ds.c 45.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/cpu_entry_area.h>
7
#include <asm/perf_event.h>
8
#include <asm/tlbflush.h>
9
#include <asm/insn.h>
10

11
#include "../perf_event.h"
12

13 14 15
/* Waste a full page so it can be mapped into the cpu_entry_area */
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);

16 17 18
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

19
#define PEBS_FIXUP_SIZE		PAGE_SIZE
20 21 22 23 24 25 26 27 28 29 30 31

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 57
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
58 59
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

60 61
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 79
};

80 81 82
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
83 84 85 86 87 88 89 90 91 92 93 94 95 96
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

137
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 139 140
{
	union perf_mem_data_src dse;

141 142 143 144 145 146
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
147 148 149 150 151 152 153 154 155

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
156 157 158 159 160 161
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
162 163 164
	return dse.val;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
180
	if (x86_pmu.pebs_no_tlb) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

220 221 222 223
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
224 225 226 227 228 229
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
230
	u64 real_ip, tsx_tuning;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
246 247
};

248 249
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

263
void init_debug_store_on_cpu(int cpu)
264 265 266 267 268 269 270 271 272 273 274
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

275
void fini_debug_store_on_cpu(int cpu)
276 277 278 279 280 281 282
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

283 284
static DEFINE_PER_CPU(void *, insn_buffer);

285
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286
{
287
	unsigned long start = (unsigned long)cea;
288 289 290 291
	phys_addr_t pa;
	size_t msz = 0;

	pa = virt_to_phys(addr);
292 293

	preempt_disable();
294 295
	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, pa, prot);
296 297 298 299 300 301 302

	/*
	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
	 * all TLB entries for it.
	 */
	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
303 304 305 306
}

static void ds_clear_cea(void *cea, size_t size)
{
307
	unsigned long start = (unsigned long)cea;
308 309
	size_t msz = 0;

310
	preempt_disable();
311 312
	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, 0, PAGE_NONE);
313 314 315

	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
316 317 318 319 320
}

static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
{
	unsigned int order = get_order(size);
321
	int node = cpu_to_node(cpu);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct page *page;

	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
	return page ? page_address(page) : NULL;
}

static void dsfree_pages(const void *buffer, size_t size)
{
	if (buffer)
		free_pages((unsigned long)buffer, get_order(size));
}

static int alloc_pebs_buffer(int cpu)
{
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	size_t bsiz = x86_pmu.pebs_buffer_size;
	int max, node = cpu_to_node(cpu);
	void *buffer, *ibuffer, *cea;
341 342 343 344

	if (!x86_pmu.pebs)
		return 0;

345
	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 347 348
	if (unlikely(!buffer))
		return -ENOMEM;

349 350 351 352 353 354 355
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
356
			dsfree_pages(buffer, bsiz);
357 358 359 360
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}
361 362 363 364 365
	hwev->ds_pebs_vaddr = buffer;
	/* Update the cpu entry area mapping */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds->pebs_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366
	ds->pebs_index = ds->pebs_buffer_base;
367 368
	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 370 371
	return 0;
}

372 373
static void release_pebs_buffer(int cpu)
{
374 375
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
376

377
	if (!x86_pmu.pebs)
378 379
		return;

380 381 382
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

383 384 385 386 387
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
	hwev->ds_pebs_vaddr = NULL;
388 389
}

390 391
static int alloc_bts_buffer(int cpu)
{
392 393 394 395
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	void *buffer, *cea;
	int max;
396 397 398 399

	if (!x86_pmu.bts)
		return 0;

400
	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 402
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403
		return -ENOMEM;
404
	}
405 406 407 408 409
	hwev->ds_bts_vaddr = buffer;
	/* Update the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds->bts_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410
	ds->bts_index = ds->bts_buffer_base;
411 412 413
	max = BTS_RECORD_SIZE * (BTS_BUFFER_SIZE / BTS_RECORD_SIZE);
	ds->bts_absolute_maximum = ds->bts_buffer_base + max;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum - (max / 16);
414 415 416
	return 0;
}

417 418
static void release_bts_buffer(int cpu)
{
419 420
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
421

422
	if (!x86_pmu.bts)
423 424
		return;

