huge_memory.c 81.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308 309
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
310
	return single_hugepage_flag_show(kobj, attr, buf,
311 312 313 314 315 316
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321 322 323 324 325 326
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#ifdef CONFIG_SHMEM
330 331
	&shmem_enabled_attr.attr,
#endif
332 333 334 335 336 337
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

338
static const struct attribute_group hugepage_attr_group = {
339
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
340 341
};

S
Shaohua Li 已提交
342
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 344 345
{
	int err;

S
Shaohua Li 已提交
346 347
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
348
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
349
		return -ENOMEM;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto delete_obj;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
362
	}
S
Shaohua Li 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

400 401 402 403 404 405 406 407 408 409
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
410 411
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
412
		goto err_sysfs;
A
Andrea Arcangeli 已提交
413

414
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
415
	if (err)
416
		goto err_slab;
A
Andrea Arcangeli 已提交
417

418 419 420
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
421 422 423
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
424

425 426 427 428 429
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
430
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431
		transparent_hugepage_flags = 0;
432 433
		return 0;
	}
434

435
	err = start_stop_khugepaged();
436 437
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
438

S
Shaohua Li 已提交
439
	return 0;
440
err_khugepaged:
441 442
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
443 444
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
445
	khugepaged_destroy();
446
err_slab:
S
Shaohua Li 已提交
447
	hugepage_exit_sysfs(hugepage_kobj);
448
err_sysfs:
A
Andrea Arcangeli 已提交
449
	return err;
450
}
451
subsys_initcall(hugepage_init);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
479
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 481 482 483
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

484
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485
{
486
	if (likely(vma->vm_flags & VM_WRITE))
487 488 489 490
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

491 492
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493
{
494 495 496 497 498 499 500
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
501
}
502 503 504 505 506 507 508 509
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
510 511 512 513 514 515 516 517 518 519 520 521

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

522 523 524 525 526 527 528 529 530 531 532
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

533 534
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
535 536 537 538
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
539
	unsigned long len_pad, ret;
540 541 542 543 544 545 546 547

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

548
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549
					      off >> PAGE_SHIFT, flags);
550 551 552 553 554 555

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
556 557
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
567 568 569 570 571
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
572
	unsigned long ret;
573 574 575 576 577
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

578 579 580 581
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
582 583 584 585
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

586 587
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
588
{
J
Jan Kara 已提交
589
	struct vm_area_struct *vma = vmf->vma;
590
	struct mem_cgroup *memcg;
591
	pgtable_t pgtable;
J
Jan Kara 已提交
592
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593
	vm_fault_t ret = 0;
594

595
	VM_BUG_ON_PAGE(!PageCompound(page), page);
596

597
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg)) {
598 599
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
600
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 602
		return VM_FAULT_FALLBACK;
	}
603

604
	pgtable = pte_alloc_one(vma->vm_mm);
605
	if (unlikely(!pgtable)) {
606 607
		ret = VM_FAULT_OOM;
		goto release;
608
	}
609

610
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 612 613 614 615
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
616 617
	__SetPageUptodate(page);

J
Jan Kara 已提交
618 619
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
620
		goto unlock_release;
621 622
	} else {
		pmd_t entry;
623

624 625 626 627
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

628 629
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
630
			vm_fault_t ret2;
631

J
Jan Kara 已提交
632
			spin_unlock(vmf->ptl);
633
			mem_cgroup_cancel_charge(page, memcg);
634
			put_page(page);
K
Kirill A. Shutemov 已提交
635
			pte_free(vma->vm_mm, pgtable);
636 637 638
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
639 640
		}

641
		entry = mk_huge_pmd(page, vma->vm_page_prot);
642
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
643
		mem_cgroup_commit_charge(page, memcg, false);
644
		page_add_new_anon_rmap(page, vma, haddr, true);
645
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
646 647
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
648
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
649
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
650
		spin_unlock(vmf->ptl);
651
		count_vm_event(THP_FAULT_ALLOC);
652
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
653 654
	}

655
	return 0;
656 657 658 659 660
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
661
	mem_cgroup_cancel_charge(page, memcg);
662 663 664
	put_page(page);
	return ret;

