ds.c 56.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
5

6
#include <asm/cpu_entry_area.h>
7
#include <asm/perf_event.h>
8
#include <asm/tlbflush.h>
9
#include <asm/insn.h>
10

11
#include "../perf_event.h"
12

13 14 15
/* Waste a full page so it can be mapped into the cpu_entry_area */
DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);

16 17 18
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE		24

19
#define PEBS_FIXUP_SIZE		PAGE_SIZE
20 21 22 23 24 25 26 27 28 29 30 31

/*
 * pebs_record_32 for p4 and core not supported

struct pebs_record_32 {
	u32 flags, ip;
	u32 ax, bc, cx, dx;
	u32 si, di, bp, sp;
};

 */

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
union intel_x86_pebs_dse {
	u64 val;
	struct {
		unsigned int ld_dse:4;
		unsigned int ld_stlb_miss:1;
		unsigned int ld_locked:1;
		unsigned int ld_reserved:26;
	};
	struct {
		unsigned int st_l1d_hit:1;
		unsigned int st_reserved1:3;
		unsigned int st_stlb_miss:1;
		unsigned int st_locked:1;
		unsigned int st_reserved2:26;
	};
};


/*
 * Map PEBS Load Latency Data Source encodings to generic
 * memory data source information
 */
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 57
#define LEVEL(x) P(LVLNUM, x)
#define REM P(REMOTE, REMOTE)
58 59
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))

60 61
/* Version for Sandy Bridge and later */
static u64 pebs_data_source[] = {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 79
};

80 81 82
/* Patch up minor differences in the bits */
void __init intel_pmu_pebs_data_source_nhm(void)
{
83 84 85 86 87 88 89 90 91 92 93 94 95 96
	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
}

void __init intel_pmu_pebs_data_source_skl(bool pmem)
{
	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);

	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static u64 precise_store_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);

	dse.val = status;

	/*
	 * bit 4: TLB access
	 * 1 = stored missed 2nd level TLB
	 *
	 * so it either hit the walker or the OS
	 * otherwise hit 2nd level TLB
	 */
	if (dse.st_stlb_miss)
		val |= P(TLB, MISS);
	else
		val |= P(TLB, HIT);

	/*
	 * bit 0: hit L1 data cache
	 * if not set, then all we know is that
	 * it missed L1D
	 */
	if (dse.st_l1d_hit)
		val |= P(LVL, HIT);
	else
		val |= P(LVL, MISS);

	/*
	 * bit 5: Locked prefix
	 */
	if (dse.st_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

137
static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 139 140
{
	union perf_mem_data_src dse;

141 142 143 144 145 146
	dse.val = PERF_MEM_NA;

	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
		dse.mem_op = PERF_MEM_OP_STORE;
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
		dse.mem_op = PERF_MEM_OP_LOAD;
147 148 149 150 151 152 153 154 155

	/*
	 * L1 info only valid for following events:
	 *
	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
	 * MEM_UOPS_RETIRED.LOCK_STORES
	 * MEM_UOPS_RETIRED.SPLIT_STORES
	 * MEM_UOPS_RETIRED.ALL_STORES
	 */
156 157 158 159 160 161
	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
		if (status & 1)
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		else
			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
	}
162 163 164
	return dse.val;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static u64 load_latency_data(u64 status)
{
	union intel_x86_pebs_dse dse;
	u64 val;

	dse.val = status;

	/*
	 * use the mapping table for bit 0-3
	 */
	val = pebs_data_source[dse.ld_dse];

	/*
	 * Nehalem models do not support TLB, Lock infos
	 */
180
	if (x86_pmu.pebs_no_tlb) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		val |= P(TLB, NA) | P(LOCK, NA);
		return val;
	}
	/*
	 * bit 4: TLB access
	 * 0 = did not miss 2nd level TLB
	 * 1 = missed 2nd level TLB
	 */
	if (dse.ld_stlb_miss)
		val |= P(TLB, MISS) | P(TLB, L2);
	else
		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);

	/*
	 * bit 5: locked prefix
	 */
	if (dse.ld_locked)
		val |= P(LOCK, LOCKED);

	return val;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
struct pebs_record_core {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
};

struct pebs_record_nhm {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
};

220 221 222 223
/*
 * Same as pebs_record_nhm, with two additional fields.
 */
struct pebs_record_hsw {
224 225 226 227 228 229
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
230
	u64 real_ip, tsx_tuning;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

union hsw_tsx_tuning {
	struct {
		u32 cycles_last_block     : 32,
		    hle_abort		  : 1,
		    rtm_abort		  : 1,
		    instruction_abort     : 1,
		    non_instruction_abort : 1,
		    retry		  : 1,
		    data_conflict	  : 1,
		    capacity_writes	  : 1,
		    capacity_reads	  : 1;
	};
	u64	    value;
246 247
};

248 249
#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Same as HSW, plus TSC */

struct pebs_record_skl {
	u64 flags, ip;
	u64 ax, bx, cx, dx;
	u64 si, di, bp, sp;
	u64 r8,  r9,  r10, r11;
	u64 r12, r13, r14, r15;
	u64 status, dla, dse, lat;
	u64 real_ip, tsx_tuning;
	u64 tsc;
};

263
void init_debug_store_on_cpu(int cpu)
264 265 266 267 268 269 270 271 272 273 274
{
	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;

	if (!ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
		     (u32)((u64)(unsigned long)ds),
		     (u32)((u64)(unsigned long)ds >> 32));
}

275
void fini_debug_store_on_cpu(int cpu)
276 277 278 279 280 281 282
{
	if (!per_cpu(cpu_hw_events, cpu).ds)
		return;

	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}

283 284
static DEFINE_PER_CPU(void *, insn_buffer);

285
static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286
{
287
	unsigned long start = (unsigned long)cea;
288 289 290 291
	phys_addr_t pa;
	size_t msz = 0;

	pa = virt_to_phys(addr);
292 293

	preempt_disable();
294 295
	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, pa, prot);
296 297 298 299 300 301 302

	/*
	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
	 * all TLB entries for it.
	 */
	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
303 304 305 306
}

static void ds_clear_cea(void *cea, size_t size)
{
307
	unsigned long start = (unsigned long)cea;
308 309
	size_t msz = 0;

310
	preempt_disable();
311 312
	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
		cea_set_pte(cea, 0, PAGE_NONE);
313 314 315

	flush_tlb_kernel_range(start, start + size);
	preempt_enable();
316 317 318 319 320
}

static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
{
	unsigned int order = get_order(size);
321
	int node = cpu_to_node(cpu);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct page *page;