425 426 427 428 429
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds_clear_cea(cea, BTS_BUFFER_SIZE);
	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
	hwev->ds_bts_vaddr = NULL;
430 431
}

432 433
static int alloc_ds_buffer(int cpu)
{
434
	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
435

436
	memset(ds, 0, sizeof(*ds));
437 438 439 440 441 442 443 444 445
	per_cpu(cpu_hw_events, cpu).ds = ds;
	return 0;
}

static void release_ds_buffer(int cpu)
{
	per_cpu(cpu_hw_events, cpu).ds = NULL;
}

446
void release_ds_buffers(void)
447 448 449 450 451 452
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

453 454 455 456 457 458 459 460 461
	for_each_possible_cpu(cpu)
		release_ds_buffer(cpu);

	for_each_possible_cpu(cpu) {
		/*
		 * Again, ignore errors from offline CPUs, they will no longer
		 * observe cpu_hw_events.ds and not program the DS_AREA when
		 * they come up.
		 */
462
		fini_debug_store_on_cpu(cpu);
463
	}
464 465

	for_each_possible_cpu(cpu) {
466 467
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
468 469 470
	}
}

471
void reserve_ds_buffers(void)
472
{
473 474 475 476 477
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
478 479

	if (!x86_pmu.bts && !x86_pmu.pebs)
480
		return;
481

482 483 484 485 486 487
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

488
	for_each_possible_cpu(cpu) {
489 490 491 492
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
493

494 495 496 497 498
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
499

500
		if (bts_err && pebs_err)
501
			break;
502 503 504 505 506 507
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
508

509 510 511
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
512 513
	}

514 515 516 517 518 519 520 521 522 523
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

524 525 526 527 528
		for_each_possible_cpu(cpu) {
			/*
			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
			 * will get this call through intel_pmu_cpu_starting().
			 */
529
			init_debug_store_on_cpu(cpu);
530
		}
531 532 533 534 535 536 537
	}
}

/*
 * BTS
 */

538
struct event_constraint bts_constraint =
539
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
540

541
void intel_pmu_enable_bts(u64 config)
542 543 544 545 546
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

547 548
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
549 550
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
551 552

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
553
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
554 555

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
556
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
557 558 559 560

	update_debugctlmsr(debugctlmsr);
}

561
void intel_pmu_disable_bts(void)
562
{
563
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
564 565 566 567 568 569 570 571
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
572 573
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
574 575 576 577

	update_debugctlmsr(debugctlmsr);
}

578
int intel_pmu_drain_bts_buffer(void)
579
{
580
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581 582 583 584 585 586
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
587
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
588
	struct bts_record *at, *base, *top;
589 590 591
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
592
	unsigned long skip = 0;
593 594 595
	struct pt_regs regs;

	if (!event)
596
		return 0;
597

598
	if (!x86_pmu.bts_active)
599
		return 0;
600

601 602
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
603

604
	if (top <= base)
605
		return 0;
606

607 608
	memset(&regs, 0, sizeof(regs));

609 610
	ds->bts_index = ds->bts_buffer_base;

611
	perf_sample_data_init(&data, 0, event->hw.last_period);
612

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

634 635 636 637 638
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
639
	rcu_read_lock();
640 641
	perf_prepare_sample(&header, &data, event, &regs);

642 643
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
P
Peter Zijlstra 已提交
644
		goto unlock;
645

646 647 648 649 650 651
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

652 653 654 655 656 657 658 659 660 661 662
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
663 664
unlock:
	rcu_read_unlock();
665
	return 1;
666 667
}

668 669 670 671 672 673 674
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

675 676 677
/*
 * PEBS
 */
678
struct event_constraint intel_core2_pebs_event_constraints[] = {
679 680 681 682 683
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
684 685
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
686 687 688
	EVENT_CONSTRAINT_END
};

689
struct event_constraint intel_atom_pebs_event_constraints[] = {
690 691 692
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
693 694
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
695 696
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
697 698 699
	EVENT_CONSTRAINT_END
};

700
struct event_constraint intel_slm_pebs_event_constraints[] = {
701 702
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
703 704
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
705 706 707
	EVENT_CONSTRAINT_END
};