665 666
}

667
/*
668 669 670 671 672 673 674
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
675
 */
676
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
677
{
678
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679

680
	/* Always do synchronous compaction */
681 682
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 684

	/* Kick kcompactd and fail quickly */
685
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 688

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 691 692
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
693 694

	/* Only do synchronous compaction if madvised */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 697
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698

699
	return GFP_TRANSHUGE_LIGHT;
700 701
}

702
/* Caller must hold page table lock. */
703
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705
		struct page *zero_page)
706 707
{
	pmd_t entry;
A
Andrew Morton 已提交
708 709
	if (!pmd_none(*pmd))
		return false;
710
	entry = mk_pmd(zero_page, vma->vm_page_prot);
711
	entry = pmd_mkhuge(entry);
712 713
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
714
	set_pmd_at(mm, haddr, pmd, entry);
715
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
716
	return true;
717 718
}

719
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720
{
J
Jan Kara 已提交
721
	struct vm_area_struct *vma = vmf->vma;
722
	gfp_t gfp;
723
	struct page *page;
J
Jan Kara 已提交
724
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725

726
	if (!transhuge_vma_suitable(vma, haddr))
727
		return VM_FAULT_FALLBACK;
728 729
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
730
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
731
		return VM_FAULT_OOM;
J
Jan Kara 已提交
732
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
733
			!mm_forbids_zeropage(vma->vm_mm) &&
734 735 736 737
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
738
		vm_fault_t ret;
739
		pgtable = pte_alloc_one(vma->vm_mm);
740
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
741
			return VM_FAULT_OOM;
742
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
743
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
744
			pte_free(vma->vm_mm, pgtable);
745
			count_vm_event(THP_FAULT_FALLBACK);
746
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
747
		}
J
Jan Kara 已提交
748
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
749 750
		ret = 0;
		set = false;
J
Jan Kara 已提交
751
		if (pmd_none(*vmf->pmd)) {
752 753 754 755
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
756 757
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
758 759
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
760
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
761 762
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
763 764 765
				set = true;
			}
		} else
J
Jan Kara 已提交
766
			spin_unlock(vmf->ptl);
767
		if (!set)
K
Kirill A. Shutemov 已提交
768
			pte_free(vma->vm_mm, pgtable);
769
		return ret;
770
	}
771 772
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
773 774
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
775
		return VM_FAULT_FALLBACK;
776
	}
777
	prep_transhuge_page(page);
J
Jan Kara 已提交
778
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
779 780
}

781
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
782 783
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
784 785 786 787 788 789
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

805 806 807
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
808
	if (write) {
809 810
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
811
	}
812 813 814

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
815
		mm_inc_nr_ptes(mm);
816
		pgtable = NULL;
817 818
	}

819 820
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
821 822

out_unlock:
M
Matthew Wilcox 已提交
823
	spin_unlock(ptl);
824 825
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
843
{
844 845
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
846
	pgtable_t pgtable = NULL;
847

M
Matthew Wilcox 已提交
848 849 850 851 852
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
853 854
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
855 856 857 858 859 860
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
861

862
	if (arch_needs_pgtable_deposit()) {
863
		pgtable = pte_alloc_one(vma->vm_mm);
864 865 866 867
		if (!pgtable)
			return VM_FAULT_OOM;
	}

868 869
	track_pfn_insert(vma, &pgprot, pfn);

870
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
871
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
872
}
873
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
874

875
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
876
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
877
{
878
	if (likely(vma->vm_flags & VM_WRITE))
879 880 881 882 883 884 885 886 887 888 889 890
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
891 892 893 894 895 896 897 898 899 900 901 902 903 904
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

905 906 907 908
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
909 910
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
911 912 913
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
914 915

out_unlock:
916 917 918
	spin_unlock(ptl);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
934
{
935 936 937
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

938 939 940 941 942
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
943 944
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
945 946 947 948 949 950 951 952 953
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

954
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
955 956
	return VM_FAULT_NOPAGE;
}
957
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
958 959
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

960
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
961
		pmd_t *pmd, int flags)
962 963 964
{
	pmd_t _pmd;

965 966 967
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
968
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
969
				pmd, _pmd, flags & FOLL_WRITE))
970 971 972 973
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
974
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
975 976 977 978 979 980 981
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