	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
	return page ? page_address(page) : NULL;
}

static void dsfree_pages(const void *buffer, size_t size)
{
	if (buffer)
		free_pages((unsigned long)buffer, get_order(size));
}

static int alloc_pebs_buffer(int cpu)
{
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	size_t bsiz = x86_pmu.pebs_buffer_size;
	int max, node = cpu_to_node(cpu);
	void *buffer, *ibuffer, *cea;
341 342 343 344

	if (!x86_pmu.pebs)
		return 0;

345
	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 347 348
	if (unlikely(!buffer))
		return -ENOMEM;

349 350 351 352 353 354 355
	/*
	 * HSW+ already provides us the eventing ip; no need to allocate this
	 * buffer then.
	 */
	if (x86_pmu.intel_cap.pebs_format < 2) {
		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
		if (!ibuffer) {
356
			dsfree_pages(buffer, bsiz);
357 358 359 360
			return -ENOMEM;
		}
		per_cpu(insn_buffer, cpu) = ibuffer;
	}
361 362 363 364 365
	hwev->ds_pebs_vaddr = buffer;
	/* Update the cpu entry area mapping */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds->pebs_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366
	ds->pebs_index = ds->pebs_buffer_base;
367 368
	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 370 371
	return 0;
}

372 373
static void release_pebs_buffer(int cpu)
{
374 375
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
376

377
	if (!x86_pmu.pebs)
378 379
		return;

380 381 382
	kfree(per_cpu(insn_buffer, cpu));
	per_cpu(insn_buffer, cpu) = NULL;

383 384 385 386 387
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
	hwev->ds_pebs_vaddr = NULL;
388 389
}

390 391
static int alloc_bts_buffer(int cpu)
{
392 393 394 395
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	struct debug_store *ds = hwev->ds;
	void *buffer, *cea;
	int max;
396 397 398 399

	if (!x86_pmu.bts)
		return 0;

400
	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 402
	if (unlikely(!buffer)) {
		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403
		return -ENOMEM;
404
	}
405 406 407 408 409
	hwev->ds_bts_vaddr = buffer;
	/* Update the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds->bts_buffer_base = (unsigned long) cea;
	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410
	ds->bts_index = ds->bts_buffer_base;
411 412 413 414 415
	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
	ds->bts_absolute_maximum = ds->bts_buffer_base +
					max * BTS_RECORD_SIZE;
	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
					(max / 16) * BTS_RECORD_SIZE;
416 417 418
	return 0;
}

419 420
static void release_bts_buffer(int cpu)
{
421 422
	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
	void *cea;
423

424
	if (!x86_pmu.bts)
425 426
		return;

427 428 429 430 431
	/* Clear the fixmap */
	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
	ds_clear_cea(cea, BTS_BUFFER_SIZE);
	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
	hwev->ds_bts_vaddr = NULL;
432 433
}

434 435
static int alloc_ds_buffer(int cpu)
{
436
	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
437

438
	memset(ds, 0, sizeof(*ds));
439 440 441 442 443 444 445 446 447
	per_cpu(cpu_hw_events, cpu).ds = ds;
	return 0;
}

static void release_ds_buffer(int cpu)
{
	per_cpu(cpu_hw_events, cpu).ds = NULL;
}

448
void release_ds_buffers(void)
449 450 451 452 453 454
{
	int cpu;

	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

455 456 457 458 459 460 461 462 463
	for_each_possible_cpu(cpu)
		release_ds_buffer(cpu);

	for_each_possible_cpu(cpu) {
		/*
		 * Again, ignore errors from offline CPUs, they will no longer
		 * observe cpu_hw_events.ds and not program the DS_AREA when
		 * they come up.
		 */
464
		fini_debug_store_on_cpu(cpu);
465
	}
466 467

	for_each_possible_cpu(cpu) {
468 469
		release_pebs_buffer(cpu);
		release_bts_buffer(cpu);
470 471 472
	}
}

473
void reserve_ds_buffers(void)
474
{
475 476 477 478 479
	int bts_err = 0, pebs_err = 0;
	int cpu;

	x86_pmu.bts_active = 0;
	x86_pmu.pebs_active = 0;
480 481

	if (!x86_pmu.bts && !x86_pmu.pebs)
482
		return;
483

484 485 486 487 488 489
	if (!x86_pmu.bts)
		bts_err = 1;

	if (!x86_pmu.pebs)
		pebs_err = 1;

490
	for_each_possible_cpu(cpu) {
491 492 493 494
		if (alloc_ds_buffer(cpu)) {
			bts_err = 1;
			pebs_err = 1;
		}
495

496 497 498 499 500
		if (!bts_err && alloc_bts_buffer(cpu))
			bts_err = 1;

		if (!pebs_err && alloc_pebs_buffer(cpu))
			pebs_err = 1;
501

502
		if (bts_err && pebs_err)
503
			break;
504 505 506 507 508 509
	}

	if (bts_err) {
		for_each_possible_cpu(cpu)
			release_bts_buffer(cpu);
	}
510

511 512 513
	if (pebs_err) {
		for_each_possible_cpu(cpu)
			release_pebs_buffer(cpu);
514 515
	}

516 517 518 519 520 521 522 523 524 525
	if (bts_err && pebs_err) {
		for_each_possible_cpu(cpu)
			release_ds_buffer(cpu);
	} else {
		if (x86_pmu.bts && !bts_err)
			x86_pmu.bts_active = 1;

		if (x86_pmu.pebs && !pebs_err)
			x86_pmu.pebs_active = 1;

526 527 528 529 530
		for_each_possible_cpu(cpu) {
			/*
			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
			 * will get this call through intel_pmu_cpu_starting().
			 */
531
			init_debug_store_on_cpu(cpu);
532
		}
533 534 535 536 537 538 539
	}
}

/*
 * BTS
 */

540
struct event_constraint bts_constraint =
541
	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
542

543
void intel_pmu_enable_bts(u64 config)
544 545 546 547 548
{
	unsigned long debugctlmsr;

	debugctlmsr = get_debugctlmsr();

549 550
	debugctlmsr |= DEBUGCTLMSR_TR;
	debugctlmsr |= DEBUGCTLMSR_BTS;
551 552
	if (config & ARCH_PERFMON_EVENTSEL_INT)
		debugctlmsr |= DEBUGCTLMSR_BTINT;
553 554

