ds.c 45.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/cpu_entry_area.h>
7
#include <asm/perf_event.h>
8
#include <asm/tlbflush.h>
9
#include <asm/insn.h>
10

11
#include "../perf_event.h"
12

13 14 15
/* Waste a full page so it can be mapped into the cpu_entry_area */
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);

16 17 18
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

19
#define PEBS_FIXUP_SIZE		PAGE_SIZE
20 21 22 23 24 25 26 27 28 29 30 31

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 57
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
58 59
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

60 61
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 79
};

80 81 82
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
83 84 85 86 87 88 89 90 91 92 93 94 95 96
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

137
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 139 140
{
	union perf_mem_data_src dse;

141 142 143 144 145 146
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
147 148 149 150 151 152 153 154 155

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
156 157 158 159 160 161
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
162 163 164
	return dse.val;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
180
	if (x86_pmu.pebs_no_tlb) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

220 221 222 223
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
224 225 226 227 228 229
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
230
	u64 real_ip, tsx_tuning;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
246 247
};

248 249
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

263
void init_debug_store_on_cpu(int cpu)
264 265 266 267 268 269 270 271 272 273 274
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

275
void fini_debug_store_on_cpu(int cpu)
276 277 278 279 280 281 282
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

283 284
static DEFINE_PER_CPU(void *, insn_buffer);

285
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286
{
287
	unsigned long start = (unsigned long)cea;
288 289 290 291
	phys_addr_t pa;
	size_t msz = 0;

	pa = virt_to_phys(addr);
292 293

	preempt_disable();
294 295
	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, pa, prot);
296 297 298 299 300 301 302

	/*
	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
	 * all TLB entries for it.
	 */
	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
303 304 305 306
}

static void ds_clear_cea(void *cea, size_t size)
{
307
	unsigned long start = (unsigned long)cea;
308 309
	size_t msz = 0;

310
	preempt_disable();
311 312
	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, 0, PAGE_NONE);
313 314 315

	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
316 317 318 319 320
}

static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
{
	unsigned int order = get_order(size);
321
	int node = cpu_to_node(cpu);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct page *page;

	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
	return page ? page_address(page) : NULL;
}

static void dsfree_pages(const void *buffer, size_t size)
{
	if (buffer)
		free_pages((unsigned long)buffer, get_order(size));
}

static int alloc_pebs_buffer(int cpu)
{
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	size_t bsiz = x86_pmu.pebs_buffer_size;
	int max, node = cpu_to_node(cpu);
	void *buffer, *ibuffer, *cea;
341 342 343 344

	if (!x86_pmu.pebs)
		return 0;

345
	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 347 348
	if (unlikely(!buffer))
		return -ENOMEM;

349 350 351 352 353 354 355
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
356
			dsfree_pages(buffer, bsiz);
357 358 359 360
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}
361 362 363 364 365
	hwev->ds_pebs_vaddr = buffer;
	/* Update the cpu entry area mapping */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds->pebs_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366
	ds->pebs_index = ds->pebs_buffer_base;
367 368
	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 370 371
	return 0;
}

372 373
static void release_pebs_buffer(int cpu)
{
374 375
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
376

377
	if (!x86_pmu.pebs)
378 379
		return;

380 381 382
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

383 384 385 386 387
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
	hwev->ds_pebs_vaddr = NULL;
388 389
}

390 391
static int alloc_bts_buffer(int cpu)
{
392 393 394 395
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	void *buffer, *cea;
	int max;
396 397 398 399

	if (!x86_pmu.bts)
		return 0;

400
	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 402
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403
		return -ENOMEM;
404
	}
405 406 407 408 409
	hwev->ds_bts_vaddr = buffer;
	/* Update the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds->bts_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410
	ds->bts_index = ds->bts_buffer_base;
411 412 413 414 415
	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
					max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
					(max / 16) * BTS_RECORD_SIZE;
416 417 418
	return 0;
}

419 420
static void release_bts_buffer(int cpu)
{
421 422
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
423

424
	if (!x86_pmu.bts)
425 426
		return;

427 428 429 430 431
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds_clear_cea(cea, BTS_BUFFER_SIZE);
	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
	hwev->ds_bts_vaddr = NULL;
432 433
}

434 435
static int alloc_ds_buffer(int cpu)
{
436
	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
437

438
	memset(ds, 0, sizeof(*ds));
439 440 441 442 443 444 445 446 447
	per_cpu(cpu_hw_events, cpu).ds = ds;
	return 0;
}

static void release_ds_buffer(int cpu)
{
	per_cpu(cpu_hw_events, cpu).ds = NULL;
}

448
void release_ds_buffers(void)
449 450 451 452 453 454
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

455 456 457 458 459 460 461 462 463
	for_each_possible_cpu(cpu)
		release_ds_buffer(cpu);

	for_each_possible_cpu(cpu) {
		/*
		 * Again, ignore errors from offline CPUs, they will no longer
		 * observe cpu_hw_events.ds and not program the DS_AREA when
		 * they come up.
		 */
464
		fini_debug_store_on_cpu(cpu);
465
	}
466 467

	for_each_possible_cpu(cpu) {
468 469
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
470 471 472
	}
}

473
void reserve_ds_buffers(void)
474
{
475 476 477 478 479
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
480 481

	if (!x86_pmu.bts && !x86_pmu.pebs)
482
		return;
483

484 485 486 487 488 489
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

490
	for_each_possible_cpu(cpu) {
491 492 493 494
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
495

496 497 498 499 500
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
501

502
		if (bts_err && pebs_err)
503
			break;
504 505 506 507 508 509
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
510

511 512 513
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
514 515
	}

516 517 518 519 520 521 522 523 524 525
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

526 527 528 529 530
		for_each_possible_cpu(cpu) {
			/*
			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
			 * will get this call through intel_pmu_cpu_starting().
			 */
531
			init_debug_store_on_cpu(cpu);
532
		}
533 534 535 536 537 538 539
	}
}

/*
 * BTS
 */

540
struct event_constraint bts_constraint =
541
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
542

543
void intel_pmu_enable_bts(u64 config)
544 545 546 547 548
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

549 550
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
551 552
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
553 554

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
556 557

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
559 560 561 562

	update_debugctlmsr(debugctlmsr);
}

563
void intel_pmu_disable_bts(void)
564
{
565
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 567 568 569 570 571 572 573
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
574 575
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
576 577 578 579

	update_debugctlmsr(debugctlmsr);
}

580
int intel_pmu_drain_bts_buffer(void)
581
{
582
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583 584 585 586 587 588
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
589
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590
	struct bts_record *at, *base, *top;
591 592 593
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
594
	unsigned long skip = 0;
595 596 597
	struct pt_regs regs;

	if (!event)
598
		return 0;
599

600
	if (!x86_pmu.bts_active)
601
		return 0;
602

603 604
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
605

606
	if (top <= base)
607
		return 0;
608

609 610
	memset(&regs, 0, sizeof(regs));

611 612
	ds->bts_index = ds->bts_buffer_base;

613
	perf_sample_data_init(&data, 0, event->hw.last_period);
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

636 637 638 639 640
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
641
	rcu_read_lock();
642 643
	perf_prepare_sample(&header, &data, event, &regs);

644 645
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
P
Peter Zijlstra 已提交
646
		goto unlock;
647

648 649 650 651 652 653
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

654 655 656 657 658 659 660 661 662 663 664
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
665 666
unlock:
	rcu_read_unlock();
667
	return 1;
668 669
}

670 671 672 673 674 675 676
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

677 678 679
/*
 * PEBS
 */
680
struct event_constraint intel_core2_pebs_event_constraints[] = {
681 682 683 684 685
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
686 687
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
688 689 690
	EVENT_CONSTRAINT_END
};

691
struct event_constraint intel_atom_pebs_event_constraints[] = {
692 693 694
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
695 696
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697 698
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
699 700 701
	EVENT_CONSTRAINT_END
};

702
struct event_constraint intel_slm_pebs_event_constraints[] = {
703 704
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705 706
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
707 708 709
	EVENT_CONSTRAINT_END
};

710 711 712 713 714 715
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

716 717 718 719 720 721
struct event_constraint intel_glp_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

722
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
723
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
724 725 726
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
727
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
728 729 730 731 732 733
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
734 735
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
736 737 738
	EVENT_CONSTRAINT_END
};

739
struct event_constraint intel_westmere_pebs_event_constraints[] = {
740
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
741 742 743
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
744
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
745 746 747 748 749 750
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
751 752
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
753 754 755
	EVENT_CONSTRAINT_END
};

756
struct event_constraint intel_snb_pebs_event_constraints[] = {
757
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
758
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
759
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
760 761
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
762 763 764 765
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
766 767
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
768 769 770
	EVENT_CONSTRAINT_END
};

771
struct event_constraint intel_ivb_pebs_event_constraints[] = {
772
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
773
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
774
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
775 776
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
777 778
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
779 780 781 782
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
783 784
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
785 786 787
        EVENT_CONSTRAINT_END
};

788
struct event_constraint intel_hsw_pebs_event_constraints[] = {
789
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
790 791 792
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
793 794
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
795
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
796 797 798 799 800 801 802 803 804 805
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
806 807 808 809 810
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


835 836
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
837 838
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
839 840
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
841 842 843 844 845 846 847 848 849 850 851 852
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
853 854
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
855 856 857
	EVENT_CONSTRAINT_END
};

858
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
859 860 861
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
862
	if (!event->attr.precise_ip)
863 864 865 866
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
867 868
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
869
				return c;
870
			}
871 872 873
		}
	}

874 875 876 877 878 879 880
	/*
	 * Extended PEBS support
	 * Makes the PEBS code search the normal constraints.
	 */
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		return NULL;

881 882 883
	return &emptyconstraint;
}

884 885 886 887 888 889 890 891 892 893
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

894 895 896 897 898 899 900 901
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
	} else {
		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
	}

	ds->pebs_interrupt_threshold = threshold;
}

static void
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
{
920 921 922 923 924 925 926
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

927 928 929 930 931 932
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

933
		update = true;
934
	}
935 936 937

	if (update)
		pebs_update_threshold(cpuc);
938 939
}

940
void intel_pmu_pebs_add(struct perf_event *event)
941
{
942 943 944 945 946
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
947
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
948 949 950
		cpuc->n_large_pebs++;

	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
951 952
}

953
void intel_pmu_pebs_enable(struct perf_event *event)
954
{
955
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
956
	struct hw_perf_event *hwc = &event->hw;
957
	struct debug_store *ds = cpuc->ds;
958

959 960
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

961
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
962 963 964

	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
965 966
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
967

968
	/*
969 970
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
971
	 */
972 973 974
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		ds->pebs_event_reset[hwc->idx] =
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
975 976
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
977
	}
978 979
}

980
void intel_pmu_pebs_del(struct perf_event *event)
981 982 983 984 985 986
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
987
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
988
		cpuc->n_large_pebs--;
989

990
	pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
991 992
}

993
void intel_pmu_pebs_disable(struct perf_event *event)
994
{
995
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
996
	struct hw_perf_event *hwc = &event->hw;
997

998
	if (cpuc->n_pebs == cpuc->n_large_pebs)
999
		intel_pmu_drain_pebs_buffer();
1000

1001
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1002

1003
	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
1004
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1005
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1006 1007
		cpuc->pebs_enabled &= ~(1ULL << 63);

1008
	if (cpuc->enabled)
1009
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1010 1011 1012 1013

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

1014
void intel_pmu_pebs_enable_all(void)
1015
{
1016
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1017 1018 1019 1020 1021

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

1022
void intel_pmu_pebs_disable_all(void)
1023
{
1024
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1025 1026 1027 1028 1029

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

1030 1031
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
1032
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1033 1034 1035
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
1036
	int is_64bit = 0;
1037
	void *kaddr;
1038
	int size;
1039

1040 1041 1042 1043 1044 1045
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
1046 1047 1048
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
1049 1050 1051
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
1062
	if ((ip - to) > PEBS_FIXUP_SIZE)
1063 1064 1065 1066 1067 1068
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1069
		set_linear_ip(regs, from);
1070 1071 1072
		return 1;
	}

1073
	size = ip - to;
1074
	if (!kernel_ip(ip)) {
1075
		int bytes;
1076 1077
		u8 *buf = this_cpu_read(insn_buffer);

1078
		/* 'size' must fit our buffer, see above */
1079
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1080
		if (bytes != 0)
1081 1082 1083 1084 1085 1086 1087
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1088 1089 1090 1091 1092
	do {
		struct insn insn;

		old_to = to;

1093 1094 1095
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
1096
		insn_init(&insn, kaddr, size, is_64bit);
1097
		insn_get_length(&insn);
1098 1099 1100 1101 1102 1103 1104 1105
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1106

1107
		to += insn.length;
1108
		kaddr += insn.length;
1109
		size -= insn.length;
1110 1111 1112
	} while (to < ip);

	if (to == ip) {
1113
		set_linear_ip(regs, old_to);
1114 1115 1116
		return 1;
	}

P
Peter Zijlstra 已提交
1117 1118 1119 1120
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1121 1122 1123
	return 0;
}

1124
static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1125 1126 1127 1128 1129 1130 1131 1132
{
	if (pebs->tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
		return tsx.cycles_last_block;
	}
	return 0;
}

1133
static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;

	/* For RTM XABORTs also log the abort code from AX */
	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
	return txn;
}

1143 1144 1145 1146
static void setup_pebs_sample_data(struct perf_event *event,
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1147
{
1148 1149 1150 1151
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)
1152
	/*
1153 1154
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1155
	 */
1156
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1157
	struct pebs_record_skl *pebs = __pebs;
1158
	u64 sample_type;
1159 1160
	int fll, fst, dsrc;
	int fl = event->hw.flags;
1161

1162 1163 1164
	if (pebs == NULL)
		return;

1165 1166 1167 1168 1169
	sample_type = event->attr.sample_type;
	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;

	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1170

1171
	perf_sample_data_init(data, 0, event->hw.last_period);
1172

1173
	data->period = event->hw.last_period;
1174 1175

	/*
1176
	 * Use latency for weight (only avail with PEBS-LL)
1177
	 */
1178
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1179
		data->weight = pebs->lat;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	/*
	 * data.data_src encodes the data source
	 */
	if (dsrc) {
		u64 val = PERF_MEM_NA;
		if (fll)
			val = load_latency_data(pebs->dse);
		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
			val = precise_datala_hsw(event, pebs->dse);
		else if (fst)
			val = precise_store_data(pebs->dse);
1192
		data->data_src.val = val;
1193 1194
	}

1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
	 * previous PMI context or an (I)RET happend between the record and
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

1204
	/*
1205 1206 1207
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1208
	 *
1209
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1210
	 */
1211
	*regs = *iregs;
1212 1213 1214 1215 1216 1217 1218

	/*
	 * Initialize regs_>flags from PEBS,
	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
	 * i.e., do not rely on it being zero:
	 */
	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1219

1220
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1221 1222 1223 1224 1225 1226 1227
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1228 1229
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;
1230

1231
#ifndef CONFIG_X86_32
1232 1233 1234 1235 1236 1237 1238 1239
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1240 1241 1242
#endif
	}

1243
	if (event->attr.precise_ip > 1) {
1244 1245 1246 1247 1248
		/*
		 * Haswell and later processors have an 'eventing IP'
		 * (real IP) which fixes the off-by-1 skid in hardware.
		 * Use it when precise_ip >= 2 :
		 */
1249 1250 1251 1252
		if (x86_pmu.intel_cap.pebs_format >= 2) {
			set_linear_ip(regs, pebs->real_ip);
			regs->flags |= PERF_EFLAGS_EXACT;
		} else {
1253
			/* Otherwise, use PEBS off-by-1 IP: */
1254 1255
			set_linear_ip(regs, pebs->ip);

1256 1257 1258 1259 1260
			/*
			 * With precise_ip >= 2, try to fix up the off-by-1 IP
			 * using the LBR. If successful, the fixup function
			 * corrects regs->ip and calls set_linear_ip() on regs:
			 */
1261 1262 1263
			if (intel_pmu_pebs_fixup_ip(regs))
				regs->flags |= PERF_EFLAGS_EXACT;
		}
1264 1265 1266 1267 1268
	} else {
		/*
		 * When precise_ip == 1, return the PEBS off-by-1 IP,
		 * no fixup attempted:
		 */
1269
		set_linear_ip(regs, pebs->ip);
1270
	}
1271

1272

1273
	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1274
	    x86_pmu.intel_cap.pebs_format >= 1)
1275
		data->addr = pebs->dla;
1276

1277 1278
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1279
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1280
			data->weight = intel_hsw_weight(pebs);
1281

1282
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1283
			data->txn = intel_hsw_transaction(pebs);
1284
	}
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1296
	if (has_branch_stack(event))
1297 1298 1299
		data->br_stack = &cpuc->lbr_stack;
}

1300 1301 1302 1303 1304 1305 1306
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1307 1308 1309 1310 1311 1312 1313
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1314 1315 1316 1317 1318 1319 1320
	if (base == NULL)
		return NULL;

	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
		struct pebs_record_nhm *p = at;

		if (test_bit(bit, (unsigned long *)&p->status)) {
1321 1322 1323
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1324 1325 1326 1327 1328 1329

			if (p->status == (1 << bit))
				return at;

			/* clear non-PEBS bit and re-check */
			pebs_status = p->status & cpuc->pebs_enabled;
1330
			pebs_status &= PEBS_COUNTER_MASK;
1331 1332 1333 1334 1335 1336 1337
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346
void intel_pmu_auto_reload_read(struct perf_event *event)
{
	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));

	perf_pmu_disable(event->pmu);
	intel_pmu_drain_pebs_buffer();
	perf_pmu_enable(event->pmu);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Special variant of intel_pmu_save_and_restart() for auto-reload.
 */
static int
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - x86_pmu.cntval_bits;
	u64 period = hwc->sample_period;
	u64 prev_raw_count, new_raw_count;
	s64 new, old;

	WARN_ON(!period);

	/*
	 * drain_pebs() only happens when the PMU is disabled.
	 */
	WARN_ON(this_cpu_read(cpu_hw_events.enabled));

	prev_raw_count = local64_read(&hwc->prev_count);
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
	local64_set(&hwc->prev_count, new_raw_count);

	/*
	 * Since the counter increments a negative counter value and
	 * overflows on the sign switch, giving the interval:
	 *
	 *   [-period, 0]
	 *
	 * the difference between two consequtive reads is:
	 *
	 *   A) value2 - value1;
	 *      when no overflows have happened in between,
	 *
	 *   B) (0 - value1) + (value2 - (-period));
	 *      when one overflow happened in between,
	 *
	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
	 *      when @n overflows happened in between.
	 *
	 * Here A) is the obvious difference, B) is the extension to the
	 * discrete interval, where the first term is to the top of the
	 * interval and the second term is from the bottom of the next
	 * interval and C) the extension to multiple intervals, where the
	 * middle term is the whole intervals covered.
	 *
	 * An equivalent of C, by reduction, is:
	 *
	 *   value2 - value1 + n * period
	 */
	new = ((s64)(new_raw_count << shift) >> shift);
	old = ((s64)(prev_raw_count << shift) >> shift);
	local64_add(new - old + count * period, &event->count);

	perf_event_update_userpage(event);

	return 0;
}

1406
static void __intel_pmu_pebs_event(struct perf_event *event,
1407 1408 1409
				   struct pt_regs *iregs,
				   void *base, void *top,
				   int bit, int count)
1410
{
1411
	struct hw_perf_event *hwc = &event->hw;
1412 1413
	struct perf_sample_data data;
	struct pt_regs regs;
1414
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		/*
		 * Now, auto-reload is only enabled in fixed period mode.
		 * The reload value is always hwc->sample_period.
		 * May need to change it, if auto-reload is enabled in
		 * freq mode later.
		 */
		intel_pmu_save_and_restart_reload(event, count);
	} else if (!intel_pmu_save_and_restart(event))
1425 1426
		return;

1427 1428 1429 1430 1431 1432
	while (count > 1) {
		setup_pebs_sample_data(event, iregs, at, &data, &regs);
		perf_event_output(event, &data, &regs);
		at += x86_pmu.pebs_record_size;
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1433 1434 1435
	}

	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1436

1437 1438 1439 1440 1441
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
	if (perf_event_overflow(event, &data, &regs)) {
P
Peter Zijlstra 已提交
1442
		x86_pmu_stop(event, 0);
1443 1444 1445
		return;
	}

1446 1447
}

1448 1449
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1450
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1451 1452 1453 1454 1455
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1456
	if (!x86_pmu.pebs_active)
1457 1458 1459 1460 1461
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1462 1463 1464 1465 1466 1467
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1468
		return;
1469

1470 1471
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1472
	if (!event->attr.precise_ip)
1473 1474
		return;

1475
	n = top - at;
1476 1477 1478
	if (n <= 0) {
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
1479
		return;
1480
	}
1481

1482
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1483 1484
}

1485
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1486
{
1487
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1488
	struct debug_store *ds = cpuc->ds;
1489 1490 1491
	struct perf_event *event;
	void *base, *at, *top;
	short counts[MAX_PEBS_EVENTS] = {};
1492
	short error[MAX_PEBS_EVENTS] = {};
1493
	int bit, i;
1494 1495 1496 1497

	if (!x86_pmu.pebs_active)
		return;

1498
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1499
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1500 1501 1502

	ds->pebs_index = ds->pebs_buffer_base;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (unlikely(base >= top)) {
		/*
		 * The drain_pebs() could be called twice in a short period
		 * for auto-reload event in pmu::read(). There are no
		 * overflows have happened in between.
		 * It needs to call intel_pmu_save_and_restart_reload() to
		 * update the event->count for this case.
		 */
		for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled,
				 x86_pmu.max_pebs_events) {
			event = cpuc->events[bit];
			if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
				intel_pmu_save_and_restart_reload(event, 0);
		}
1517
		return;
1518
	}
1519

1520
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1521
		struct pebs_record_nhm *p = at;
1522
		u64 pebs_status;
1523

1524 1525 1526 1527
		pebs_status = p->status & cpuc->pebs_enabled;
		pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;

		/* PEBS v3 has more accurate status bits */
1528
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1529 1530
			for_each_set_bit(bit, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
1531 1532 1533 1534 1535
				counts[bit]++;

			continue;
		}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1548
		bit = find_first_bit((unsigned long *)&pebs_status,
1549
					x86_pmu.max_pebs_events);
1550
		if (bit >= x86_pmu.max_pebs_events)
1551
			continue;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1568 1569 1570 1571 1572
		if (p->status != (1ULL << bit)) {
			for_each_set_bit(i, (unsigned long *)&pebs_status,
					 x86_pmu.max_pebs_events)
				error[i]++;
			continue;
1573
		}
1574

1575 1576
		counts[bit]++;
	}
1577

1578
	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1579
		if ((counts[bit] == 0) && (error[bit] == 0))
1580
			continue;
1581

1582
		event = cpuc->events[bit];
1583 1584 1585 1586 1587
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1588

1589
		/* log dropped samples number */
1590
		if (error[bit]) {
1591 1592
			perf_log_lost_samples(event, error[bit]);

1593 1594 1595 1596
			if (perf_event_account_interrupt(event))
				x86_pmu_stop(event, 0);
		}

1597 1598 1599 1600
		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
					       top, bit, counts[bit]);
		}
1601 1602 1603 1604 1605 1606 1607
	}
}

/*
 * BTS, PEBS probe and setup
 */

1608
void __init intel_ds_init(void)
1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1618
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1619
	if (x86_pmu.pebs) {
1620 1621
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
		int format = x86_pmu.intel_cap.pebs_format;
1622 1623 1624

		switch (format) {
		case 0:
1625
			pr_cont("PEBS fmt0%c, ", pebs_type);
1626
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1627 1628 1629 1630 1631 1632 1633 1634
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
1635 1636 1637 1638
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1639
			pr_cont("PEBS fmt1%c, ", pebs_type);
1640 1641 1642 1643
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

1644 1645 1646
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1647
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1648 1649
			break;

1650 1651 1652 1653 1654
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1655
			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
1656 1657
			break;

1658
		default:
1659
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1660 1661 1662 1663
			x86_pmu.pebs = 0;
		}
	}
}
1664 1665 1666

void perf_restore_debug_store(void)
{
1667 1668
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

1669 1670 1671
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

1672
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1673
}