982 983 984 985 986 987
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
988 989 990 991 992
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

993
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
994 995 996 997 998 999 1000 1001
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1002
		touch_pmd(vma, addr, pmd, flags);
1003 1004 1005 1006 1007

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1008
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1009 1010 1011
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1012 1013
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1014 1015
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1016 1017
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1018 1019 1020 1021

	return page;
}

1022 1023 1024 1025
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1026
	spinlock_t *dst_ptl, *src_ptl;
1027 1028
	struct page *src_page;
	pmd_t pmd;
1029
	pgtable_t pgtable = NULL;
1030
	int ret = -ENOMEM;
1031

1032 1033 1034 1035
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1036
	pgtable = pte_alloc_one(dst_mm);
1037 1038
	if (unlikely(!pgtable))
		goto out;
1039

1040 1041 1042
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 1044 1045

	ret = -EAGAIN;
	pmd = *src_pmd;
1046

1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1063 1064
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1065 1066
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1067
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068
		mm_inc_nr_ptes(dst_mm);
1069
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 1071 1072 1073 1074 1075
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1076
	if (unlikely(!pmd_trans_huge(pmd))) {
1077 1078 1079
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1080
	/*
1081
	 * When page table lock is held, the huge zero pmd should not be
1082 1083 1084 1085
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1086
		struct page *zero_page;
1087 1088 1089 1090 1091
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1092
		zero_page = mm_get_huge_zero_page(dst_mm);
1093
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1094
				zero_page);
1095 1096 1097
		ret = 0;
		goto out_unlock;
	}
1098

1099 1100 1101 1102 1103
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1104
	mm_inc_nr_ptes(dst_mm);
1105
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1106 1107 1108 1109 1110 1111 1112

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1113 1114
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1115 1116 1117 1118
out:
	return ret;
}

1119 1120
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1121
		pud_t *pud, int flags)
1122 1123 1124
{
	pud_t _pud;

1125 1126 1127
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1128
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1129
				pud, _pud, flags & FOLL_WRITE))
1130 1131 1132 1133
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1134
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1135 1136 1137 1138 1139 1140 1141
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1142
	if (flags & FOLL_WRITE && !pud_write(*pud))
1143 1144
		return NULL;

J
John Hubbard 已提交
1145 1146 1147 1148 1149
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1150 1151 1152 1153 1154 1155
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1156
		touch_pud(vma, addr, pud, flags);
1157 1158 1159 1160

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1161 1162
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1163
	 */
J
John Hubbard 已提交
1164
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1165 1166 1167
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1168 1169
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1170 1171
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1172 1173
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1237
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1238 1239 1240
{
	pmd_t entry;
	unsigned long haddr;
1241
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1242

J
Jan Kara 已提交
1243 1244
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1245 1246 1247
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1248 1249
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1250
	haddr = vmf->address & HPAGE_PMD_MASK;
1251
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1252
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1253 1254

unlock:
J
Jan Kara 已提交
1255
	spin_unlock(vmf->ptl);
1256 1257
}

1258
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1259
{
J
Jan Kara 已提交
1260
	struct vm_area_struct *vma = vmf->vma;
1261
	struct page *page;
J
Jan Kara 已提交
1262
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1263

J
Jan Kara 已提交
1264
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1265
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1266

1267
	if (is_huge_zero_pmd(orig_pmd))
1268 1269
		goto fallback;

J
Jan Kara 已提交
1270
	spin_lock(vmf->ptl);
1271 1272 1273 1274 1275

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1276 1277

	page = pmd_page(orig_pmd);
1278
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1279 1280

	/* Lock page for reuse_swap_page() */
1281 1282 1283 1284 1285 1286
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1287
			spin_unlock(vmf->ptl);
1288 1289
			unlock_page(page);
			put_page(page);
1290
			return 0;
1291 1292 1293
		}
		put_page(page);
	}
1294 1295 1296 1297 1298

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1299
	if (reuse_swap_page(page, NULL)) {
1300 1301
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1302
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1304
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1305
		unlock_page(page);
J
Jan Kara 已提交
1306
		spin_unlock(vmf->ptl);
1307
		return VM_FAULT_WRITE;
1308
	}
1309 1310

	unlock_page(page);
J
Jan Kara 已提交
1311
	spin_unlock(vmf->ptl);
1312 1313 1314
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1315 1316
}

