_on_cpu(cpu);
533
		}
534 535 536 537 538 539 540
	}
}

/*
 * BTS
 */

541
struct event_constraint bts_constraint =
542
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543

544
void intel_pmu_enable_bts(u64 config)
545 546 547 548 549
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

550 551
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
552 553
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
554 555

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557 558

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560 561 562 563

	update_debugctlmsr(debugctlmsr);
}

564
void intel_pmu_disable_bts(void)
565
{
566
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567 568 569 570 571 572 573 574
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
575 576
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577 578 579 580

	update_debugctlmsr(debugctlmsr);
}

581
int intel_pmu_drain_bts_buffer(void)
582
{
583
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584 585 586 587 588 589
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
590
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591
	struct bts_record *at, *base, *top;
592 593 594
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
595
	unsigned long skip = 0;
596 597 598
	struct pt_regs regs;

	if (!event)
599
		return 0;
600

601
	if (!x86_pmu.bts_active)
602
		return 0;
603

604 605
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
606

607
	if (top <= base)
608
		return 0;
609

610 611
	memset(&regs, 0, sizeof(regs));

612 613
	ds->bts_index = ds->bts_buffer_base;

614
	perf_sample_data_init(&data, 0, event->hw.last_period);
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

637 638 639 640 641
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
642
	rcu_read_lock();
643 644
	perf_prepare_sample(&header, &data, event, &regs);

645 646
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
P
Peter Zijlstra 已提交
647
		goto unlock;
648

649 650 651 652 653 654
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

655 656 657 658 659 660 661 662 663 664 665
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
666 667
unlock:
	rcu_read_unlock();
668
	return 1;
669 670
}

671 672
static inline void intel_pmu_drain_pebs_buffer(void)
{
673
	x86_pmu.drain_pebs(NULL);
674 675
}

676 677 678
/*
 * PEBS
 */
679
struct event_constraint intel_core2_pebs_event_constraints[] = {
680 681 682 683 684
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
685
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
686
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
687 688 689
	EVENT_CONSTRAINT_END
};

690
struct event_constraint intel_atom_pebs_event_constraints[] = {
691 692 693
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
694
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
695
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
696 697
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
698 699 700
	EVENT_CONSTRAINT_END
};

701
struct event_constraint intel_slm_pebs_event_constraints[] = {
702
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
703
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
704 705
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
706 707 708
	EVENT_CONSTRAINT_END
};

709 710 711 712 713 714
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

715
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
716
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
717 718 719
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
720
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
721 722 723 724 725 726
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
727
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
728
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
729 730 731
	EVENT_CONSTRAINT_END
};

732
struct event_constraint intel_westmere_pebs_event_constraints[] = {
733
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
734 735 736
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
737
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
738 739 740 741 742 743
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
744
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
745
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
746 747 748
	EVENT_CONSTRAINT_END
};

749
struct event_constraint intel_snb_pebs_event_constraints[] = {
750
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
751
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
752
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
753
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
754
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
755 756 757 758
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
759 760
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
761 762 763
	EVENT_CONSTRAINT_END
};

764
struct event_constraint intel_ivb_pebs_event_constraints[] = {
765
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
766
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
767
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
768
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
769
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
770
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
771
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
772 773 774 775
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
776 777
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
778 779 780
        EVENT_CONSTRAINT_END
};

781
struct event_constraint intel_hsw_pebs_event_constraints[] = {
782
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
783 784
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
785
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
786
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
787
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
788
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
789 790 791 792 793 794 795 796 797 798
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
799 800 801 802 803
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

804 805 806 807
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
808
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
809
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
810
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


828 829
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
830
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
831
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
832
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
833
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
834 835 836 837 838 839 840 841 842 843 844 845
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
846 847
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
848 849 850
	EVENT_CONSTRAINT_END
};

K
Kan Liang 已提交
851 852
struct event_constraint intel_icl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
853
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
K
Kan Liang 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),	/* MEM_INST_RETIRED.LOAD */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),	/* MEM_INST_RETIRED.STORE */

	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */

	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */

	/*
	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
	 * need the full constraints from the main table.
	 */

	EVENT_CONSTRAINT_END
};

871
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
872 873 874
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
875
	if (!event->attr.precise_ip)
876 877 878 879
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
880
			if (constraint_match(c, event->hw.config)) {
881
				event->hw.flags |= c->flags;
882
				return c;
883
			}
884 885 886
		}
	}

887 888 889 890 891 892 893
	/*
	 * Extended PEBS support
	 * Makes the PEBS code search the normal constraints.
	 */
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		return NULL;

894 895 896
	return &emptyconstraint;
}

897 898 899 900 901 902 903
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
904 905 906
	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
		return false;

907 908 909
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

910 911 912 913 914 915 916 917
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

918 919 920 921
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;
922 923
	int reserved;

924 925 926
	if (cpuc->n_pebs_via_pt)
		return;

927 928 929 930
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
	else
		reserved = x86_pmu.max_pebs_events;
931 932 933

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
934
			reserved * cpuc->pebs_record_size;
935
	} else {
936
		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
937 938 939 940 941
	}

	ds->pebs_interrupt_threshold = threshold;
}

942 943 944 945 946 947 948 949 950 951 952 953 954
static void adaptive_pebs_record_size_update(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
	int sz = sizeof(struct pebs_basic);

	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
		sz += sizeof(struct pebs_meminfo);
	if (pebs_data_cfg & PEBS_DATACFG_GP)
		sz += sizeof(struct pebs_gprs);
	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
		sz += sizeof(struct pebs_xmm);
	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
955
		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	cpuc->pebs_record_size = sz;
}

#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
				PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
				PERF_SAMPLE_TRANSACTION)

static u64 pebs_update_adaptive_cfg(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	u64 sample_type = attr->sample_type;
	u64 pebs_data_cfg = 0;
	bool gprs, tsx_weight;

	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
	    attr->precise_ip > 1)
		return pebs_data_cfg;

	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;

	/*
	 * We need GPRs when:
	 * + user requested them
	 * + precise_ip < 2 for the non event IP
	 * + For RTM TSX weight we need GPRs for the abort code.
	 */
	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
	       (attr->sample_regs_intr & PEBS_GP_REGS);

	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
		      x86_pmu.rtm_abort_event);

	if (gprs || (attr->precise_ip < 2) || tsx_weight)
		pebs_data_cfg |= PEBS_DATACFG_GP;

	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
K
Kan Liang 已提交
995
	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		pebs_data_cfg |= PEBS_DATACFG_XMMS;

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		/*
		 * For now always log all LBRs. Could configure this
		 * later.
		 */
		pebs_data_cfg |= PEBS_DATACFG_LBRS |
			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
	}

	return pebs_data_cfg;
}

1010
static void
1011 1012
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
		  struct perf_event *event, bool add)
1013
{
1014
	struct pmu *pmu = event->ctx->pmu;
1015 1016 1017 1018 1019 1020 1021
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

1022 1023 1024 1025 1026 1027
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

1028
		update = true;
1029
	}
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
	 * iterating all remaining PEBS events to reconstruct the config.
	 */
	if (x86_pmu.intel_cap.pebs_baseline && add) {
		u64 pebs_data_cfg;

		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
		if (cpuc->n_pebs == 1) {
			cpuc->pebs_data_cfg = 0;
			cpuc->pebs_record_size = sizeof(struct pebs_basic);
		}

		pebs_data_cfg = pebs_update_adaptive_cfg(event);

		/* Update pebs_record_size if new event requires more data. */
		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
			cpuc->pebs_data_cfg |= pebs_data_cfg;
			adaptive_pebs_record_size_update();
			update = true;
		}
	}

1054 1055
	if (update)
		pebs_update_threshold(cpuc);
1056 1057
}

1058
void intel_pmu_pebs_add(struct perf_event *event)
1059
{
1060 1061 1062 1063 1064
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
1065
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1066
		cpuc->n_large_pebs++;
1067 1068
	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
		cpuc->n_pebs_via_pt++;
1069

1070
	pebs_update_state(needed_cb, cpuc, event, true);
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!is_pebs_pt(event))
		return;

	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
}

static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	struct debug_store *ds = cpuc->ds;

	if (!is_pebs_pt(event))
		return;

	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;

	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;

	wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
}

1101
void intel_pmu_pebs_enable(struct perf_event *event)
1102
{
1103
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1104
	struct hw_perf_event *hwc = &event->hw;
1105
	struct debug_store *ds = cpuc->ds;
1106

1107 1108
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

1109
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1110

K
Kan Liang 已提交
1111
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1112
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1113 1114
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
1115

1116 1117 1118 1119 1120 1121 1122 1123
	if (x86_pmu.intel_cap.pebs_baseline) {
		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
		}
	}

1124
	/*
1125 1126
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1127
	 */
1128
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1129 1130 1131 1132 1133
		unsigned int idx = hwc->idx;

		if (idx >= INTEL_PMC_IDX_FIXED)
			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
		ds->pebs_event_reset[idx] =
1134
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1135 1136
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
1137
	}
1138 1139

	intel_pmu_pebs_via_pt_enable(event);
1140 1141
}

1142
void intel_pmu_pebs_del(struct perf_event *event)
1143 1144 1145 1146 1147 1148
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
1149
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1150
		cpuc->n_large_pebs--;
1151 1152
	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
		cpuc->n_pebs_via_pt--;
1153

1154
	pebs_update_state(needed_cb, cpuc, event, false);
1155 1156
}

1157
void intel_pmu_pebs_disable(struct perf_event *event)
1158
{
1159
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1160
	struct hw_perf_event *hwc = &event->hw;
1161

1162 1163
	if (cpuc->n_pebs == cpuc->n_large_pebs &&
	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1164
		intel_pmu_drain_pebs_buffer();
1165

1166
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1167

K
Kan Liang 已提交
1168 1169
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
	    (x86_pmu.version < 5))
1170
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1171
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1172 1173
		cpuc->pebs_enabled &= ~(1ULL << 63);

1174 1175
	intel_pmu_pebs_via_pt_disable(event);

1176
	if (cpuc->enabled)
1177
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1178 1179 1180 1181

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

1182
void intel_pmu_pebs_enable_all(void)
1183
{
1184
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1185 1186 1187 1188 1189

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

1190
void intel_pmu_pebs_disable_all(void)
1191
{
1192
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1193 1194 1195 1196 1197

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

1198 1199
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
1200
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1201 1202 1203
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
1204
	int is_64bit = 0;
1205
	void *kaddr;
1206
	int size;
1207

1208 1209 1210 1211 1212 1213
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
1214 1215 1216
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
1217 1218 1219
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
1230
	if ((ip - to) > PEBS_FIXUP_SIZE)
1231 1232 1233 1234 1235 1236
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1237
		set_linear_ip(regs, from);
1238 1239 1240
		return 1;
	}

1241
	size = ip - to;
1242
	if (!kernel_ip(ip)) {
1243
		int bytes;
1244 1245
		u8 *buf = this_cpu_read(insn_buffer);

1246
		/* 'size' must fit our buffer, see above */
1247
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1248
		if (bytes != 0)
1249 1250 1251 1252 1253 1254 1255
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1256 1257 1258 1259 1260
	do {
		struct insn insn;

		old_to = to;

1261 1262 1263
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
1264
		insn_init(&insn, kaddr, size, is_64bit);
1265
		insn_get_length(&insn);
1266 1267 1268 1269 1270 1271 1272 1273
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1274

1275
		to += insn.length;
1276
		kaddr += insn.length;
1277
		size -= insn.length;
1278 1279 1280
	} while (to < ip);

	if (to == ip) {
1281
		set_linear_ip(regs, old_to);
1282 1283 1284
		return 1;
	}

P
Peter Zijlstra 已提交
1285 1286 1287 1288
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1289 1290 1291
	return 0;
}

1292
static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1293
{
1294 1295
	if (tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1296 1297 1298 1299 1300
		return tsx.cycles_last_block;
	}
	return 0;
}

1301
static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1302
{
1303
	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1304 1305

	/* For RTM XABORTs also log the abort code from AX */
1306 1307
	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1308 1309 1310
	return txn;
}

1311 1312 1313 1314 1315 1316 1317
static inline u64 get_pebs_status(void *n)
{
	if (x86_pmu.intel_cap.pebs_format < 4)
		return ((struct pebs_record_nhm *)n)->status;
	return ((struct pebs_basic *)n)->applicable_counters;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)

static u64 get_data_src(struct perf_event *event, u64 aux)
{
	u64 val = PERF_MEM_NA;
	int fl = event->hw.flags;
	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);

	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
		val = load_latency_data(aux);
	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
		val = precise_datala_hsw(event, aux);
	else if (fst)
		val = precise_store_data(aux);
	return val;
}

1338
static void setup_pebs_fixed_sample_data(struct perf_event *event,
1339 1340 1341
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1342 1343
{
	/*
1344 1345
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1346
	 */
1347
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1348
	struct pebs_record_skl *pebs = __pebs;
1349
	u64 sample_type;
1350
	int fll;
1351

1352 1353 1354
	if (pebs == NULL)
		return;

1355
	sample_type = event->attr.sample_type;
1356
	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1357

1358
	perf_sample_data_init(data, 0, event->hw.last_period);
1359

1360
	data->period = event->hw.last_period;
1361 1362

	/*
1363
	 * Use latency for weight (only avail with PEBS-LL)
1364
	 */
1365
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1366
		data->weight = pebs->lat;
1367 1368 1369 1370

	/*
	 * data.data_src encodes the data source
	 */
1371 1372
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		data->data_src.val = get_data_src(event, pebs->dse);
1373

1374 1375 1376
	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
I
Ingo Molnar 已提交
1377
	 * previous PMI context or an (I)RET happened between the record and
1378 1379 1380 1381 1382
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

1383
	/*
1384 1385 1386
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1387
	 *
1388
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1389
	 */
1390
	*regs = *iregs;
1391 1392 1393 1394 1395 1396 1397

	/*
	 * Initialize regs_>flags from PEBS,
	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
	 * i.e., do not rely on it being zero:
	 */
	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1398

1399
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1400 1401 1402 1403 1404 1405 1406
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1407 1408
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;
1409

1410
#ifndef CONFIG_X86_32
1411 1412 1413 1414 1415 1416 1417 1418
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1419 1420 1421
#endif
	}

1422
	if (event->attr.precise_ip > 1) {
1423 1424 1425 1426 1427
		/*
		 * Haswell and later processors have an 'eventing IP'
		 * (real IP) which fixes the off-by-1 skid in hardware.
		 * Use it when precise_ip >= 2 :
		 */
1428 1429 1430 1431
		if (x86_pmu.intel_cap.pebs_format >= 2) {
			set_linear_ip(regs, pebs->real_ip);
			regs->flags |= PERF_EFLAGS_EXACT;
		} else {
1432
			/* Otherwise, use PEBS off-by-1 IP: */
1433 1434
			set_linear_ip(regs, pebs->ip);

1435 1436 1437 1438 1439
			/*
			 * With precise_ip >= 2, try to fix up the off-by-1 IP
			 * using the LBR. If successful, the fixup function
			 * corrects regs->ip and calls set_linear_ip() on regs:
			 */
1440 1441 1442
			if (intel_pmu_pebs_fixup_ip(regs))
				regs->flags |= PERF_EFLAGS_EXACT;
		}
1443 1444 1445 1446 1447
	} else {
		/*
		 * When precise_ip == 1, return the PEBS off-by-1 IP,
		 * no fixup attempted:
		 */
1448
		set_linear_ip(regs, pebs->ip);
1449
	}
1450

1451

1452
	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1453
	    x86_pmu.intel_cap.pebs_format >= 1)
1454
		data->addr = pebs->dla;
1455

1456 1457
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1458
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1459
			data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1460

1461
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1462 1463
			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
							      pebs->ax);
1464
	}
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1476
	if (has_branch_stack(event))
1477 1478 1479
		data->br_stack = &cpuc->lbr_stack;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static void adaptive_pebs_save_regs(struct pt_regs *regs,
				    struct pebs_gprs *gprs)
{
	regs->ax = gprs->ax;
	regs->bx = gprs->bx;
	regs->cx = gprs->cx;
	regs->dx = gprs->dx;
	regs->si = gprs->si;
	regs->di = gprs->di;
	regs->bp = gprs->bp;
	regs->sp = gprs->sp;
#ifndef CONFIG_X86_32
	regs->r8 = gprs->r8;
	regs->r9 = gprs->r9;
	regs->r10 = gprs->r10;
	regs->r11 = gprs->r11;
	regs->r12 = gprs->r12;
	regs->r13 = gprs->r13;
	regs->r14 = gprs->r14;
	regs->r15 = gprs->r15;
#endif
}

/*
 * With adaptive PEBS the layout depends on what fields are configured.
 */

static void setup_pebs_adaptive_sample_data(struct perf_event *event,
					    struct pt_regs *iregs, void *__pebs,
					    struct perf_sample_data *data,
					    struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct pebs_basic *basic = __pebs;
	void *next_record = basic + 1;
	u64 sample_type;
	u64 format_size;
	struct pebs_meminfo *meminfo = NULL;
	struct pebs_gprs *gprs = NULL;
	struct x86_perf_regs *perf_regs;

	if (basic == NULL)
		return;

	perf_regs = container_of(regs, struct x86_perf_regs, regs);
	perf_regs->xmm_regs = NULL;

	sample_type = event->attr.sample_type;
	format_size = basic->format_size;
	perf_sample_data_init(data, 0, event->hw.last_period);
	data->period = event->hw.last_period;

	if (event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(basic->tsc);

	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
	 * previous PMI context or an (I)RET happened between the record and
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

	*regs = *iregs;
	/* The ip in basic is EventingIP */
	set_linear_ip(regs, basic->ip);
	regs->flags = PERF_EFLAGS_EXACT;

	/*
	 * The record for MEMINFO is in front of GP
	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
	 * Save the pointer here but process later.
	 */
	if (format_size & PEBS_DATACFG_MEMINFO) {
		meminfo = next_record;
		next_record = meminfo + 1;
	}

	if (format_size & PEBS_DATACFG_GP) {
		gprs = next_record;
		next_record = gprs + 1;

		if (event->attr.precise_ip < 2) {
			set_linear_ip(regs, gprs->ip);
			regs->flags &= ~PERF_EFLAGS_EXACT;
		}

		if (sample_type & PERF_SAMPLE_REGS_INTR)
			adaptive_pebs_save_regs(regs, gprs);
	}

	if (format_size & PEBS_DATACFG_MEMINFO) {
		if (sample_type & PERF_SAMPLE_WEIGHT)
			data->weight = meminfo->latency ?:
				intel_get_tsx_weight(meminfo->tsx_tuning);

		if (sample_type & PERF_SAMPLE_DATA_SRC)
			data->data_src.val = get_data_src(event, meminfo->aux);

		if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
			data->addr = meminfo->address;

		if (sample_type & PERF_SAMPLE_TRANSACTION)
			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
							  gprs ? gprs->ax : 0);
	}

	if (format_size & PEBS_DATACFG_XMMS) {
		struct pebs_xmm *xmm = next_record;

		next_record = xmm + 1;
		perf_regs->xmm_regs = xmm->xmm;
	}

	if (format_size & PEBS_DATACFG_LBRS) {
1596
		struct lbr_entry *lbr = next_record;
1597 1598
		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
					& 0xff) + 1;
1599
		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		if (has_branch_stack(event)) {
			intel_pmu_store_pebs_lbrs(lbr);
			data->br_stack = &cpuc->lbr_stack;
		}
	}

	WARN_ONCE(next_record != __pebs + (format_size >> 48),
			"PEBS record size %llu, expected %llu, config %llx\n",
			format_size >> 48,
			(u64)(next_record - __pebs),
			basic->format_size);
}

1614 1615 1616 1617 1618 1619 1620
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1621 1622 1623 1624 1625 1626 1627
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1628 1629 1630
	if (base == NULL)
		return NULL;

1631 1632
	for (at = base; at < top; at += cpuc->pebs_record_size) {
		unsigned long status = get_pebs_status(at);
1633

1634
		if (test_bit(bit, (unsigned long *)&status)) {
1635 1636 1637
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1638

1639
			if (status == (1 << bit))
1640 1641 1642
				return at;

			/* clear non-PEBS bit and re-check */
1643
			pebs_status = status & cpuc->pebs_enabled;
1644
			pebs_status &= PEBS_COUNTER_MASK;
1645 1646 1647 1648 1649 1650 1651
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1652 1653 1654 1655 1656 1657 1658 1659 1660
void intel_pmu_auto_reload_read(struct perf_event *event)
{
	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));

	perf_pmu_disable(event->pmu);
	intel_pmu_drain_pebs_buffer();
	perf_pmu_enable(event->pmu);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/*
 * Special variant of intel_pmu_save_and_restart() for auto-reload.
 */
static int
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - x86_pmu.cntval_bits;
	u64 period = hwc->sample_period;
	u64 prev_raw_count, new_raw_count;
	s64 new, old;

	WARN_ON(!period);

	/*
	 * drain_pebs() only happens when the PMU is disabled.
	 */
	WARN_ON(this_cpu_read(cpu_hw_events.enabled));

	prev_raw_count = local64_read(&hwc->prev_count);
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
	local64_set(&hwc->prev_count, new_raw_count);

	/*
	 * Since the counter increments a negative counter value and
	 * overflows on the sign switch, giving the interval:
	 *
	 *   [-period, 0]
	 *
	 * the difference between two consequtive reads is:
	 *
	 *   A) value2 - value1;
	 *      when no overflows have happened in between,
	 *
	 *   B) (0 - value1) + (value2 - (-period));
	 *      when one overflow happened in between,
	 *
	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
	 *      when @n overflows happened in between.
	 *
	 * Here A) is the obvious difference, B) is the extension to the
	 * discrete interval, where the first term is to the top of the
	 * interval and the second term is from the bottom of the next
	 * interval and C) the extension to multiple intervals, where the
	 * middle term is the whole intervals covered.
	 *
	 * An equivalent of C, by reduction, is:
	 *
	 *   value2 - value1 + n * period
	 */
	new = ((s64)(new_raw_count << shift) >> shift);
	old = ((s64)(prev_raw_count << shift) >> shift);
	local64_add(new - old + count * period, &event->count);

1715 1716
	local64_set(&hwc->period_left, -new);

1717 1718 1719 1720 1721
	perf_event_update_userpage(event);

	return 0;
}

1722
static void __intel_pmu_pebs_event(struct perf_event *event,
1723 1724
				   struct pt_regs *iregs,
				   void *base, void *top,
1725 1726 1727 1728 1729 1730
				   int bit, int count,
				   void (*setup_sample)(struct perf_event *,
						struct pt_regs *,
						void *,
						struct perf_sample_data *,
						struct pt_regs *))
1731
{
1732
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1733
	struct hw_perf_event *hwc = &event->hw;
1734
	struct perf_sample_data data;
1735 1736
	struct x86_perf_regs perf_regs;
	struct pt_regs *regs = &perf_regs.regs;
1737
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1738
	struct pt_regs dummy_iregs;
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		/*
		 * Now, auto-reload is only enabled in fixed period mode.
		 * The reload value is always hwc->sample_period.
		 * May need to change it, if auto-reload is enabled in
		 * freq mode later.
		 */
		intel_pmu_save_and_restart_reload(event, count);
	} else if (!intel_pmu_save_and_restart(event))
1749 1750
		return;

1751 1752 1753
	if (!iregs)
		iregs = &dummy_iregs;

1754
	while (count > 1) {
1755 1756 1757
		setup_sample(event, iregs, at, &data, regs);
		perf_event_output(event, &data, regs);
		at += cpuc->pebs_record_size;
1758 1759
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1760 1761
	}

1762
	setup_sample(event, iregs, at, &data, regs);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	if (iregs == &dummy_iregs) {
		/*
		 * The PEBS records may be drained in the non-overflow context,
		 * e.g., large PEBS + context switch. Perf should treat the
		 * last record the same as other PEBS records, and doesn't
		 * invoke the generic overflow handler.
		 */
		perf_event_output(event, &data, regs);
	} else {
		/*
		 * All but the last records are processed.
		 * The last one is left to be able to call the overflow handler.
		 */
		if (perf_event_overflow(event, &data, regs))
			x86_pmu_stop(event, 0);
1778
	}
1779 1780
}

1781 1782
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1783
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1784 1785 1786 1787 1788
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1789
	if (!x86_pmu.pebs_active)
1790 1791 1792 1793 1794
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1795 1796 1797 1798 1799 1800
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1801
		return;
1802

1803 1804
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1805
	if (!event->attr.precise_ip)
1806 1807
		return;

1808
	n = top - at;
1809 1810 1811
	if (n <= 0) {
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
1812
		return;
1813
	}
1814

1815 1816
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n,
			       setup_pebs_fixed_sample_data);
1817 1818
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
{
	struct perf_event *event;
	int bit;

	/*
	 * The drain_pebs() could be called twice in a short period
	 * for auto-reload event in pmu::read(). There are no
	 * overflows have happened in between.
	 * It needs to call intel_pmu_save_and_restart_reload() to
	 * update the event->count for this case.
	 */
	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
		event = cpuc->events[bit];
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
	}
}

1838
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1839
{
1840
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1841
	struct debug_store *ds = cpuc->ds;
1842 1843
	struct perf_event *event;
	void *base, *at, *top;
1844 1845 1846 1847
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	int bit, i, size;
	u64 mask;
1848 1849 1850 1851

	if (!x86_pmu.pebs_active)
		return;

1852
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1853
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1854 1855 1856

	ds->pebs_index = ds->pebs_buffer_base;

1857 1858 1859 1860 1861 1862 1863
	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
	size = x86_pmu.max_pebs_events;
	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
	}

1864
	if (unlikely(base >= top)) {
1865
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
1866
		return;
1867
	}
1868

1869
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1870
		struct pebs_record_nhm *p = at;
1871
		u64 pebs_status;
1872

1873
		pebs_status = p->status & cpuc->pebs_enabled;
1874
		pebs_status &= mask;
1875 1876

		/* PEBS v3 has more accurate status bits */
1877
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1878
			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1879 1880 1881 1882 1883
				counts[bit]++;

			continue;
		}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1896
		bit = find_first_bit((unsigned long *)&pebs_status,
1897
					x86_pmu.max_pebs_events);
1898
		if (bit >= x86_pmu.max_pebs_events)
1899
			continue;
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1916
		if (p->status != (1ULL << bit)) {
1917
			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1918 1919
				error[i]++;
			continue;
1920
		}
1921

1922 1923
		counts[bit]++;
	}
1924

1925
	for_each_set_bit(bit, (unsigned long *)&mask, size) {
1926
		if ((counts[bit] == 0) && (error[bit] == 0))
1927
			continue;
1928

1929
		event = cpuc->events[bit];
1930 1931 1932 1933 1934
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1935

1936
		/* log dropped samples number */
1937
		if (error[bit]) {
1938 1939
			perf_log_lost_samples(event, error[bit]);

1940 1941 1942 1943
			if (perf_event_account_interrupt(event))
				x86_pmu_stop(event, 0);
		}

1944 1945
		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
1946 1947
					       top, bit, counts[bit],
					       setup_pebs_fixed_sample_data);
1948
		}
1949 1950 1951
	}
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
{
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event;
	void *base, *at, *top;
	int bit, size;
	u64 mask;

	if (!x86_pmu.pebs_active)
		return;

	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;

	ds->pebs_index = ds->pebs_buffer_base;

	mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
	       (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
	size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;

	if (unlikely(base >= top)) {
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
		return;
	}

	for (at = base; at < top; at += cpuc->pebs_record_size) {
		u64 pebs_status;

		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
		pebs_status &= mask;

		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
			counts[bit]++;
	}

	for_each_set_bit(bit, (unsigned long *)&mask, size) {
		if (counts[bit] == 0)
			continue;

		event = cpuc->events[bit];
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;

		__intel_pmu_pebs_event(event, iregs, base,
				       top, bit, counts[bit],
				       setup_pebs_adaptive_sample_data);
	}
}

2006 2007 2008 2009
/*
 * BTS, PEBS probe and setup
 */

2010
void __init intel_ds_init(void)
2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2020
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2021
	if (x86_pmu.version <= 4)
2022
		x86_pmu.pebs_no_isolation = 1;
2023

2024
	if (x86_pmu.pebs) {
2025
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2026
		char *pebs_qual = "";
2027
		int format = x86_pmu.intel_cap.pebs_format;
2028

2029 2030 2031
		if (format < 4)
			x86_pmu.intel_cap.pebs_baseline = 0;

2032 2033
		switch (format) {
		case 0:
2034
			pr_cont("PEBS fmt0%c, ", pebs_type);
2035
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2036 2037 2038 2039 2040 2041 2042 2043
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2044 2045 2046 2047
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
2048
			pr_cont("PEBS fmt1%c, ", pebs_type);
2049 2050 2051 2052
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

2053 2054 2055
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2056
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2057 2058
			break;

2059 2060 2061 2062 2063
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2064
			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2065 2066
			break;

2067 2068 2069 2070 2071 2072 2073 2074 2075
		case 4:
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
			if (x86_pmu.intel_cap.pebs_baseline) {
				x86_pmu.large_pebs_flags |=
					PERF_SAMPLE_BRANCH_STACK |
					PERF_SAMPLE_TIME;
				x86_pmu.flags |= PMU_FL_PEBS_ALL;
				pebs_qual = "-baseline";
2076
				x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			} else {
				/* Only basic record supported */
				x86_pmu.large_pebs_flags &=
					~(PERF_SAMPLE_ADDR |
					  PERF_SAMPLE_TIME |
					  PERF_SAMPLE_DATA_SRC |
					  PERF_SAMPLE_TRANSACTION |
					  PERF_SAMPLE_REGS_USER |
					  PERF_SAMPLE_REGS_INTR);
			}
			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2088 2089 2090 2091 2092 2093

			if (x86_pmu.intel_cap.pebs_output_pt_available) {
				pr_cont("PEBS-via-PT, ");
				x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
			}

2094 2095
			break;

2096
		default:
2097
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2098 2099 2100 2101
			x86_pmu.pebs = 0;
		}
	}
}
2102 2103 2104

void perf_restore_debug_store(void)
{
2105 2106
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

2107 2108 2109
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

2110
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2111
}