708 709 710 711 712 713
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

714 715 716 717 718 719
struct event_constraint intel_glp_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

720
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
721
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
722 723 724
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
725
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
726 727 728 729 730 731
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
732 733
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
734 735 736
	EVENT_CONSTRAINT_END
};

737
struct event_constraint intel_westmere_pebs_event_constraints[] = {
738
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
739 740 741
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
742
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
743 744 745 746 747 748
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
749 750
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
751 752 753
	EVENT_CONSTRAINT_END
};

754
struct event_constraint intel_snb_pebs_event_constraints[] = {
755
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
756
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
757
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
758 759
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
760 761 762 763
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
764 765
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
766 767 768
	EVENT_CONSTRAINT_END
};

769
struct event_constraint intel_ivb_pebs_event_constraints[] = {
770
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
771
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
772
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
773 774
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
775 776
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
777 778 779 780
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
781 782
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
783 784 785
        EVENT_CONSTRAINT_END
};

786
struct event_constraint intel_hsw_pebs_event_constraints[] = {
787
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
788 789 790
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
791 792
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
793
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
794 795 796 797 798 799 800 801 802 803
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
804 805 806 807 808
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


833 834
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
835 836
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
837 838
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
839 840 841 842 843 844 845 846 847 848 849 850
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
851 852
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
853 854 855
	EVENT_CONSTRAINT_END
};

856
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
857 858 859
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
860
	if (!event->attr.precise_ip)
861 862 863 864
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
865 866
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
867
				return c;
868
			}
869 870 871 872 873 874
		}
	}

	return &emptyconstraint;
}

875 876 877 878 879 880 881 882 883 884
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

885 886 887 888 889 890 891 892
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
	} else {
		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
	}

	ds->pebs_interrupt_threshold = threshold;
}

static void
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
{
911 912 913 914 915 916 917
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

918 919 920 921 922 923
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

924
		update = true;
925
	}
926 927 928

	if (update)
		pebs_update_threshold(cpuc);
929 930
}

931
void intel_pmu_pebs_add(struct perf_event *event)
932
{
933 934 935 936 937
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
938
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
939 940 941
		cpuc->n_large_pebs++;

	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
942 943
}

944
void intel_pmu_pebs_enable(struct perf_event *event)
945
{
946
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947
	struct hw_perf_event *hwc = &event->hw;
948
	struct debug_store *ds = cpuc->ds;
949

950 951
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

952
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
953 954 955

	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
956 957
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
958

959
	/*
960 961
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
962
	 */
963 964 965
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		ds->pebs_event_reset[hwc->idx] =
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
966 967
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
968
	}
969 970
}

971
void intel_pmu_pebs_del(struct perf_event *event)
972 973 974 975 976 977
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
978
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
979
		cpuc->n_large_pebs--;
980

981
	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
982 983
}

984
void intel_pmu_pebs_disable(struct perf_event *event)
985
{
986
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
987
	struct hw_perf_event *hwc = &event->hw;
988

989
	if (cpuc->n_pebs == cpuc->n_large_pebs)
990
		intel_pmu_drain_pebs_buffer();
991

992
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
993

994
	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
995
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
996
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
997 998
		cpuc->pebs_enabled &= ~(1ULL << 63);

999
	if (cpuc->enabled)
1000
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1001 1002 1003 1004

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

1005
void intel_pmu_pebs_enable_all(void)
1006
{
1007
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1008 1009 1010 1011 1012

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

1013
void intel_pmu_pebs_disable_all(void)
1014
{
1015
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1016 1017 1018 1019 1020

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

1021 1022
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
1023
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1024 1025 1026
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
1027
	int is_64bit = 0;
1028
	void *kaddr;
1029
	int size;
1030

1031 1032 1033 1034 1035 1036
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
1037 1038 1039
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
1040 1041 1042
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
1053
	if ((ip - to) > PEBS_FIXUP_SIZE)
1054 1055 1056 1057 1058 1059
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1060
		set_linear_ip(regs, from);
1061 1062 1063
		return 1;
	}