1317
/*
1318 1319
 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
 * but only after we've gone through a COW cycle and they are dirty.
1320 1321 1322
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1323
	return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1324 1325
}

1326
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1327 1328 1329 1330
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1331
	struct mm_struct *mm = vma->vm_mm;
1332 1333
	struct page *page = NULL;

1334
	assert_spin_locked(pmd_lockptr(mm, pmd));
1335

1336
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1337 1338
		goto out;

1339 1340 1341 1342
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1343
	/* Full NUMA hinting faults to serialise migration in fault paths */
1344
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1345 1346
		goto out;

1347
	page = pmd_page(*pmd);
1348
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1349 1350 1351 1352

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1353
	if (flags & FOLL_TOUCH)
1354
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1355

E
Eric B Munson 已提交
1356
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1357 1358 1359 1360
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1361 1362
		 * For anon THP:
		 *
1363 1364 1365 1366 1367 1368 1369
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1370 1371 1372 1373 1374 1375
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1376
		 */
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1388
	}
1389
skip_mlock:
1390
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1391
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1392 1393 1394 1395 1396

out:
	return page;
}

1397
/* NUMA hinting page fault entry point for trans huge pmds */
1398
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1399
{
J
Jan Kara 已提交
1400
	struct vm_area_struct *vma = vmf->vma;
1401
	struct anon_vma *anon_vma = NULL;
1402
	struct page *page;
J
Jan Kara 已提交
1403
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1404
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1405
	int target_nid, last_cpupid = -1;
1406 1407
	bool page_locked;
	bool migrated = false;
1408
	bool was_writable;
1409
	int flags = 0;
1410

J
Jan Kara 已提交
1411 1412
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1413 1414
		goto out_unlock;

1415 1416 1417 1418 1419
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1420 1421
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1422 1423
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1424
		spin_unlock(vmf->ptl);
1425
		put_and_wait_on_page_locked(page);
1426 1427 1428
		goto out;
	}

1429
	page = pmd_page(pmd);
1430
	BUG_ON(is_huge_zero_page(page));
1431
	page_nid = page_to_nid(page);
1432
	last_cpupid = page_cpupid_last(page);
1433
	count_vm_numa_event(NUMA_HINT_FAULTS);
1434
	if (page_nid == this_nid) {
1435
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1436 1437
		flags |= TNF_FAULT_LOCAL;
	}
1438

1439
	/* See similar comment in do_numa_page for explanation */
1440
	if (!pmd_savedwrite(pmd))
1441 1442
		flags |= TNF_NO_GROUP;

1443 1444 1445 1446
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1447 1448
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1449
	if (target_nid == NUMA_NO_NODE) {
1450
		/* If the page was locked, there are no parallel migrations */
1451
		if (page_locked)
1452
			goto clear_pmdnuma;
1453
	}
1454

1455
	/* Migration could have started since the pmd_trans_migrating check */
1456
	if (!page_locked) {
1457
		page_nid = NUMA_NO_NODE;
1458 1459
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1460
		spin_unlock(vmf->ptl);
1461
		put_and_wait_on_page_locked(page);
1462 1463 1464
		goto out;
	}

1465 1466 1467 1468
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1469
	get_page(page);
J
Jan Kara 已提交
1470
	spin_unlock(vmf->ptl);
1471
	anon_vma = page_lock_anon_vma_read(page);
1472

P
Peter Zijlstra 已提交
1473
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1474 1475
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1476 1477
		unlock_page(page);
		put_page(page);
1478
		page_nid = NUMA_NO_NODE;
1479
		goto out_unlock;
1480
	}
1481

1482 1483 1484
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1485
		page_nid = NUMA_NO_NODE;
1486 1487 1488
		goto clear_pmdnuma;
	}

1489 1490 1491 1492 1493 1494
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1495 1496 1497 1498
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1499
	 */
1500
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1501
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1514

1515 1516
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1517
	 * and access rights restored.
1518
	 */
J
Jan Kara 已提交
1519
	spin_unlock(vmf->ptl);
1520