	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
556 557

	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558
		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
559 560 561 562

	update_debugctlmsr(debugctlmsr);
}

563
void intel_pmu_disable_bts(void)
564
{
565
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 567 568 569 570 571 572 573
	unsigned long debugctlmsr;

	if (!cpuc->ds)
		return;

	debugctlmsr = get_debugctlmsr();

	debugctlmsr &=
574 575
		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
576 577 578 579

	update_debugctlmsr(debugctlmsr);
}

580
int intel_pmu_drain_bts_buffer(void)
581
{
582
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583 584 585 586 587 588
	struct debug_store *ds = cpuc->ds;
	struct bts_record {
		u64	from;
		u64	to;
		u64	flags;
	};
589
	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590
	struct bts_record *at, *base, *top;
591 592 593
	struct perf_output_handle handle;
	struct perf_event_header header;
	struct perf_sample_data data;
594
	unsigned long skip = 0;
595 596 597
	struct pt_regs regs;

	if (!event)
598
		return 0;
599

600
	if (!x86_pmu.bts_active)
601
		return 0;
602

603 604
	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
	top  = (struct bts_record *)(unsigned long)ds->bts_index;
605

606
	if (top <= base)
607
		return 0;
608

609 610
	memset(&regs, 0, sizeof(regs));

611 612
	ds->bts_index = ds->bts_buffer_base;

613
	perf_sample_data_init(&data, 0, event->hw.last_period);
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	/*
	 * BTS leaks kernel addresses in branches across the cpl boundary,
	 * such as traps or system calls, so unless the user is asking for
	 * kernel tracing (and right now it's not possible), we'd need to
	 * filter them out. But first we need to count how many of those we
	 * have in the current batch. This is an extra O(n) pass, however,
	 * it's much faster than the other one especially considering that
	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
	 * alloc_bts_buffer()).
	 */
	for (at = base; at < top; at++) {
		/*
		 * Note that right now *this* BTS code only works if
		 * attr::exclude_kernel is set, but let's keep this extra
		 * check here in case that changes.
		 */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			skip++;
	}

636 637 638 639 640
	/*
	 * Prepare a generic sample, i.e. fill in the invariant fields.
	 * We will overwrite the from and to address before we output
	 * the sample.
	 */
P
Peter Zijlstra 已提交
641
	rcu_read_lock();
642 643
	perf_prepare_sample(&header, &data, event, &regs);

644 645
	if (perf_output_begin(&handle, event, header.size *
			      (top - base - skip)))
P
Peter Zijlstra 已提交
646
		goto unlock;
647

648 649 650 651 652 653
	for (at = base; at < top; at++) {
		/* Filter out any records that contain kernel addresses. */
		if (event->attr.exclude_kernel &&
		    (kernel_ip(at->from) || kernel_ip(at->to)))
			continue;

654 655 656 657 658 659 660 661 662 663 664
		data.ip		= at->from;
		data.addr	= at->to;

		perf_output_sample(&handle, &header, &data, event);
	}

	perf_output_end(&handle);

	/* There's new data available. */
	event->hw.interrupts++;
	event->pending_kill = POLL_IN;
P
Peter Zijlstra 已提交
665 666
unlock:
	rcu_read_unlock();
667
	return 1;
668 669
}

670 671 672 673 674 675 676
static inline void intel_pmu_drain_pebs_buffer(void)
{
	struct pt_regs regs;

	x86_pmu.drain_pebs(&regs);
}

677 678 679
/*
 * PEBS
 */
680
struct event_constraint intel_core2_pebs_event_constraints[] = {
681 682 683 684 685
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
686 687
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
688 689 690
	EVENT_CONSTRAINT_END
};

691
struct event_constraint intel_atom_pebs_event_constraints[] = {
692 693 694
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
695 696
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697 698
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
699 700 701
	EVENT_CONSTRAINT_END
};

702
struct event_constraint intel_slm_pebs_event_constraints[] = {
703 704
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705 706
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
707 708 709
	EVENT_CONSTRAINT_END
};

710 711 712 713 714 715
struct event_constraint intel_glm_pebs_event_constraints[] = {
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
	EVENT_CONSTRAINT_END
};

716
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
717
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
718 719 720
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
721
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
722 723 724 725 726 727
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
728 729
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
730 731 732
	EVENT_CONSTRAINT_END
};

733
struct event_constraint intel_westmere_pebs_event_constraints[] = {
734
	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
735 736 737
	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
738
	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
739 740 741 742 743 744
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
745 746
	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
747 748 749
	EVENT_CONSTRAINT_END
};

750
struct event_constraint intel_snb_pebs_event_constraints[] = {
751
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
752
	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
753
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
754 755
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
756 757 758 759
        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
760 761
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
762 763 764
	EVENT_CONSTRAINT_END
};

765
struct event_constraint intel_ivb_pebs_event_constraints[] = {
766
        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
767
        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
768
	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
769 770
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
771 772
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
773 774 775 776
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
777 778
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
779 780 781
        EVENT_CONSTRAINT_END
};

782
struct event_constraint intel_hsw_pebs_event_constraints[] = {
783
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
784 785 786
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
787 788
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
789
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
790 791 792 793 794 795 796 797 798 799
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
800 801 802 803 804
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
struct event_constraint intel_bdw_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
	EVENT_CONSTRAINT_END
};


829 830
struct event_constraint intel_skl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
831 832
	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
833 834
	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
835 836 837 838 839 840 841 842 843 844 845 846
	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
847 848
	/* Allow all events as PEBS with no flags */
	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
849 850 851
	EVENT_CONSTRAINT_END
};

K
Kan Liang 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
struct event_constraint intel_icl_pebs_event_constraints[] = {
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x400000000ULL),	/* SLOTS */

	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),	/* MEM_INST_RETIRED.LOAD */
	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),	/* MEM_INST_RETIRED.STORE */

	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */

	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */

	/*
	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
	 * need the full constraints from the main table.
	 */

	EVENT_CONSTRAINT_END
};

872
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
873 874 875
{
	struct event_constraint *c;

P
Peter Zijlstra 已提交
876
	if (!event->attr.precise_ip)
877 878 879 880
		return NULL;

	if (x86_pmu.pebs_constraints) {
		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
881
			if (constraint_match(c, event->hw.config)) {
882
				event->hw.flags |= c->flags;
883
				return c;
884
			}
885 886 887
		}
	}

888 889 890 891 892 893 894
	/*
	 * Extended PEBS support
	 * Makes the PEBS code search the normal constraints.
	 */
	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		return NULL;

895 896 897
	return &emptyconstraint;
}

898 899 900 901 902 903 904 905 906 907
/*
 * We need the sched_task callback even for per-cpu events when we use
 * the large interrupt threshold, such that we can provide PID and TID
 * to PEBS samples.
 */
static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
{
	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
}

908 909 910 911 912 913 914 915
void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (!sched_in && pebs_needs_sched_cb(cpuc))
		intel_pmu_drain_pebs_buffer();
}

916 917 918 919
static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
{
	struct debug_store *ds = cpuc->ds;
	u64 threshold;
920 921 922 923 924 925
	int reserved;

	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
		reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
	else
		reserved = x86_pmu.max_pebs_events;
926 927 928

	if (cpuc->n_pebs == cpuc->n_large_pebs) {
		threshold = ds->pebs_absolute_maximum -
929
			reserved * cpuc->pebs_record_size;
930
	} else {
931
		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
932 933 934 935 936
	}

	ds->pebs_interrupt_threshold = threshold;
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void adaptive_pebs_record_size_update(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
	int sz = sizeof(struct pebs_basic);

	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
		sz += sizeof(struct pebs_meminfo);
	if (pebs_data_cfg & PEBS_DATACFG_GP)
		sz += sizeof(struct pebs_gprs);
	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
		sz += sizeof(struct pebs_xmm);
	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
		sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry);

	cpuc->pebs_record_size = sz;
}

#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
				PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
				PERF_SAMPLE_TRANSACTION)

static u64 pebs_update_adaptive_cfg(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	u64 sample_type = attr->sample_type;
	u64 pebs_data_cfg = 0;
	bool gprs, tsx_weight;

	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
	    attr->precise_ip > 1)
		return pebs_data_cfg;

	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;

	/*
	 * We need GPRs when:
	 * + user requested them
	 * + precise_ip < 2 for the non event IP
	 * + For RTM TSX weight we need GPRs for the abort code.
	 */
	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
	       (attr->sample_regs_intr & PEBS_GP_REGS);

	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
		      x86_pmu.rtm_abort_event);

	if (gprs || (attr->precise_ip < 2) || tsx_weight)
		pebs_data_cfg |= PEBS_DATACFG_GP;

	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
	    (attr->sample_regs_intr & PEBS_XMM_REGS))
		pebs_data_cfg |= PEBS_DATACFG_XMMS;

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		/*
		 * For now always log all LBRs. Could configure this
		 * later.
		 */
		pebs_data_cfg |= PEBS_DATACFG_LBRS |
			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
	}

	return pebs_data_cfg;
}

1005
static void
1006 1007
pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
		  struct perf_event *event, bool add)
1008
{
1009
	struct pmu *pmu = event->ctx->pmu;
1010 1011 1012 1013 1014 1015 1016
	/*
	 * Make sure we get updated with the first PEBS
	 * event. It will trigger also during removal, but
	 * that does not hurt:
	 */
	bool update = cpuc->n_pebs == 1;

1017 1018 1019 1020 1021 1022
	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
		if (!needed_cb)
			perf_sched_cb_inc(pmu);
		else
			perf_sched_cb_dec(pmu);

1023
		update = true;
1024
	}
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
	 * iterating all remaining PEBS events to reconstruct the config.
	 */
	if (x86_pmu.intel_cap.pebs_baseline && add) {
		u64 pebs_data_cfg;

		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
		if (cpuc->n_pebs == 1) {
			cpuc->pebs_data_cfg = 0;
			cpuc->pebs_record_size = sizeof(struct pebs_basic);
		}

		pebs_data_cfg = pebs_update_adaptive_cfg(event);

		/* Update pebs_record_size if new event requires more data. */
		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
			cpuc->pebs_data_cfg |= pebs_data_cfg;
			adaptive_pebs_record_size_update();
			update = true;
		}
	}

1049 1050
	if (update)
		pebs_update_threshold(cpuc);
1051 1052
}

1053
void intel_pmu_pebs_add(struct perf_event *event)
1054
{
1055 1056 1057 1058 1059
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs++;
1060
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1061 1062
		cpuc->n_large_pebs++;

1063
	pebs_update_state(needed_cb, cpuc, event, true);
1064 1065
}

1066
void intel_pmu_pebs_enable(struct perf_event *event)
1067
{
1068
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1069
	struct hw_perf_event *hwc = &event->hw;
1070
	struct debug_store *ds = cpuc->ds;
1071

1072 1073
	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;

1074
	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1075

K
Kan Liang 已提交
1076
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1077
		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1078 1079
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
		cpuc->pebs_enabled |= 1ULL << 63;
1080

1081 1082 1083 1084 1085 1086 1087 1088
	if (x86_pmu.intel_cap.pebs_baseline) {
		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
		}
	}

1089
	/*
1090 1091
	 * Use auto-reload if possible to save a MSR write in the PMI.
	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1092
	 */
1093
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1094 1095 1096 1097 1098
		unsigned int idx = hwc->idx;

		if (idx >= INTEL_PMC_IDX_FIXED)
			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
		ds->pebs_event_reset[idx] =
1099
			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1100 1101
	} else {
		ds->pebs_event_reset[hwc->idx] = 0;
1102
	}
1103 1104
}

1105
void intel_pmu_pebs_del(struct perf_event *event)
1106 1107 1108 1109 1110 1111
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	bool needed_cb = pebs_needs_sched_cb(cpuc);

	cpuc->n_pebs--;
1112
	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1113
		cpuc->n_large_pebs--;
1114

1115
	pebs_update_state(needed_cb, cpuc, event, false);
1116 1117
}

1118
void intel_pmu_pebs_disable(struct perf_event *event)
1119
{
1120
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1121
	struct hw_perf_event *hwc = &event->hw;
1122

1123
	if (cpuc->n_pebs == cpuc->n_large_pebs)
1124
		intel_pmu_drain_pebs_buffer();
1125

1126
	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1127

K
Kan Liang 已提交
1128 1129
	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
	    (x86_pmu.version < 5))
1130
		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1131
	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1132 1133
		cpuc->pebs_enabled &= ~(1ULL << 63);

1134
	if (cpuc->enabled)
1135
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1136 1137 1138 1139

	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}

1140
void intel_pmu_pebs_enable_all(void)
1141
{
1142
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1143 1144 1145 1146 1147

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}

1148
void intel_pmu_pebs_disable_all(void)
1149
{
1150
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1151 1152 1153 1154 1155

	if (cpuc->pebs_enabled)
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}

1156 1157
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
1158
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1159 1160 1161
	unsigned long from = cpuc->lbr_entries[0].from;
	unsigned long old_to, to = cpuc->lbr_entries[0].to;
	unsigned long ip = regs->ip;
1162
	int is_64bit = 0;
1163
	void *kaddr;
1164
	int size;
1165

1166 1167 1168 1169 1170 1171
	/*
	 * We don't need to fixup if the PEBS assist is fault like
	 */
	if (!x86_pmu.intel_cap.pebs_trap)
		return 1;

P
Peter Zijlstra 已提交
1172 1173 1174
	/*
	 * No LBR entry, no basic block, no rewinding
	 */
1175 1176 1177
	if (!cpuc->lbr_stack.nr || !from || !to)
		return 0;

P
Peter Zijlstra 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * Basic blocks should never cross user/kernel boundaries
	 */
	if (kernel_ip(ip) != kernel_ip(to))
		return 0;

	/*
	 * unsigned math, either ip is before the start (impossible) or
	 * the basic block is larger than 1 page (sanity)
	 */
1188
	if ((ip - to) > PEBS_FIXUP_SIZE)
1189 1190 1191 1192 1193 1194
		return 0;

	/*
	 * We sampled a branch insn, rewind using the LBR stack
	 */
	if (ip == to) {
1195
		set_linear_ip(regs, from);
1196 1197 1198
		return 1;
	}

1199
	size = ip - to;
1200
	if (!kernel_ip(ip)) {
1201
		int bytes;
1202 1203
		u8 *buf = this_cpu_read(insn_buffer);

1204
		/* 'size' must fit our buffer, see above */
1205
		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1206
		if (bytes != 0)
1207 1208 1209 1210 1211 1212 1213
			return 0;

		kaddr = buf;
	} else {
		kaddr = (void *)to;
	}

1214 1215 1216 1217 1218
	do {
		struct insn insn;

		old_to = to;

1219 1220 1221
#ifdef CONFIG_X86_64
		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
1222
		insn_init(&insn, kaddr, size, is_64bit);
1223
		insn_get_length(&insn);
1224 1225 1226 1227 1228 1229 1230 1231
		/*
		 * Make sure there was not a problem decoding the
		 * instruction and getting the length.  This is
		 * doubly important because we have an infinite
		 * loop if insn.length=0.
		 */
		if (!insn.length)
			break;
1232

1233
		to += insn.length;
1234
		kaddr += insn.length;
1235
		size -= insn.length;
1236 1237 1238
	} while (to < ip);

	if (to == ip) {
1239
		set_linear_ip(regs, old_to);
1240 1241 1242
		return 1;
	}

P
Peter Zijlstra 已提交
1243 1244 1245 1246
	/*
	 * Even though we decoded the basic block, the instruction stream
	 * never matched the given IP, either the TO or the IP got corrupted.
	 */
1247 1248 1249
	return 0;
}

1250
static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1251
{
1252 1253
	if (tsx_tuning) {
		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1254 1255 1256 1257 1258
		return tsx.cycles_last_block;
	}
	return 0;
}

1259
static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1260
{
1261
	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1262 1263

	/* For RTM XABORTs also log the abort code from AX */
1264 1265
	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1266 1267 1268
	return txn;
}

1269 1270 1271 1272 1273 1274 1275
static inline u64 get_pebs_status(void *n)
{
	if (x86_pmu.intel_cap.pebs_format < 4)
		return ((struct pebs_record_nhm *)n)->status;
	return ((struct pebs_basic *)n)->applicable_counters;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
#define PERF_X86_EVENT_PEBS_HSW_PREC \
		(PERF_X86_EVENT_PEBS_ST_HSW | \
		 PERF_X86_EVENT_PEBS_LD_HSW | \
		 PERF_X86_EVENT_PEBS_NA_HSW)

static u64 get_data_src(struct perf_event *event, u64 aux)
{
	u64 val = PERF_MEM_NA;
	int fl = event->hw.flags;
	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);

	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
		val = load_latency_data(aux);
	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
		val = precise_datala_hsw(event, aux);
	else if (fst)
		val = precise_store_data(aux);
	return val;
}

1296
static void setup_pebs_fixed_sample_data(struct perf_event *event,
1297 1298 1299
				   struct pt_regs *iregs, void *__pebs,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
1300 1301
{
	/*
1302 1303
	 * We cast to the biggest pebs_record but are careful not to
	 * unconditionally access the 'extra' entries.
1304
	 */
1305
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1306
	struct pebs_record_skl *pebs = __pebs;
1307
	u64 sample_type;
1308
	int fll;
1309

1310 1311 1312
	if (pebs == NULL)
		return;

1313
	sample_type = event->attr.sample_type;
1314
	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1315

1316
	perf_sample_data_init(data, 0, event->hw.last_period);
1317

1318
	data->period = event->hw.last_period;
1319 1320

	/*
1321
	 * Use latency for weight (only avail with PEBS-LL)
1322
	 */
1323
	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1324
		data->weight = pebs->lat;
1325 1326 1327 1328

	/*
	 * data.data_src encodes the data source
	 */
1329 1330
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		data->data_src.val = get_data_src(event, pebs->dse);
1331

1332 1333 1334
	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
I
Ingo Molnar 已提交
1335
	 * previous PMI context or an (I)RET happened between the record and
1336 1337 1338 1339 1340
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

1341
	/*
1342 1343 1344
	 * We use the interrupt regs as a base because the PEBS record does not
	 * contain a full regs set, specifically it seems to lack segment
	 * descriptors, which get used by things like user_mode().
1345
	 *
1346
	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1347
	 */
1348
	*regs = *iregs;
1349 1350 1351 1352 1353 1354 1355

	/*
	 * Initialize regs_>flags from PEBS,
	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
	 * i.e., do not rely on it being zero:
	 */
	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1356

1357
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1358 1359 1360 1361 1362 1363 1364
		regs->ax = pebs->ax;
		regs->bx = pebs->bx;
		regs->cx = pebs->cx;
		regs->dx = pebs->dx;
		regs->si = pebs->si;
		regs->di = pebs->di;

1365 1366
		regs->bp = pebs->bp;
		regs->sp = pebs->sp;
1367

1368
#ifndef CONFIG_X86_32
1369 1370 1371 1372 1373 1374 1375 1376
		regs->r8 = pebs->r8;
		regs->r9 = pebs->r9;
		regs->r10 = pebs->r10;
		regs->r11 = pebs->r11;
		regs->r12 = pebs->r12;
		regs->r13 = pebs->r13;
		regs->r14 = pebs->r14;
		regs->r15 = pebs->r15;
1377 1378 1379
#endif
	}

1380
	if (event->attr.precise_ip > 1) {
1381 1382 1383 1384 1385
		/*
		 * Haswell and later processors have an 'eventing IP'
		 * (real IP) which fixes the off-by-1 skid in hardware.
		 * Use it when precise_ip >= 2 :
		 */
1386 1387 1388 1389
		if (x86_pmu.intel_cap.pebs_format >= 2) {
			set_linear_ip(regs, pebs->real_ip);
			regs->flags |= PERF_EFLAGS_EXACT;
		} else {
1390
			/* Otherwise, use PEBS off-by-1 IP: */
1391 1392
			set_linear_ip(regs, pebs->ip);

1393 1394 1395 1396 1397
			/*
			 * With precise_ip >= 2, try to fix up the off-by-1 IP
			 * using the LBR. If successful, the fixup function
			 * corrects regs->ip and calls set_linear_ip() on regs:
			 */
1398 1399 1400
			if (intel_pmu_pebs_fixup_ip(regs))
				regs->flags |= PERF_EFLAGS_EXACT;
		}
1401 1402 1403 1404 1405
	} else {
		/*
		 * When precise_ip == 1, return the PEBS off-by-1 IP,
		 * no fixup attempted:
		 */
1406
		set_linear_ip(regs, pebs->ip);
1407
	}
1408

1409

1410
	if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1411
	    x86_pmu.intel_cap.pebs_format >= 1)
1412
		data->addr = pebs->dla;
1413

1414 1415
	if (x86_pmu.intel_cap.pebs_format >= 2) {
		/* Only set the TSX weight when no memory weight. */
1416
		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1417
			data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1418

1419
		if (sample_type & PERF_SAMPLE_TRANSACTION)
1420 1421
			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
							      pebs->ax);
1422
	}
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/*
	 * v3 supplies an accurate time stamp, so we use that
	 * for the time stamp.
	 *
	 * We can only do this for the default trace clock.
	 */
	if (x86_pmu.intel_cap.pebs_format >= 3 &&
		event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(pebs->tsc);

1434
	if (has_branch_stack(event))
1435 1436 1437
		data->br_stack = &cpuc->lbr_stack;
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void adaptive_pebs_save_regs(struct pt_regs *regs,
				    struct pebs_gprs *gprs)
{
	regs->ax = gprs->ax;
	regs->bx = gprs->bx;
	regs->cx = gprs->cx;
	regs->dx = gprs->dx;
	regs->si = gprs->si;
	regs->di = gprs->di;
	regs->bp = gprs->bp;
	regs->sp = gprs->sp;
#ifndef CONFIG_X86_32
	regs->r8 = gprs->r8;
	regs->r9 = gprs->r9;
	regs->r10 = gprs->r10;
	regs->r11 = gprs->r11;
	regs->r12 = gprs->r12;
	regs->r13 = gprs->r13;
	regs->r14 = gprs->r14;
	regs->r15 = gprs->r15;
#endif
}

/*
 * With adaptive PEBS the layout depends on what fields are configured.
 */

static void setup_pebs_adaptive_sample_data(struct perf_event *event,
					    struct pt_regs *iregs, void *__pebs,
					    struct perf_sample_data *data,
					    struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct pebs_basic *basic = __pebs;
	void *next_record = basic + 1;
	u64 sample_type;
	u64 format_size;
	struct pebs_meminfo *meminfo = NULL;
	struct pebs_gprs *gprs = NULL;
	struct x86_perf_regs *perf_regs;

	if (basic == NULL)
		return;

	perf_regs = container_of(regs, struct x86_perf_regs, regs);
	perf_regs->xmm_regs = NULL;

	sample_type = event->attr.sample_type;
	format_size = basic->format_size;
	perf_sample_data_init(data, 0, event->hw.last_period);
	data->period = event->hw.last_period;

	if (event->attr.use_clockid == 0)
		data->time = native_sched_clock_from_tsc(basic->tsc);

	/*
	 * We must however always use iregs for the unwinder to stay sane; the
	 * record BP,SP,IP can point into thin air when the record is from a
	 * previous PMI context or an (I)RET happened between the record and
	 * PMI.
	 */
	if (sample_type & PERF_SAMPLE_CALLCHAIN)
		data->callchain = perf_callchain(event, iregs);

	*regs = *iregs;
	/* The ip in basic is EventingIP */
	set_linear_ip(regs, basic->ip);
	regs->flags = PERF_EFLAGS_EXACT;

	/*
	 * The record for MEMINFO is in front of GP
	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
	 * Save the pointer here but process later.
	 */
	if (format_size & PEBS_DATACFG_MEMINFO) {
		meminfo = next_record;
		next_record = meminfo + 1;
	}

	if (format_size & PEBS_DATACFG_GP) {
		gprs = next_record;
		next_record = gprs + 1;

		if (event->attr.precise_ip < 2) {
			set_linear_ip(regs, gprs->ip);
			regs->flags &= ~PERF_EFLAGS_EXACT;
		}

		if (sample_type & PERF_SAMPLE_REGS_INTR)
			adaptive_pebs_save_regs(regs, gprs);
	}

	if (format_size & PEBS_DATACFG_MEMINFO) {
		if (sample_type & PERF_SAMPLE_WEIGHT)
			data->weight = meminfo->latency ?:
				intel_get_tsx_weight(meminfo->tsx_tuning);

		if (sample_type & PERF_SAMPLE_DATA_SRC)
			data->data_src.val = get_data_src(event, meminfo->aux);

		if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
			data->addr = meminfo->address;

		if (sample_type & PERF_SAMPLE_TRANSACTION)
			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
							  gprs ? gprs->ax : 0);
	}

	if (format_size & PEBS_DATACFG_XMMS) {
		struct pebs_xmm *xmm = next_record;

		next_record = xmm + 1;
		perf_regs->xmm_regs = xmm->xmm;
	}

	if (format_size & PEBS_DATACFG_LBRS) {
		struct pebs_lbr *lbr = next_record;
		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
					& 0xff) + 1;
		next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry);

		if (has_branch_stack(event)) {
			intel_pmu_store_pebs_lbrs(lbr);
			data->br_stack = &cpuc->lbr_stack;
		}
	}

	WARN_ONCE(next_record != __pebs + (format_size >> 48),
			"PEBS record size %llu, expected %llu, config %llx\n",
			format_size >> 48,
			(u64)(next_record - __pebs),
			basic->format_size);
}

1572 1573 1574 1575 1576 1577 1578
static inline void *
get_next_pebs_record_by_bit(void *base, void *top, int bit)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	void *at;
	u64 pebs_status;

1579 1580 1581 1582 1583 1584 1585
	/*
	 * fmt0 does not have a status bitfield (does not use
	 * perf_record_nhm format)
	 */
	if (x86_pmu.intel_cap.pebs_format < 1)
		return base;

1586 1587 1588
	if (base == NULL)
		return NULL;

1589 1590
	for (at = base; at < top; at += cpuc->pebs_record_size) {
		unsigned long status = get_pebs_status(at);
1591

1592
		if (test_bit(bit, (unsigned long *)&status)) {
1593 1594 1595
			/* PEBS v3 has accurate status bits */
			if (x86_pmu.intel_cap.pebs_format >= 3)
				return at;
1596

1597
			if (status == (1 << bit))
1598 1599 1600
				return at;

			/* clear non-PEBS bit and re-check */
1601
			pebs_status = status & cpuc->pebs_enabled;
1602
			pebs_status &= PEBS_COUNTER_MASK;
1603 1604 1605 1606 1607 1608 1609
			if (pebs_status == (1 << bit))
				return at;
		}
	}
	return NULL;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618
void intel_pmu_auto_reload_read(struct perf_event *event)
{
	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));

	perf_pmu_disable(event->pmu);
	intel_pmu_drain_pebs_buffer();
	perf_pmu_enable(event->pmu);
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * Special variant of intel_pmu_save_and_restart() for auto-reload.
 */
static int
intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
{
	struct hw_perf_event *hwc = &event->hw;
	int shift = 64 - x86_pmu.cntval_bits;
	u64 period = hwc->sample_period;
	u64 prev_raw_count, new_raw_count;
	s64 new, old;

	WARN_ON(!period);

	/*
	 * drain_pebs() only happens when the PMU is disabled.
	 */
	WARN_ON(this_cpu_read(cpu_hw_events.enabled));

	prev_raw_count = local64_read(&hwc->prev_count);
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
	local64_set(&hwc->prev_count, new_raw_count);

	/*
	 * Since the counter increments a negative counter value and
	 * overflows on the sign switch, giving the interval:
	 *
	 *   [-period, 0]
	 *
	 * the difference between two consequtive reads is:
	 *
	 *   A) value2 - value1;
	 *      when no overflows have happened in between,
	 *
	 *   B) (0 - value1) + (value2 - (-period));
	 *      when one overflow happened in between,
	 *
	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
	 *      when @n overflows happened in between.
	 *
	 * Here A) is the obvious difference, B) is the extension to the
	 * discrete interval, where the first term is to the top of the
	 * interval and the second term is from the bottom of the next
	 * interval and C) the extension to multiple intervals, where the
	 * middle term is the whole intervals covered.
	 *
	 * An equivalent of C, by reduction, is:
	 *
	 *   value2 - value1 + n * period
	 */
	new = ((s64)(new_raw_count << shift) >> shift);
	old = ((s64)(prev_raw_count << shift) >> shift);
	local64_add(new - old + count * period, &event->count);

	perf_event_update_userpage(event);

	return 0;
}

1678
static void __intel_pmu_pebs_event(struct perf_event *event,
1679 1680
				   struct pt_regs *iregs,
				   void *base, void *top,
1681 1682 1683 1684 1685 1686
				   int bit, int count,
				   void (*setup_sample)(struct perf_event *,
						struct pt_regs *,
						void *,
						struct perf_sample_data *,
						struct pt_regs *))
1687
{
1688
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1689
	struct hw_perf_event *hwc = &event->hw;
1690
	struct perf_sample_data data;
1691 1692
	struct x86_perf_regs perf_regs;
	struct pt_regs *regs = &perf_regs.regs;
1693
	void *at = get_next_pebs_record_by_bit(base, top, bit);
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
		/*
		 * Now, auto-reload is only enabled in fixed period mode.
		 * The reload value is always hwc->sample_period.
		 * May need to change it, if auto-reload is enabled in
		 * freq mode later.
		 */
		intel_pmu_save_and_restart_reload(event, count);
	} else if (!intel_pmu_save_and_restart(event))
1704 1705
		return;

1706
	while (count > 1) {
1707 1708 1709
		setup_sample(event, iregs, at, &data, regs);
		perf_event_output(event, &data, regs);
		at += cpuc->pebs_record_size;
1710 1711
		at = get_next_pebs_record_by_bit(at, top, bit);
		count--;
1712 1713
	}

1714
	setup_sample(event, iregs, at, &data, regs);
1715

1716 1717 1718 1719
	/*
	 * All but the last records are processed.
	 * The last one is left to be able to call the overflow handler.
	 */
1720
	if (perf_event_overflow(event, &data, regs)) {
P
Peter Zijlstra 已提交
1721
		x86_pmu_stop(event, 0);
1722 1723 1724
		return;
	}

1725 1726
}

1727 1728
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
1729
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1730 1731 1732 1733 1734
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
	struct pebs_record_core *at, *top;
	int n;

1735
	if (!x86_pmu.pebs_active)
1736 1737 1738 1739 1740
		return;

	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;

1741 1742 1743 1744 1745 1746
	/*
	 * Whatever else happens, drain the thing
	 */
	ds->pebs_index = ds->pebs_buffer_base;

	if (!test_bit(0, cpuc->active_mask))
P
Peter Zijlstra 已提交
1747
		return;
1748

1749 1750
	WARN_ON_ONCE(!event);

P
Peter Zijlstra 已提交
1751
	if (!event->attr.precise_ip)
1752 1753
		return;

1754
	n = top - at;
1755 1756 1757
	if (n <= 0) {
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
1758
		return;
1759
	}
1760

1761 1762
	__intel_pmu_pebs_event(event, iregs, at, top, 0, n,
			       setup_pebs_fixed_sample_data);
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
{
	struct perf_event *event;
	int bit;

	/*
	 * The drain_pebs() could be called twice in a short period
	 * for auto-reload event in pmu::read(). There are no
	 * overflows have happened in between.
	 * It needs to call intel_pmu_save_and_restart_reload() to
	 * update the event->count for this case.
	 */
	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
		event = cpuc->events[bit];
		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
			intel_pmu_save_and_restart_reload(event, 0);
	}
}

1784
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1785
{
1786
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1787
	struct debug_store *ds = cpuc->ds;
1788 1789
	struct perf_event *event;
	void *base, *at, *top;
1790 1791 1792 1793
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	int bit, i, size;
	u64 mask;
1794 1795 1796 1797

	if (!x86_pmu.pebs_active)
		return;

1798
	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1799
	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1800 1801 1802

	ds->pebs_index = ds->pebs_buffer_base;

1803 1804 1805 1806 1807 1808 1809
	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
	size = x86_pmu.max_pebs_events;
	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
	}

1810
	if (unlikely(base >= top)) {
1811
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
1812
		return;
1813
	}
1814

1815
	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1816
		struct pebs_record_nhm *p = at;
1817
		u64 pebs_status;
1818

1819
		pebs_status = p->status & cpuc->pebs_enabled;
1820
		pebs_status &= mask;
1821 1822

		/* PEBS v3 has more accurate status bits */
1823
		if (x86_pmu.intel_cap.pebs_format >= 3) {
1824
			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1825 1826 1827 1828 1829
				counts[bit]++;

			continue;
		}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		/*
		 * On some CPUs the PEBS status can be zero when PEBS is
		 * racing with clearing of GLOBAL_STATUS.
		 *
		 * Normally we would drop that record, but in the
		 * case when there is only a single active PEBS event
		 * we can assume it's for that event.
		 */
		if (!pebs_status && cpuc->pebs_enabled &&
			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
			pebs_status = cpuc->pebs_enabled;

1842
		bit = find_first_bit((unsigned long *)&pebs_status,
1843
					x86_pmu.max_pebs_events);
1844
		if (bit >= x86_pmu.max_pebs_events)
1845
			continue;
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		/*
		 * The PEBS hardware does not deal well with the situation
		 * when events happen near to each other and multiple bits
		 * are set. But it should happen rarely.
		 *
		 * If these events include one PEBS and multiple non-PEBS
		 * events, it doesn't impact PEBS record. The record will
		 * be handled normally. (slow path)
		 *
		 * If these events include two or more PEBS events, the
		 * records for the events can be collapsed into a single
		 * one, and it's not possible to reconstruct all events
		 * that caused the PEBS record. It's called collision.
		 * If collision happened, the record will be dropped.
		 */
1862
		if (p->status != (1ULL << bit)) {
1863
			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1864 1865
				error[i]++;
			continue;
1866
		}
1867

1868 1869
		counts[bit]++;
	}
1870

1871
	for_each_set_bit(bit, (unsigned long *)&mask, size) {
1872
		if ((counts[bit] == 0) && (error[bit] == 0))
1873
			continue;
1874

1875
		event = cpuc->events[bit];
1876 1877 1878 1879 1880
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;
1881

1882
		/* log dropped samples number */
1883
		if (error[bit]) {
1884 1885
			perf_log_lost_samples(event, error[bit]);

1886 1887 1888 1889
			if (perf_event_account_interrupt(event))
				x86_pmu_stop(event, 0);
		}

1890 1891
		if (counts[bit]) {
			__intel_pmu_pebs_event(event, iregs, base,
1892 1893
					       top, bit, counts[bit],
					       setup_pebs_fixed_sample_data);
1894
		}
1895 1896 1897
	}
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
{
	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct debug_store *ds = cpuc->ds;
	struct perf_event *event;
	void *base, *at, *top;
	int bit, size;
	u64 mask;

	if (!x86_pmu.pebs_active)
		return;

	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;

	ds->pebs_index = ds->pebs_buffer_base;

	mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
	       (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
	size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;

	if (unlikely(base >= top)) {
		intel_pmu_pebs_event_update_no_drain(cpuc, size);
		return;
	}

	for (at = base; at < top; at += cpuc->pebs_record_size) {
		u64 pebs_status;

		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
		pebs_status &= mask;

		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
			counts[bit]++;
	}

	for_each_set_bit(bit, (unsigned long *)&mask, size) {
		if (counts[bit] == 0)
			continue;

		event = cpuc->events[bit];
		if (WARN_ON_ONCE(!event))
			continue;

		if (WARN_ON_ONCE(!event->attr.precise_ip))
			continue;

		__intel_pmu_pebs_event(event, iregs, base,
				       top, bit, counts[bit],
				       setup_pebs_adaptive_sample_data);
	}
}

1952 1953 1954 1955
/*
 * BTS, PEBS probe and setup
 */

1956
void __init intel_ds_init(void)
1957 1958 1959 1960 1961 1962 1963 1964 1965
{
	/*
	 * No support for 32bit formats
	 */
	if (!boot_cpu_has(X86_FEATURE_DTES64))
		return;

	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1966
	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1967
	if (x86_pmu.version <= 4) {
1968
		x86_pmu.pebs_no_isolation = 1;
1969 1970
		x86_pmu.pebs_no_xmm_regs = 1;
	}
1971
	if (x86_pmu.pebs) {
1972
		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1973
		char *pebs_qual = "";
1974
		int format = x86_pmu.intel_cap.pebs_format;
1975

1976 1977 1978
		if (format < 4)
			x86_pmu.intel_cap.pebs_baseline = 0;

1979 1980
		switch (format) {
		case 0:
1981
			pr_cont("PEBS fmt0%c, ", pebs_type);
1982
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1983 1984 1985 1986 1987 1988 1989 1990
			/*
			 * Using >PAGE_SIZE buffers makes the WRMSR to
			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
			 * mysteriously hang on Core2.
			 *
			 * As a workaround, we don't do this.
			 */
			x86_pmu.pebs_buffer_size = PAGE_SIZE;
1991 1992 1993 1994
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
			break;

		case 1:
1995
			pr_cont("PEBS fmt1%c, ", pebs_type);
1996 1997 1998 1999
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
			break;

2000 2001 2002
		case 2:
			pr_cont("PEBS fmt2%c, ", pebs_type);
			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2003
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2004 2005
			break;

2006 2007 2008 2009 2010
		case 3:
			pr_cont("PEBS fmt3%c, ", pebs_type);
			x86_pmu.pebs_record_size =
						sizeof(struct pebs_record_skl);
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2011
			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2012 2013
			break;

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		case 4:
			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
			if (x86_pmu.intel_cap.pebs_baseline) {
				x86_pmu.large_pebs_flags |=
					PERF_SAMPLE_BRANCH_STACK |
					PERF_SAMPLE_TIME;
				x86_pmu.flags |= PMU_FL_PEBS_ALL;
				pebs_qual = "-baseline";
			} else {
				/* Only basic record supported */
				x86_pmu.pebs_no_xmm_regs = 1;
				x86_pmu.large_pebs_flags &=
					~(PERF_SAMPLE_ADDR |
					  PERF_SAMPLE_TIME |
					  PERF_SAMPLE_DATA_SRC |
					  PERF_SAMPLE_TRANSACTION |
					  PERF_SAMPLE_REGS_USER |
					  PERF_SAMPLE_REGS_INTR);
			}
			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
			break;

2037
		default:
2038
			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2039 2040 2041 2042
			x86_pmu.pebs = 0;
		}
	}
}
2043 2044 2045

void perf_restore_debug_store(void)
{
2046 2047
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);

2048 2049 2050
	if (!x86_pmu.bts && !x86_pmu.pebs)
		return;

2051
	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2052
}