1064
	size = ip - to;
1065
	if (!kernel_ip(ip)) {
1066
		int bytes;
1067 1068
		u8 *buf = this_cpu_read(insn_buffer);

1069
		/* 'size' must fit our buffer, see above */
1070
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1071
		if (bytes != 0)
1072 1073 1074 1075 1076 1077 1078
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1079 1080 1081 1082 1083
	do {
		struct insn insn;

		old_to = to;

1084 1085 1086
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
1087
		insn_init(&insn, kaddr, size, is_64bit);
1088
		insn_get_length(&insn);
1089 1090 1091 1092 1093 1094 1095 1096
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1097

1098
		to += insn.length;
1099
		kaddr += insn.length;
1100
		size -= insn.length;
1101 1102 1103
	} while (to < ip);

	if (to == ip) {
1104
		set_linear_ip(regs, old_to);
1105 1106 1107
		return 1;
	}

P
Peter Zijlstra 已提交
1108 1109 1110 1111
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1112 1113 1114
	return 0;
}

1115
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1116 1117 1118 1119 1120 1121 1122 1123
{
	if (pebs->tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
		return tsx.cycles_last_block;
	}
	return 0;
}

1124
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1125 1126 1127 1128 1129 1130 1131 1132 1133
{
	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;

	/* For RTM XABORTs also log the abort code from AX */
	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
	return txn;
}

1134 1135 1136 1137
static void setup_pebs_sample_data(struct perf_event *event,
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1138
{
1139 1140 1141 1142
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)
1143
	/*
1144 1145
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1146
	 */
1147
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1148
	struct pebs_record_skl *pebs = __pebs;
1149
	u64 sample_type;
1150 1151
	int fll, fst, dsrc;
	int fl = event->hw.flags;
1152

1153 1154 1155
	if (pebs == NULL)
		return;

1156
	regs->flags &= ~PERF_EFLAGS_EXACT;
1157 1158 1159 1160 1161
	sample_type = event->attr.sample_type;
	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;

	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1162

1163
	perf_sample_data_init(data, 0, event->hw.last_period);
1164

1165
	data->period = event->hw.last_period;
1166 1167

	/*
1168
	 * Use latency for weight (only avail with PEBS-LL)
1169
	 */
1170
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1171
		data->weight = pebs->lat;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/*
	 * data.data_src encodes the data source
	 */
	if (dsrc) {
		u64 val = PERF_MEM_NA;
		if (fll)
			val = load_latency_data(pebs->dse);
		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
			val = precise_datala_hsw(event, pebs->dse);
		else if (fst)
			val = precise_store_data(pebs->dse);
1184
		data->data_src.val = val;
1185 1186
	}

1187
	/*
1188 1189 1190
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1191
	 *
1192 1193 1194 1195 1196 1197
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
	 *
	 * We must however always use BP,SP from iregs for the unwinder to stay
	 * sane; the record BP,SP can point into thin air when the record is
	 * from a previous PMI context or an (I)RET happend between the record
	 * and PMI.
1198
	 */
1199 1200
	*regs = *iregs;
	regs->flags = pebs->flags;
1201

1202
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1203 1204 1205 1206 1207 1208 1209
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		/*
		 * Per the above; only set BP,SP if we don't need callchains.
		 *
		 * XXX: does this make sense?
		 */
		if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
			regs->bp = pebs->bp;
			regs->sp = pebs->sp;
		}

		/*
		 * Preserve PERF_EFLAGS_VM from set_linear_ip().
		 */
		regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1224
#ifndef CONFIG_X86_32
1225 1226 1227 1228 1229 1230 1231 1232
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1233 1234 1235
#endif
	}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (event->attr.precise_ip > 1) {
		/* Haswell and later have the eventing IP, so use it: */
		if (x86_pmu.intel_cap.pebs_format >= 2) {
			set_linear_ip(regs, pebs->real_ip);
			regs->flags |= PERF_EFLAGS_EXACT;
		} else {
			/* Otherwise use PEBS off-by-1 IP: */
			set_linear_ip(regs, pebs->ip);

			/* ... and try to fix it up using the LBR entries: */
			if (intel_pmu_pebs_fixup_ip(regs))
				regs->flags |= PERF_EFLAGS_EXACT;
		}
	} else
		set_linear_ip(regs, pebs->ip);

1252

1253
	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1254
	    x86_pmu.intel_cap.pebs_format >= 1)
1255
		data->addr = pebs->dla;
1256

1257 1258
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1259
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1260
			data->weight = intel_hsw_weight(pebs);
1261

1262
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1263
			data->txn = intel_hsw_transaction(pebs);
1264
	}
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1276
	if (has_branch_stack(event))
1277 1278 1279
		data->br_stack = &cpuc->lbr_stack;
}

1280 1281 1282 1283 1284 1285 1286
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1287 1288 1289 1290 1291 1292 1293
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1294 1295 1296 1297 1298 1299 1300
	if (base == NULL)
		return NULL;

	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
		struct pebs_record_nhm *p = at;

		if (test_bit(bit, (unsigned long *)&p->status)) {
1301 1302 1303
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1304 1305 1306 1307 1308 1309

			if (p->status == (1 << bit))
				return at;

			/* clear non-PEBS bit and re-check */
			pebs_status = p->status & cpuc->pebs_enabled;
1310
			pebs_status &= PEBS_COUNTER_MASK;
1311 1312 1313 1314 1315 1316 1317
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326
void intel_pmu_auto_reload_read(struct perf_event *event)
{
	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));

	perf_pmu_disable(event->pmu);
	intel_pmu_drain_pebs_buffer();
	perf_pmu_enable(event->pmu);
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Special variant of intel_pmu_save_and_restart() for auto-reload.
 */
static int
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - x86_pmu.cntval_bits;
	u64 period = hwc->sample_period;
	u64 prev_raw_count, new_raw_count;
	s64 new, old;

	WARN_ON(!period);

	/*
	 * drain_pebs() only happens when the PMU is disabled.
	 */
	WARN_ON(this_cpu_read(cpu_hw_events.enabled));

	prev_raw_count = local64_read(&hwc->prev_count);
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
	local64_set(&hwc->prev_count, new_raw_count);

	/*
	 * Since the counter increments a negative counter value and
	 * overflows on the sign switch, giving the interval:
	 *
	 *   [-period, 0]
	 *
	 * the difference between two consequtive reads is:
	 *
	 *   A) value2 - value1;
	 *      when no overflows have happened in between,
	 *
	 *   B) (0 - value1) + (value2 - (-period));
	 *      when one overflow happened in between,
	 *
	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
	 *      when @n overflows happened in between.
	 *
	 * Here A) is the obvious difference, B) is the extension to the
	 * discrete interval, where the first term is to the top of the
	 * interval and the second term is from the bottom of the next
	 * interval and C) the extension to multiple intervals, where the
	 * middle term is the whole intervals covered.
	 *
	 * An equivalent of C, by reduction, is:
	 *
	 *   value2 - value1 + n * period
	 */
	new = ((s64)(new_raw_count << shift) >> shift);
	old = ((s64)(prev_raw_count << shift) >> shift);
	local64_add(new - old + count * period, &event->count);

	perf_event_update_userpage(event);

	return 0;
}

1386
static void __intel_pmu_pebs_event(struct perf_event *event,
1387 1388 1389
				   struct pt_regs *iregs,
				   void *base, void *top,
				   int bit, int count)
1390
{
1391
	struct hw_perf_event *hwc = &event->hw;
1392 1393
	struct perf_sample_data data;
	struct pt_regs regs;
1394
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		/*
		 * Now, auto-reload is only enabled in fixed period mode.
		 * The reload value is always hwc->sample_period.
		 * May need to change it, if auto-reload is enabled in
		 * freq mode later.
		 */
		intel_pmu_save_and_restart_reload(event, count);
	} else if (!intel_pmu_save_and_restart(event))
1405 1406
		return;

1407 1408 1409 1410 1411 1412
	while (count > 1) {
		setup_pebs_sample_data(event, iregs, at, &data, &regs);
		perf_event_output(event, &data, &regs);
		at += x86_pmu.pebs_record_size;
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1413 1414 1415
	}

	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1416

1417 1418 1419 1420 1421
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
	if (perf_event_overflow(event, &data, &regs)) {
P
Peter Zijlstra 已提交
1422
		x86_pmu_stop(event, 0);
1423 1424 1425
		return;
	}

1426 1427
}

1428 1429
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1430
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1431 1432 1433 1434 1435
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1436
	if (!x86_pmu.pebs_active)
1437 1438 1439 1440 1441
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1442 1443 1444 1445 1446 1447
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1448
		return;
1449

1450 1451
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1452
	if (!event->attr.precise_ip)
1453 1454
		return;

1455
	n = top - at;
1456 1457 1458
	if (n <= 0) {
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
1459
		return;
1460
	}
1461

1462
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1463 1464
}

1465
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1466
{
1467
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1468
	struct debug_store *ds = cpuc->ds;
1469 1470 1471
	struct perf_event *event;
	void *base, *at, *top;
	short counts[MAX_PEBS_EVENTS] = {};
1472
	short error[MAX_PEBS_EVENTS] = {};
1473
	int bit, i;
1474 1475 1476 1477

	if (!x86_pmu.pebs_active)
		return;

1478
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1479
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1480 1481 1482

	ds->pebs_index = ds->pebs_buffer_base;

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (unlikely(base >= top)) {
		/*
		 * The drain_pebs() could be called twice in a short period
		 * for auto-reload event in pmu::read(). There are no
		 * overflows have happened in between.
		 * It needs to call intel_pmu_save_and_restart_reload() to
		 * update the event->count for this case.
		 */
		for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled,
				 x86_pmu.max_pebs_events) {
			event = cpuc->events[bit];
			if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
				intel_pmu_save_and_restart_reload(event, 0);
		}
1497
		return;
1498
	}
1499

1500
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1501
		struct pebs_record_nhm *p = at;
1502
		u64 pebs_status;
1503

1504 1505 1506 1507
		pebs_status = p->status & cpuc->pebs_enabled;
		pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;

		/* PEBS v3 has more accurate status bits */
1508
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1509 1510
			for_each_set_bit(bit, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
1511 1512 1513 1514 1515
				counts[bit]++;

			continue;
		}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1528
		bit = find_first_bit((unsigned long *)&pebs_status,
1529
					x86_pmu.max_pebs_events);
1530
		if (bit >= x86_pmu.max_pebs_events)
1531
			continue;
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1548 1549 1550 1551 1552
		if (p->status != (1ULL << bit)) {
			for_each_set_bit(i, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
				error[i]++;
			continue;
1553
		}
1554

1555 1556
		counts[bit]++;
	}
1557

1558
	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1559
		if ((counts[bit] == 0) && (error[bit] == 0))
1560
			continue;
1561

1562
		event = cpuc->events[bit];
1563 1564 1565 1566 1567
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1568

1569
		/* log dropped samples number */
1570
		if (error[bit]) {
1571 1572
			perf_log_lost_samples(event, error[bit]);

1573 1574 1575 1576
			if (perf_event_account_interrupt(event))
				x86_pmu_stop(event, 0);
		}

1577 1578 1579 1580
		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
					       top, bit, counts[bit]);
		}
1581 1582 1583 1584 1585 1586 1587
	}
}

/*
 * BTS, PEBS probe and setup
 */

1588
void __init intel_ds_init(void)
1589 1590 1591 1592 1593 1594 1595 1596 1597
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1598
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1599
	if (x86_pmu.pebs) {
1600 1601
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
		int format = x86_pmu.intel_cap.pebs_format;
1602 1603 1604

		switch (format) {
		case 0:
1605
			pr_cont("PEBS fmt0%c, ", pebs_type);
1606
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1607 1608 1609 1610 1611 1612 1613 1614
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
1615 1616 1617 1618
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1619
			pr_cont("PEBS fmt1%c, ", pebs_type);
1620 1621 1622 1623
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

1624 1625 1626
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1627
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1628 1629
			break;

1630 1631 1632 1633 1634
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1635
			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
1636 1637
			break;

1638
		default:
1639
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1640 1641 1642 1643
			x86_pmu.pebs = 0;
		}
	}
}
1644 1645 1646

void perf_restore_debug_store(void)
{
1647 1648
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

1649 1650 1651
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

1652
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1653
}