K
Kirill A. Shutemov 已提交
1521
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1522
				vmf->pmd, pmd, vmf->address, page, target_nid);
1523 1524
	if (migrated) {
		flags |= TNF_MIGRATED;
1525
		page_nid = target_nid;
1526 1527
	} else
		flags |= TNF_MIGRATE_FAIL;
1528

1529
	goto out;
1530
clear_pmdnuma:
1531
	BUG_ON(!PageLocked(page));
1532
	was_writable = pmd_savedwrite(pmd);
1533
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1534
	pmd = pmd_mkyoung(pmd);
1535 1536
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1537 1538
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1539
	unlock_page(page);
1540
out_unlock:
J
Jan Kara 已提交
1541
	spin_unlock(vmf->ptl);
1542 1543 1544 1545 1546

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1547
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1548
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1549
				flags);
1550

1551 1552 1553
	return 0;
}

1554 1555 1556 1557 1558
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1559 1560 1561 1562 1563 1564
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1565
	bool ret = false;
1566

1567
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1568

1569 1570
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1571
		goto out_unlocked;
1572 1573

	orig_pmd = *pmd;
1574
	if (is_huge_zero_pmd(orig_pmd))
1575 1576
		goto out;

1577 1578 1579 1580 1581 1582
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1601
		split_huge_page(page);
1602
		unlock_page(page);
1603
		put_page(page);
1604 1605 1606 1607 1608 1609 1610 1611
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1612
		pmdp_invalidate(vma, addr, pmd);
1613 1614 1615 1616 1617 1618
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1619 1620

	mark_page_lazyfree(page);
1621
	ret = true;
1622 1623 1624 1625 1626 1627
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1628 1629 1630 1631 1632 1633
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1634
	mm_dec_nr_ptes(mm);
1635 1636
}

1637
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1638
		 pmd_t *pmd, unsigned long addr)
1639
{
1640
	pmd_t orig_pmd;
1641
	spinlock_t *ptl;
1642

1643
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1644

1645 1646
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1657
	if (vma_is_special_huge(vma)) {
1658 1659
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1660 1661
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1662
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1663
	} else if (is_huge_zero_pmd(orig_pmd)) {
1664
		zap_deposited_table(tlb->mm, pmd);
1665
		spin_unlock(ptl);
1666
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1667
	} else {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1686
		if (PageAnon(page)) {
1687
			zap_deposited_table(tlb->mm, pmd);
1688 1689
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1690 1691
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1692
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1693
		}
1694

1695
		spin_unlock(ptl);
1696 1697
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1698
	}
1699
	return 1;
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1728
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1729
		  unsigned long new_addr, unsigned long old_end,
1730
		  pmd_t *old_pmd, pmd_t *new_pmd)
1731
{
1732
	spinlock_t *old_ptl, *new_ptl;
1733 1734
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1735
	bool force_flush = false;
1736 1737 1738

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1739
	    old_end - old_addr < HPAGE_PMD_SIZE)
1740
		return false;
1741 1742 1743 1744 1745 1746 1747

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1748
		return false;
1749 1750
	}

1751 1752 1753 1754
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1755 1756
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1757 1758 1759
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1760
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1761
		if (pmd_present(pmd))
1762
			force_flush = true;
1763
		VM_BUG_ON(!pmd_none(*new_pmd));
1764

1765
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1766
			pgtable_t pgtable;
1767 1768 1769
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1770 1771
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1772 1773
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1774 1775
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1776
		spin_unlock(old_ptl);
1777
		return true;
1778
	}
1779
	return false;
1780 1781
}

1782 1783 1784 1785 1786 1787
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1788
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1789
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1790 1791
{
	struct mm_struct *mm = vma->vm_mm;
1792
	spinlock_t *ptl;
1793 1794 1795
	pmd_t entry;
	bool preserve_write;
	int ret;
1796
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1797 1798
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1799

1800
	ptl = __pmd_trans_huge_lock(pmd, vma);
1801 1802
	if (!ptl)
		return 0;
1803

1804 1805
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1820 1821
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1822 1823 1824 1825 1826 1827
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1828 1829 1830 1831 1832 1833 1834
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1835

1836 1837 1838
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1860
	entry = pmdp_invalidate(vma, addr, pmd);
1861

1862 1863 1864
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1876 1877 1878 1879 1880
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1881 1882 1883 1884
	return ret;
}

/*
1885
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1886
 *
1887 1888
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1889
 */
1890
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1891
{
1892 1893
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1894 1895
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1896 1897 1898
		return ptl;
	spin_unlock(ptl);
	return NULL;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1933
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1934
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1935
	if (vma_is_special_huge(vma)) {
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1953
	count_vm_event(THP_SPLIT_PUD);
1954 1955 1956 1957 1958 1959 1960 1961

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1962
	struct mmu_notifier_range range;
1963

1964
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1965
				address & HPAGE_PUD_MASK,
1966 1967 1968
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1969 1970
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1971
	__split_huge_pud_locked(vma, pud, range.start);
1972 1973 1974

out:
	spin_unlock(ptl);
1975 1976 1977 1978
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1979
	mmu_notifier_invalidate_range_only_end(&range);
1980 1981 1982
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1983 1984 1985 1986 1987 1988 1989 1990
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1991 1992 1993 1994 1995 1996
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1997
	 * See Documentation/vm/mmu_notifier.rst
1998 1999
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2018
		unsigned long haddr, bool freeze)
2019 2020 2021 2022
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2023
	pmd_t old_pmd, _pmd;
2024
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2025
	unsigned long addr;
2026 2027 2028 2029 2030
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2031 2032
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2033 2034 2035

	count_vm_event(THP_SPLIT_PMD);

2036 2037
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2038 2039 2040 2041 2042 2043
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2044
		if (vma_is_special_huge(vma))
2045 2046
			return;
		page = pmd_page(_pmd);
2047 2048
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2049 2050 2051 2052
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2053
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2054 2055
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2056 2057 2058 2059 2060 2061 2062 2063 2064
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2065 2066 2067
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2091
	if (unlikely(pmd_migration)) {
2092 2093
		swp_entry_t entry;

2094
		entry = pmd_to_swp_entry(old_pmd);
2095
		page = pfn_to_page(swp_offset(entry));
2096 2097 2098
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2099
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2100
	} else {
2101
		page = pmd_page(old_pmd);
2102 2103 2104 2105 2106
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2107
		uffd_wp = pmd_uffd_wp(old_pmd);
2108
	}
2109
	VM_BUG_ON_PAGE(!page_count(page), page);
2110
	page_ref_add(page, HPAGE_PMD_NR - 1);
2111

2112 2113 2114 2115
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2116 2117 2118
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2119
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2120 2121 2122 2123 2124 2125
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2126
		if (freeze || pmd_migration) {
2127 2128 2129
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2130 2131
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2132 2133
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2134
		} else {
2135
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2136
			entry = maybe_mkwrite(entry, vma);
2137 2138 2139 2140
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2141 2142
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2143 2144
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2145
		}
2146
		pte = pte_offset_map(&_pmd, addr);
2147
		BUG_ON(!pte_none(*pte));
2148
		set_pte_at(mm, addr, pte, entry);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2164
		__dec_node_page_state(page, NR_ANON_THPS);
2165 2166 2167 2168 2169 2170 2171 2172 2173
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2174 2175

	if (freeze) {
2176
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2177 2178 2179 2180
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2181 2182 2183
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2184
		unsigned long address, bool freeze, struct page *page)
2185 2186
{
	spinlock_t *ptl;
2187
	struct mmu_notifier_range range;
2188

2189
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2190
				address & HPAGE_PMD_MASK,
2191 2192 2193
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2194 2195 2196 2197 2198 2199 2200 2201 2202

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2203
	if (pmd_trans_huge(*pmd)) {
2204
		page = pmd_page(*pmd);
2205
		if (PageMlocked(page))
2206
			clear_page_mlock(page);
2207
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2208
		goto out;
2209
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2210
out:
2211
	spin_unlock(ptl);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2225
	mmu_notifier_invalidate_range_only_end(&range);
2226 2227
}

2228 2229
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2230
{
2231
	pgd_t *pgd;
2232
	p4d_t *p4d;
2233
	pud_t *pud;
2234 2235
	pmd_t *pmd;

2236
	pgd = pgd_offset(vma->vm_mm, address);
2237 2238 2239
	if (!pgd_present(*pgd))
		return;

2240 2241 2242 2243 2244
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2245 2246 2247 2248
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2249

2250
	__split_huge_pmd(vma, pmd, address, freeze, page);
2251 2252
}

2253
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2266
		split_huge_pmd_address(vma, start, false, NULL);
2267 2268 2269 2270 2271 2272 2273 2274 2275

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2276
		split_huge_pmd_address(vma, end, false, NULL);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2290
			split_huge_pmd_address(next, nstart, false, NULL);
2291 2292
	}
}
2293

2294
static void unmap_page(struct page *page)
2295
{
2296
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2297
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2298
	bool unmap_success;
2299 2300 2301

	VM_BUG_ON_PAGE(!PageHead(page), page);

2302
	if (PageAnon(page))
2303
		ttu_flags |= TTU_SPLIT_FREEZE;
2304

M
Minchan Kim 已提交
2305 2306
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2307 2308
}

2309
static void remap_page(struct page *page)
2310
{
2311
	int i;
2312 2313 2314 2315 2316 2317
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2318 2319
}

2320
static void __split_huge_page_tail(struct page *head, int tail,
2321 2322 2323 2324
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2325
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2326 2327

	/*
2328 2329 2330 2331
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2332 2333 2334 2335 2336
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2337
			 (1L << PG_swapcache) |
2338 2339 2340
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2341
			 (1L << PG_workingset) |
2342
			 (1L << PG_locked) |
2343 2344
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2345

2346 2347 2348 2349 2350 2351
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2352
	/* Page flags must be visible before we make the page non-compound. */
2353 2354
	smp_wmb();

2355 2356 2357 2358 2359 2360
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2361 2362
	clear_compound_head(page_tail);

2363 2364 2365 2366
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2367 2368 2369 2370 2371 2372
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2373 2374 2375 2376 2377 2378

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2379 2380 2381
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2382
static void __split_huge_page(struct page *page, struct list_head *list,
2383
		pgoff_t end, unsigned long flags)
2384 2385
{
	struct page *head = compound_head(page);
2386
	pg_data_t *pgdat = page_pgdat(head);
2387
	struct lruvec *lruvec;
2388 2389
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2390
	int i;
2391

2392
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2393 2394 2395 2396

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2397 2398 2399 2400 2401 2402 2403 2404
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2405
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2406
		__split_huge_page_tail(head, i, lruvec, list);
2407 2408
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2409
			ClearPageDirty(head + i);
2410
			__delete_from_page_cache(head + i, NULL);
2411 2412
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2413
			put_page(head + i);
2414 2415 2416 2417 2418 2419
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2420 2421
		}
	}
2422 2423

	ClearPageCompound(head);
2424 2425 2426

	split_page_owner(head, HPAGE_PMD_ORDER);

2427 2428
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2429
		/* Additional pin to swap cache */
2430
		if (PageSwapCache(head)) {
2431
			page_ref_add(head, 2);
2432 2433
			xa_unlock(&swap_cache->i_pages);
		} else {
2434
			page_ref_inc(head);
2435
		}
2436
	} else {
M
Matthew Wilcox 已提交
2437
		/* Additional pin to page cache */
2438
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2439
		xa_unlock(&head->mapping->i_pages);
2440 2441
	}

2442
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2443

2444
	remap_page(head);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2463 2464
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2465
	int i, compound, ret;
2466 2467 2468 2469 2470 2471

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2472
	compound = compound_mapcount(page);
2473
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2474 2475
		return compound;
	ret = compound;
2476 2477
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2478 2479 2480
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2481 2482 2483 2484 2485
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2544 2545 2546 2547 2548
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2549
	/* Additional pins from page cache */
2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2581
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2582
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2583 2584 2585
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2586
	bool mlocked;
2587
	unsigned long flags;
2588
	pgoff_t end;
2589

2590
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2591 2592
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2593

2594
	if (PageWriteback(head))
2595 2596
		return -EBUSY;

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2611
		end = -1;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2625 2626 2627 2628 2629 2630 2631 2632 2633

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2634 2635 2636
	}

	/*
2637
	 * Racy check if we can split the page, before unmap_page() will
2638 2639
	 * split PMDs
	 */
2640
	if (!can_split_huge_page(head, &extra_pins)) {
2641 2642 2643 2644
		ret = -EBUSY;
		goto out_unlock;
	}

2645
	mlocked = PageMlocked(head);
2646
	unmap_page(head);
2647 2648
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2649 2650 2651 2652
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2653
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2654
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2655 2656

	if (mapping) {
M
Matthew Wilcox 已提交
2657
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2658 2659

		/*
M
Matthew Wilcox 已提交
2660
		 * Check if the head page is present in page cache.
2661 2662
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2663 2664
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2665 2666 2667
			goto fail;
	}

2668
	/* Prevent deferred_split_scan() touching ->_refcount */
2669
	spin_lock(&ds_queue->split_queue_lock);
2670 2671
	count = page_count(head);
	mapcount = total_mapcount(head);
2672
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2673
		if (!list_empty(page_deferred_list(head))) {
2674
			ds_queue->split_queue_len--;
2675 2676
			list_del(page_deferred_list(head));
		}
2677
		spin_unlock(&ds_queue->split_queue_lock);
2678
		if (mapping) {
2679 2680
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2681
			else
2682
				__dec_node_page_state(head, NR_FILE_THPS);
2683 2684
		}

2685
		__split_huge_page(page, list, end, flags);
2686 2687 2688 2689 2690 2691
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2692
	} else {
2693 2694 2695 2696 2697 2698 2699 2700
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2701
		spin_unlock(&ds_queue->split_queue_lock);
2702
fail:		if (mapping)
M
Matthew Wilcox 已提交
2703
			xa_unlock(&mapping->i_pages);
2704
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2705
		remap_page(head);
2706 2707 2708 2709
		ret = -EBUSY;
	}

out_unlock:
2710 2711 2712 2713 2714 2715
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2716 2717 2718 2719
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2720 2721 2722

void free_transhuge_page(struct page *page)
{
2723
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2724 2725
	unsigned long flags;

2726
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2727
	if (!list_empty(page_deferred_list(page))) {
2728
		ds_queue->split_queue_len--;
2729 2730
		list_del(page_deferred_list(page));
	}
2731
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2732 2733 2734 2735 2736
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2737 2738 2739 2740
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2741 2742 2743 2744
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2758
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2759
	if (list_empty(page_deferred_list(page))) {
2760
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2761 2762
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2763 2764 2765 2766 2767
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2768
	}
2769
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2770 2771 2772 2773 2774
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2775
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2776
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2777 2778 2779 2780 2781

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2782
	return READ_ONCE(ds_queue->split_queue_len);
2783 2784 2785 2786 2787
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2788
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2789
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2790 2791 2792 2793 2794
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2795 2796 2797 2798 2799
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2800
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2801
	/* Take pin on all head pages to avoid freeing them under us */
2802
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2803 2804
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2805 2806 2807 2808
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2809
			list_del_init(page_deferred_list(page));
2810
			ds_queue->split_queue_len--;
2811
		}
2812 2813
		if (!--sc->nr_to_scan)
			break;
2814
	}
2815
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2816 2817 2818

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2819 2820
		if (!trylock_page(page))
			goto next;
2821 2822 2823 2824
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2825
next:
2826 2827 2828
		put_page(page);
	}

2829 2830 2831
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2832

2833 2834 2835 2836
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2837
	if (!split && list_empty(&ds_queue->split_queue))
2838 2839
		return SHRINK_STOP;
	return split;
2840 2841 2842 2843 2844 2845
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2846 2847
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2848
};
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2874
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2887
	pr_info("%lu of %lu THP split\n", split, total);
2888 2889 2890

	return 0;
}
2891
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2892 2893 2894 2895
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2896 2897
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2898 2899 2900 2901
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2912
	pmd_t pmdswp;
2913 2914 2915 2916 2917

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2918
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2919 2920 2921
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2922 2923 2924 2925
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2945 2946
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2947
	if (is_write_migration_entry(entry))
2948
		pmde = maybe_pmd_mkwrite(pmde, vma);
2949 2950

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2951 2952 2953 2954
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2955
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2956
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2957 2958 2959 2960
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif