cxgb4_main.c 146.2 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66
#include <linux/uaccess.h>
67
#include <linux/crash_dump.h>
68 69

#include "cxgb4.h"
70
#include "cxgb4_filter.h"
71
#include "t4_regs.h"
72
#include "t4_values.h"
73 74
#include "t4_msg.h"
#include "t4fw_api.h"
75
#include "t4fw_version.h"
76
#include "cxgb4_dcb.h"
77
#include "cxgb4_debugfs.h"
78
#include "clip_tbl.h"
79
#include "l2t.h"
80
#include "smt.h"
81
#include "sched.h"
82
#include "cxgb4_tc_u32.h"
83
#include "cxgb4_tc_flower.h"
84
#include "cxgb4_ptp.h"
85
#include "cxgb4_cudbg.h"
86

87 88
char cxgb4_driver_name[] = KBUILD_MODNAME;

89 90 91
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
92
#define DRV_VERSION "2.0.0-ko"
93
const char cxgb4_driver_version[] = DRV_VERSION;
94
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
95 96 97 98 99

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

100 101 102
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
103
	static const struct pci_device_id cxgb4_pci_tbl[] = {
104
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
105

106 107 108 109 110 111 112 113 114 115 116 117 118
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
119

120
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
121
#define FW5_FNAME "cxgb4/t5fw.bin"
122
#define FW6_FNAME "cxgb4/t6fw.bin"
123
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
124
#define FW5_CFNAME "cxgb4/t5-config.txt"
125
#define FW6_CFNAME "cxgb4/t6-config.txt"
126 127 128 129
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
130 131 132 133 134 135

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
136
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
137
MODULE_FIRMWARE(FW5_FNAME);
138
MODULE_FIRMWARE(FW6_FNAME);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

168 169 170 171 172 173 174 175 176 177 178
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

179 180
static struct dentry *cxgb4_debugfs_root;

181 182
LIST_HEAD(adapter_list);
DEFINE_MUTEX(uld_mutex);
183 184 185 186 187 188 189 190

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

191
		const char *s;
192 193 194
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
195 196
		case 100:
			s = "100Mbps";
197
			break;
198
		case 1000:
199
			s = "1Gbps";
200
			break;
201 202 203 204 205
		case 10000:
			s = "10Gbps";
			break;
		case 25000:
			s = "25Gbps";
206
			break;
207
		case 40000:
208 209
			s = "40Gbps";
			break;
210 211 212
		case 100000:
			s = "100Gbps";
			break;
213 214 215 216
		default:
			pr_info("%s: unsupported speed: %d\n",
				dev->name, p->link_cfg.speed);
			return;
217 218 219 220 221 222 223
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

240 241 242 243
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
244 245 246 247 248 249
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
250
		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
251 252
					    &name, &value,
					    -FW_CMD_MAX_TIMEOUT);
253 254 255 256 257

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
258 259
		else
			txq->dcb_prio = value;
260 261 262
	}
}

263
static int cxgb4_dcb_enabled(const struct net_device *dev)
264 265 266 267 268 269 270 271 272
{
	struct port_info *pi = netdev_priv(dev);

	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
}
A
Arnd Bergmann 已提交
273
#endif /* CONFIG_CHELSIO_T4_DCB */
274

275 276 277 278 279 280 281 282
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
283 284
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
285
			if (cxgb4_dcb_enabled(dev)) {
286
				cxgb4_dcb_reset(dev);
287 288
				dcb_tx_queue_prio_enable(dev, false);
			}
289
#endif /* CONFIG_CHELSIO_T4_DCB */
290
			netif_carrier_off(dev);
291
		}
292 293 294 295 296 297 298 299

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
300
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
301 302 303 304 305 306 307
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
308
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
309
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
310 311 312 313 314 315 316 317 318 319 320
	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
		netdev_info(dev, "%s: unsupported port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
		netdev_info(dev, "%s: unknown port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
		netdev_info(dev, "%s: transceiver module error\n", dev->name);
	else
		netdev_info(dev, "%s: unknown module type %d inserted\n",
			    dev->name, pi->mod_type);
321 322
}

323 324 325 326
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

327
/*
328
 * usecs to sleep while draining the dbfifo
329
 */
330 331 332 333 334 335
static int dbfifo_drain_delay = 1000;
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

static inline int cxgb4_set_addr_hash(struct port_info *pi)
336
{
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	struct adapter *adap = pi->adapter;
	u64 vec = 0;
	bool ucast = false;
	struct hash_mac_addr *entry;

	/* Calculate the hash vector for the updated list and program it */
	list_for_each_entry(entry, &adap->mac_hlist, list) {
		ucast |= is_unicast_ether_addr(entry->addr);
		vec |= (1ULL << hash_mac_addr(entry->addr));
	}
	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
				vec, false);
}

static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
356 357
	u64 mhash = 0;
	u64 uhash = 0;
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	bool free = false;
	bool ucast = is_unicast_ether_addr(mac_addr);
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *new_entry;

	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
				NULL, ucast ? &uhash : &mhash, false);
	if (ret < 0)
		goto out;
	/* if hash != 0, then add the addr to hash addr list
	 * so on the end we will calculate the hash for the
	 * list and program it
	 */
	if (uhash || mhash) {
		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
		if (!new_entry)
			return -ENOMEM;
		ether_addr_copy(new_entry->addr, mac_addr);
		list_add_tail(&new_entry->list, &adap->mac_hlist);
		ret = cxgb4_set_addr_hash(pi);
378
	}
379 380 381
out:
	return ret < 0 ? ret : 0;
}
382

383 384 385 386 387 388 389
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *entry, *tmp;
390

391 392 393 394 395 396 397 398
	/* If the MAC address to be removed is in the hash addr
	 * list, delete it from the list and update hash vector
	 */
	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
		if (ether_addr_equal(entry->addr, mac_addr)) {
			list_del(&entry->list);
			kfree(entry);
			return cxgb4_set_addr_hash(pi);
399 400 401
		}
	}

402 403
	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
	return ret < 0 ? -EINVAL : 0;
404 405 406 407 408 409 410 411 412
}

/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	struct port_info *pi = netdev_priv(dev);
413
	struct adapter *adapter = pi->adapter;
414

415 416
	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
417 418 419 420 421

	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
			     (dev->flags & IFF_PROMISC) ? 1 : 0,
			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
			     sleep_ok);
422 423 424 425 426 427 428 429 430 431 432 433
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
434
	unsigned int mb = pi->adapter->pf;
435 436 437 438 439

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
440
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
441
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
442
	if (ret == 0) {
443
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
444
				    pi->xact_addr_filt, dev->dev_addr, true,
445
				    true);
446 447 448 449 450 451
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
452
		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
453
				    &pi->link_cfg);
454 455
	if (ret == 0) {
		local_bh_disable();
456 457
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
458 459
		local_bh_enable();
	}
460

461 462 463
	return ret;
}

464 465 466 467
#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
468
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
469
	struct net_device *dev = adap->port[adap->chan_map[port]];
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
485
/* Response queue handler for the FW event queue.
486 487 488 489 490 491 492
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

508 509
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
510
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
511
		struct sge_txq *txq;
512

513
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
514
		txq->restarts++;
515
		if (txq->q_type == CXGB4_TXQ_ETH) {
516 517 518 519 520
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
521
			struct sge_uld_txq *oq;
522

523
			oq = container_of(txq, struct sge_uld_txq, q);
524 525 526 527 528
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

529 530
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
531
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
532
		unsigned int action =
533
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
534 535

		if (cmd == FW_PORT_CMD &&
536 537
		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
538
			int port = FW_PORT_CMD_PORTID_G(
539
					be32_to_cpu(pcmd->op_to_portid));
540 541 542 543 544 545 546 547 548 549 550 551
			struct net_device *dev;
			int dcbxdis, state_input;

			dev = q->adap->port[q->adap->chan_map[port]];
			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
				   ? !!(pcmd->u.info.dcbxdis_pkd &
					FW_PORT_CMD_DCBXDIS_F)
				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
					FW_PORT_CMD_DCBXDIS32_F));
			state_input = (dcbxdis
				       ? CXGB4_DCB_INPUT_FW_DISABLED
				       : CXGB4_DCB_INPUT_FW_ENABLED);
552 553 554 555 556 557 558 559 560 561 562

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
563 564 565 566
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
567 568 569 570
	} else if (opcode == CPL_SMT_WRITE_RPL) {
		const struct cpl_smt_write_rpl *p = (void *)rsp;

		do_smt_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
571 572 573 574
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
575 576 577 578
	} else if (opcode == CPL_ACT_OPEN_RPL) {
		const struct cpl_act_open_rpl *p = (void *)rsp;

		hash_filter_rpl(q->adap, p);
579 580 581 582
	} else if (opcode == CPL_ABORT_RPL_RSS) {
		const struct cpl_abort_rpl_rss *p = (void *)rsp;

		hash_del_filter_rpl(q->adap, p);
583 584 585
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
586
out:
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
607
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
608

609
	if (v & PFSW_F) {
610
		adap->swintr = 1;
611
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
612
	}
613 614
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
615 616 617 618 619 620 621 622
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
623
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
624 625

	/* non-data interrupts */
626
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
627 628

	/* FW events */
629 630
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
631 632 633 634 635 636

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

637
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
638 639 640 641 642 643 644 645
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
646
	int err, ethqidx;
647
	int msi_index = 2;
648 649 650 651 652 653 654

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
655 656 657
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
658 659 660
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
661
		msi_index++;
662 663 664 665 666
	}
	return 0;

unwind:
	while (--ethqidx >= 0)
667 668
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
669 670 671 672 673 674
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
675
	int i, msi_index = 2;
676 677 678 679
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
680
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
681 682
}

683
/**
684
 *	cxgb4_write_rss - write the RSS table for a given port
685 686 687 688 689
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
690
 *	Should never be called before setting up sge eth rx queues
691
 */
692
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
693 694 695
{
	u16 *rss;
	int i, err;
696 697
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
698

699
	rxq = &adapter->sge.ethrxq[pi->first_qset];
700 701 702 703 704 705
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
706
		rss[i] = rxq[*queues].rspq.abs_id;
707

708
	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
709
				  pi->rss_size, rss, pi->rss_size);
710 711 712 713 714 715 716 717 718 719 720 721 722
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
723 724 725 726
	kfree(rss);
	return err;
}

727 728 729 730
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
731
 *	Sets up RSS for each port.
732 733 734
 */
static int setup_rss(struct adapter *adap)
{
735
	int i, j, err;
736 737 738 739

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

740 741 742 743
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

744
		err = cxgb4_write_rss(pi, pi->rss);
745 746 747 748 749 750
		if (err)
			return err;
	}
	return 0;
}

751 752 753 754 755 756 757 758 759
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

760 761 762 763 764 765 766
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

767
	for (i = 0; i < adap->sge.ingr_sz; i++) {
768 769
		struct sge_rspq *q = adap->sge.ingr_map[i];

770
		if (q && q->handler)
771 772 773 774
			napi_disable(&q->napi);
	}
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

790 791 792 793 794 795 796
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

797
	for (i = 0; i < adap->sge.ingr_sz; i++) {
798 799 800 801
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
802
		if (q->handler)
803
			napi_enable(&q->napi);
804

805
		/* 0-increment GTS to start the timer and enable interrupts */
806 807 808
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
809 810 811
	}
}

812

813
static int setup_fw_sge_queues(struct adapter *adap)
814 815
{
	struct sge *s = &adap->sge;
816
	int err = 0;
817

818 819
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
820 821

	if (adap->flags & USING_MSIX)
822
		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
823 824
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
825
				       NULL, NULL, NULL, -1);
826 827
		if (err)
			return err;
828
		adap->msi_idx = -((int)s->intrq.abs_id + 1);
829 830 831
	}

	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
832
			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (err)
		t4_free_sge_resources(adap);
	return err;
}

/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, i, j;
	struct sge *s = &adap->sge;
G
Ganesh Goudar 已提交
850
	struct sge_uld_rxq_info *rxq_info = NULL;
851
	unsigned int cmplqid = 0;
852

G
Ganesh Goudar 已提交
853 854 855
	if (is_uld(adap))
		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];

856 857 858 859 860 861 862
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
863 864
			if (adap->msi_idx > 0)
				adap->msi_idx++;
865
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
866
					       adap->msi_idx, &q->fl,
867
					       t4_ethrx_handler,
868
					       NULL,
869 870
					       t4_get_tp_ch_map(adap,
								pi->tx_chan));
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	for_each_port(adap, i) {
886
		/* Note that cmplqid below is 0 if we don't
887 888
		 * have RDMA queues, and that's the right value.
		 */
889 890 891
		if (rxq_info)
			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;

892
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
893
					    s->fw_evtq.cntxt_id, cmplqid);
894 895 896 897
		if (err)
			goto freeout;
	}

898 899 900 901 902 903 904 905
	if (!is_t4(adap->params.chip)) {
		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
					   netdev_get_tx_queue(adap->port[0], 0)
					   , s->fw_evtq.cntxt_id);
		if (err)
			goto freeout;
	}

906
	t4_write_reg(adap, is_t4(adap->params.chip) ?
907 908 909 910
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
911
	return 0;
912 913 914
freeout:
	t4_free_sge_resources(adap);
	return err;
915 916
}

917 918 919 920 921 922 923 924 925 926 927
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
928
	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
929 930 931 932 933 934 935 936 937 938 939
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
940 941 942 943
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
996
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
997 998 999 1000 1001 1002 1003
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
1004 1005
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
1006
{
1007 1008
	struct adapter *adap = q->adap;

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
1019 1020 1021 1022
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1023 1024
			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
					    &v, &new_idx);
1025 1026 1027 1028 1029 1030 1031
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1032
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1033 1034 1035
	return 0;
}

1036
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1037
{
1038
	const struct port_info *pi = netdev_priv(dev);
1039
	netdev_features_t changed = dev->features ^ features;
1040 1041
	int err;

1042
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1043
		return 0;
1044

1045
	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1046
			    -1, -1, -1,
1047
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1048
	if (unlikely(err))
1049
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1050
	return err;
D
Dimitris Michailidis 已提交
1051 1052
}

B
Bill Pemberton 已提交
1053
static int setup_debugfs(struct adapter *adap)
1054 1055 1056 1057
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1058 1059 1060
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1079
		atid = (p - t->atid_tab) + t->atid_base;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1094
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
1119
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1120 1121 1122 1123 1124 1125
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1126 1127 1128 1129
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
1130
		if (family == PF_INET6) {
1131
			t->stids_in_use += 2;
1132 1133 1134 1135
			t->v6_stids_in_use += 2;
		} else {
			t->stids_in_use++;
		}
1136 1137 1138 1139 1140 1141
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1161 1162
		stid -= t->nstids;
		stid += t->sftid_base;
1163
		t->sftids_in_use++;
1164 1165 1166 1167 1168 1169 1170
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1171 1172 1173
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1174 1175 1176 1177 1178 1179 1180 1181
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1182 1183 1184 1185
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
1186
		bitmap_release_region(t->stid_bmap, stid, 1);
1187
	t->stid_tab[stid].data = NULL;
1188
	if (stid < t->nstids) {
1189
		if (family == PF_INET6) {
1190
			t->stids_in_use -= 2;
1191 1192 1193 1194
			t->v6_stids_in_use -= 2;
		} else {
			t->stids_in_use--;
		}
1195 1196 1197
	} else {
		t->sftids_in_use--;
	}
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1212
	req = __skb_put(skb, sizeof(*req));
1213 1214 1215 1216 1217 1218 1219 1220
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1221 1222
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1233
		queue_work(adap->workq, &adap->tid_release_task);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
1274 1275
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
		      unsigned short family)
1276 1277 1278 1279
{
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

1280 1281 1282 1283
	WARN_ON(tid >= t->ntids);

	if (t->tid_tab[tid]) {
		t->tid_tab[tid] = NULL;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		atomic_dec(&t->conns_in_use);
		if (t->hash_base && (tid >= t->hash_base)) {
			if (family == AF_INET6)
				atomic_sub(2, &t->hash_tids_in_use);
			else
				atomic_dec(&t->hash_tids_in_use);
		} else {
			if (family == AF_INET6)
				atomic_sub(2, &t->tids_in_use);
			else
				atomic_dec(&t->tids_in_use);
		}
1296 1297
	}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
1312
	struct adapter *adap = container_of(t, struct adapter, tids);
1313 1314 1315 1316 1317
	unsigned int max_ftids = t->nftids + t->nsftids;
	unsigned int natids = t->natids;
	unsigned int stid_bmap_size;
	unsigned int ftid_bmap_size;
	size_t size;
1318

1319
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1320
	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
V
Vipul Pandya 已提交
1321 1322
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1323
	       t->nstids * sizeof(*t->stid_tab) +
1324
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1325
	       stid_bmap_size * sizeof(long) +
1326 1327
	       max_ftids * sizeof(*t->ftid_tab) +
	       ftid_bmap_size * sizeof(long);
V
Vipul Pandya 已提交
1328

1329
	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1330 1331 1332 1333 1334
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1335
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1336
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1337
	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1338 1339
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);
1340
	spin_lock_init(&t->ftid_lock);
1341 1342

	t->stids_in_use = 0;
1343
	t->v6_stids_in_use = 0;
1344
	t->sftids_in_use = 0;
1345 1346 1347
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);
1348
	atomic_set(&t->conns_in_use, 0);
1349
	atomic_set(&t->hash_tids_in_use, 0);
1350 1351 1352 1353 1354 1355 1356

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (is_offload(adap)) {
		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
		/* Reserve stid 0 for T4/T5 adapters */
		if (!t->stid_base &&
		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
			__set_bit(0, t->stid_bmap);
	}

	bitmap_zero(t->ftid_bmap, t->nftids);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1382 1383
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1384 1385 1386 1387 1388
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1389
	int ret;
1390 1391 1392 1393 1394 1395

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1396
	req = __skb_put(skb, sizeof(*req));
1397 1398 1399 1400 1401 1402
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1403
	chan = rxq_to_chan(&adap->sge, queue);
1404
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1405 1406
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1407 1408
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1409 1410 1411
}
EXPORT_SYMBOL(cxgb4_create_server);

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1437
	req = __skb_put(skb, sizeof(*req));
1438 1439 1440 1441 1442 1443 1444 1445 1446
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1447
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1448 1449
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

1469
	req = __skb_put(skb, sizeof(*req));
1470 1471
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1472 1473
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1474 1475 1476 1477 1478
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/**
 *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
 *	@chip: chip type
 *	@viid: VI id of the given port
 *
 *	Return the SMT index for this VI.
 */
unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
{
	/* In T4/T5, SMT contains 256 SMAC entries organized in
	 * 128 rows of 2 entries each.
	 * In T6, SMT contains 256 SMAC entries in 256 rows.
	 * TODO: The below code needs to be updated when we add support
	 * for 256 VFs.
	 */
	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
		return ((viid & 0x7f) << 1);
	else
		return (viid & 0x7f);
}
EXPORT_SYMBOL(cxgb4_tp_smt_idx);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1607 1608 1609
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1610
	u32 v1, v2, lp_count, hp_count;
1611

1612 1613
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1614
	if (is_t4(adap->params.chip)) {
1615 1616
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1617
	} else {
1618 1619
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1620 1621
	}
	return lpfifo ? lp_count : hp_count;
1622 1623 1624
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
1655
	t4_tp_get_tcp_stats(adap, v4, v6, false);
1656 1657 1658 1659 1660 1661 1662 1663 1664
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1665 1666 1667 1668
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
1669 1670 1671
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

1672 1673 1674 1675
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);

1676
	return t4_sge_ctxt_flush(adap, adap->mbox);
1677 1678 1679 1680 1681
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
1682
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1683 1684 1685
	__be64 indices;
	int ret;

1686 1687 1688 1689 1690
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
1691
	if (!ret) {
1692 1693
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
1711
		u32 val;
1712 1713 1714 1715 1716

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
1717 1718 1719 1720 1721

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1722
		wmb();
1723 1724
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
1725 1726 1727 1728 1729 1730
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

1731 1732 1733 1734
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
1735
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
1749 1750 1751 1752 1753 1754
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
1770
		} else if (is_t5(adap->params.chip)) {
1771 1772
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1773 1774 1775 1776 1777 1778 1779 1780
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
1781 1782 1783
		} else {
			/* T4/T6 only has a single memory channel */
			goto err;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

1799 1800 1801 1802 1803 1804
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
1805 1806
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1807 1808 1809 1810 1811

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

1812 1813 1814
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
1815
			 int user,
1816 1817 1818
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
1819
	return t4_bar2_sge_qregs(netdev2adap(dev),
1820 1821 1822 1823
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
1824
				 user,
1825 1826 1827 1828 1829
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

1830 1831 1832 1833 1834 1835 1836
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

1837
	if (is_vlan_dev(netdev))
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

1863 1864
static void drain_db_fifo(struct adapter *adap, int usecs)
{
1865
	u32 v1, v2, lp_count, hp_count;
1866 1867

	do {
1868 1869
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1870
		if (is_t4(adap->params.chip)) {
1871 1872
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
1873
		} else {
1874 1875
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
1876 1877 1878 1879
		}

		if (lp_count == 0 && hp_count == 0)
			break;
1880 1881 1882 1883 1884 1885 1886
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
1887 1888 1889
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
1890
	q->db_disabled = 1;
1891
	spin_unlock_irqrestore(&q->db_lock, flags);
1892 1893
}

1894
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1895 1896
{
	spin_lock_irq(&q->db_lock);
1897 1898 1899 1900 1901
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
1902 1903
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1904 1905
		q->db_pidx_inc = 0;
	}
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				disable_txq_db(&txq->q);
			}
		}
	}
1928 1929 1930 1931 1932 1933 1934 1935 1936
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
1937
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				enable_txq_db(adap, &txq->q);
			}
		}
	}
1950
	for_each_port(adap, i)
1951 1952 1953 1954 1955
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
1956 1957 1958 1959
	enum cxgb4_uld type = CXGB4_ULD_RDMA;

	if (adap->uld && adap->uld[type].handle)
		adap->uld[type].control(adap->uld[type].handle, cmd);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1971 1972 1973 1974 1975 1976 1977
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
	else
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1978 1979 1980 1981 1982 1983 1984
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

1985
	spin_lock_irq(&q->db_lock);
1986 1987 1988 1989 1990
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
1991
		u32 val;
1992 1993 1994 1995 1996

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
1997 1998 1999 2000 2001

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
2002
		wmb();
2003 2004
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
2005 2006 2007
	}
out:
	q->db_disabled = 0;
2008 2009
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
2010 2011 2012
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
2013

2014 2015 2016 2017 2018 2019
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				sync_txq_pidx(adap, &txq->q);
			}
		}
	}
2031 2032 2033 2034
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2035 2036 2037 2038
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2039
	adap = container_of(work, struct adapter, db_drop_task);
2040

2041
	if (is_t4(adap->params.chip)) {
2042
		drain_db_fifo(adap, dbfifo_drain_delay);
2043
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2044
		drain_db_fifo(adap, dbfifo_drain_delay);
2045
		recover_all_queues(adap);
2046
		drain_db_fifo(adap, dbfifo_drain_delay);
2047
		enable_dbs(adap);
2048
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2049
	} else if (is_t5(adap->params.chip)) {
2050 2051 2052
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2053 2054 2055
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2056

2057
		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2058
					0, &bar2_qoffset, &bar2_qid);
2059 2060 2061 2062
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2063
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2064
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2065 2066 2067 2068 2069

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2070 2071
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2072 2073 2074 2075
}

void t4_db_full(struct adapter *adap)
{
2076
	if (is_t4(adap->params.chip)) {
2077 2078
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2079 2080
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2081
		queue_work(adap->workq, &adap->db_full_task);
2082
	}
2083 2084 2085 2086
}

void t4_db_dropped(struct adapter *adap)
{
2087 2088 2089 2090
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2091
	queue_work(adap->workq, &adap->db_drop_task);
2092 2093
}

2094 2095
void t4_register_netevent_notifier(void)
{
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
2108

2109
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2110
		if (adap->uld && adap->uld[i].handle)
2111 2112
			adap->uld[i].state_change(adap->uld[i].handle,
					     CXGB4_STATE_DETACH);
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2127 2128 2129
		if (adap->uld && adap->uld[i].handle)
			adap->uld[i].state_change(adap->uld[i].handle,
						  new_state);
2130 2131 2132
	mutex_unlock(&uld_mutex);
}

2133
#if IS_ENABLED(CONFIG_IPV6)
2134 2135
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2136
{
2137 2138 2139 2140
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2141
	struct adapter *adap;
2142
#endif
2143
	if (is_vlan_dev(event_dev))
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2164

2165 2166
	if (event_dev)
		parent = event_dev->dev.parent;
2167

2168
	if (parent && parent->driver == &cxgb4_driver.driver) {
2169 2170
		switch (event) {
		case NETDEV_UP:
2171
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2172 2173
			break;
		case NETDEV_DOWN:
2174
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2175 2176 2177 2178 2179
			break;
		default:
			break;
		}
	}
2180
	return NOTIFY_OK;
2181 2182
}

2183
static bool inet6addr_registered;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2201
			ret = cxgb4_update_root_dev_clip(dev);
2202 2203 2204 2205 2206 2207

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2208
#endif /* IS_ENABLED(CONFIG_IPV6) */
2209

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2222
	int err;
2223

2224
	mutex_lock(&uld_mutex);
2225 2226
	err = setup_sge_queues(adap);
	if (err)
2227
		goto rel_lock;
2228 2229 2230
	err = setup_rss(adap);
	if (err)
		goto freeq;
2231 2232

	if (adap->flags & USING_MSIX) {
2233
		name_msix_vecs(adap);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;
		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2246
				  adap->port[0]->name, adap);
2247 2248 2249
		if (err)
			goto irq_err;
	}
2250

2251 2252 2253
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2254
	adap->flags |= FULL_INIT_DONE;
2255 2256
	mutex_unlock(&uld_mutex);

2257
	notify_ulds(adap, CXGB4_STATE_UP);
2258
#if IS_ENABLED(CONFIG_IPV6)
2259
	update_clip(adap);
2260
#endif
2261 2262
	/* Initialize hash mac addr list*/
	INIT_LIST_HEAD(&adap->mac_hlist);
2263
	return err;
2264

2265 2266
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2267 2268
 freeq:
	t4_free_sge_resources(adap);
2269 2270 2271
 rel_lock:
	mutex_unlock(&uld_mutex);
	return err;
2272 2273 2274 2275 2276
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2277 2278
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2279
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2280
	adapter->tid_release_head = NULL;
2281

2282 2283 2284
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2296 2297
	netif_carrier_off(dev);

2298 2299 2300 2301 2302
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2303

2304 2305 2306 2307 2308 2309 2310
	/* It's possible that the basic port information could have
	 * changed since we first read it.
	 */
	err = t4_update_port_info(pi);
	if (err < 0)
		return err;

2311 2312 2313 2314
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2315 2316 2317 2318 2319 2320
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;
2321
	int ret;
2322 2323 2324

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2325 2326 2327 2328 2329 2330
	ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
#ifdef CONFIG_CHELSIO_T4_DCB
	cxgb4_dcb_reset(dev);
	dcb_tx_queue_prio_enable(dev, false);
#endif
	return ret;
2331 2332
}

2333
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2334 2335
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2336 2337 2338 2339 2340 2341 2342 2343 2344
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2345
	/* Adjust stid to correct filter index */
2346
	stid -= adap->tids.sftid_base;
2347 2348
	stid += adap->tids.nftids;

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2367
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2368 2369 2370 2371
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2372
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2373 2374 2375 2376
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2377

2378
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2379 2380 2381 2382
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2383 2384 2385 2386 2387 2388
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

2389 2390 2391 2392
	/* Save the actual tid. We need this to get the corresponding
	 * filter entry structure in filter_rpl.
	 */
	f->tid = stid + adap->tids.ftid_base;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2410 2411

	/* Adjust stid to correct filter index */
2412
	stid -= adap->tids.sftid_base;
2413 2414
	stid += adap->tids.nftids;

2415 2416 2417 2418
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

2419
	return delete_filter(adap, stid);
2420 2421 2422
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2423 2424
static void cxgb_get_stats(struct net_device *dev,
			   struct rtnl_link_stats64 *ns)
2425 2426 2427 2428 2429
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2430 2431 2432 2433
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2434
	spin_lock(&adapter->stats_lock);
2435 2436
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
2437
		return;
2438
	}
2439 2440
	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
				 &p->stats_base);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
2455
	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2475
	unsigned int mbox;
2476 2477
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
2478
	struct adapter *adapter = pi->adapter;
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2499
		mbox = pi->adapter->pf;
2500
		if (cmd == SIOCGMIIREG)
2501
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2502 2503
					 data->reg_num, &data->val_out);
		else
2504
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2505 2506
					 data->reg_num, data->val_in);
		break;
2507 2508 2509 2510 2511 2512 2513 2514 2515
	case SIOCGHWTSTAMP:
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
	case SIOCSHWTSTAMP:
		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
				   sizeof(pi->tstamp_config)))
			return -EFAULT;

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		if (!is_t4(adapter->params.chip)) {
			switch (pi->tstamp_config.tx_type) {
			case HWTSTAMP_TX_OFF:
			case HWTSTAMP_TX_ON:
				break;
			default:
				return -ERANGE;
			}

			switch (pi->tstamp_config.rx_filter) {
			case HWTSTAMP_FILTER_NONE:
				pi->rxtstamp = false;
				break;
			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
				cxgb4_ptprx_timestamping(pi, pi->port_id,
							 PTP_TS_L4);
				break;
			case HWTSTAMP_FILTER_PTP_V2_EVENT:
				cxgb4_ptprx_timestamping(pi, pi->port_id,
							 PTP_TS_L2_L4);
				break;
			case HWTSTAMP_FILTER_ALL:
			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
				pi->rxtstamp = true;
				break;
			default:
				pi->tstamp_config.rx_filter =
					HWTSTAMP_FILTER_NONE;
				return -ERANGE;
			}

			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
			    (pi->tstamp_config.rx_filter ==
				HWTSTAMP_FILTER_NONE)) {
				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
					pi->ptp_enable = false;
			}

			if (pi->tstamp_config.rx_filter !=
				HWTSTAMP_FILTER_NONE) {
				if (cxgb4_ptp_redirect_rx_packet(adapter,
								 pi) >= 0)
					pi->ptp_enable = true;
			}
		} else {
			/* For T4 Adapters */
			switch (pi->tstamp_config.rx_filter) {
			case HWTSTAMP_FILTER_NONE:
2568 2569
			pi->rxtstamp = false;
			break;
2570
			case HWTSTAMP_FILTER_ALL:
2571 2572
			pi->rxtstamp = true;
			break;
2573 2574 2575
			default:
			pi->tstamp_config.rx_filter =
			HWTSTAMP_FILTER_NONE;
2576
			return -ERANGE;
2577
			}
2578 2579 2580 2581
		}
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

2599
	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2600
			    -1, -1, -1, true);
2601 2602 2603 2604 2605
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

2606
#ifdef CONFIG_PCI_IOV
2607 2608 2609 2610 2611 2612 2613 2614 2615
static int dummy_open(struct net_device *dev)
{
	/* Turn carrier off since we don't have to transmit anything on this
	 * interface.
	 */
	netif_carrier_off(dev);
	return 0;
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/* Fill MAC address that will be assigned by the FW */
static void fill_vf_station_mac_addr(struct adapter *adap)
{
	unsigned int i;
	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
	int err;
	u8 *na;
	u16 a, b;

	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
	if (!err) {
		na = adap->params.vpd.na;
		for (i = 0; i < ETH_ALEN; i++)
			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
				      hex2val(na[2 * i + 1]));
		a = (hw_addr[0] << 8) | hw_addr[1];
		b = (hw_addr[1] << 8) | hw_addr[2];
		a ^= b;
		a |= 0x0200;    /* locally assigned Ethernet MAC address */
		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
		macaddr[0] = a >> 8;
		macaddr[1] = a & 0xff;

		for (i = 2; i < 5; i++)
			macaddr[i] = hw_addr[i + 1];

		for (i = 0; i < adap->num_vfs; i++) {
			macaddr[5] = adap->pf * 16 + i;
			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
		}
	}
}

2649 2650 2651 2652
static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2653
	int ret;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	/* verify MAC addr is valid */
	if (!is_valid_ether_addr(mac)) {
		dev_err(pi->adapter->pdev_dev,
			"Invalid Ethernet address %pM for VF %d\n",
			mac, vf);
		return -EINVAL;
	}

	dev_info(pi->adapter->pdev_dev,
		 "Setting MAC %pM on VF %d\n", mac, vf);
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
	if (!ret)
		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
	return ret;
}

static int cxgb_get_vf_config(struct net_device *dev,
			      int vf, struct ifla_vf_info *ivi)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (vf >= adap->num_vfs)
		return -EINVAL;
	ivi->vf = vf;
2680 2681
	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
	ivi->min_tx_rate = 0;
2682 2683
	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
	return 0;
2684
}
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

static int cxgb_get_phys_port_id(struct net_device *dev,
				 struct netdev_phys_item_id *ppid)
{
	struct port_info *pi = netdev_priv(dev);
	unsigned int phy_port_id;

	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
	ppid->id_len = sizeof(phy_port_id);
	memcpy(ppid->id, &phy_port_id, ppid->id_len);
	return 0;
}

2698 2699 2700 2701 2702
static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
			    int max_tx_rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2703
	unsigned int link_ok, speed, mtu;
2704 2705
	u32 fw_pfvf, fw_class;
	int class_id = vf;
2706
	int ret;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	u16 pktsize;

	if (vf >= adap->num_vfs)
		return -EINVAL;

	if (min_tx_rate) {
		dev_err(adap->pdev_dev,
			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
			min_tx_rate, vf);
		return -EINVAL;
	}
2718 2719

	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2720 2721
	if (ret != FW_SUCCESS) {
		dev_err(adap->pdev_dev,
2722
			"Failed to get link information for VF %d\n", vf);
2723 2724
		return -EINVAL;
	}
2725

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	if (!link_ok) {
		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
		return -EINVAL;
	}

	if (max_tx_rate > speed) {
		dev_err(adap->pdev_dev,
			"Max tx rate %d for VF %d can't be > link-speed %u",
			max_tx_rate, vf, speed);
		return -EINVAL;
	}
2737 2738

	pktsize = mtu;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
	pktsize = pktsize - sizeof(struct ethhdr) - 4;
	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
	/* configure Traffic Class for rate-limiting */
	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
			      SCHED_CLASS_LEVEL_CL_RL,
			      SCHED_CLASS_MODE_CLASS,
			      SCHED_CLASS_RATEUNIT_BITS,
			      SCHED_CLASS_RATEMODE_ABS,
2749
			      pi->tx_chan, class_id, 0,
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
			      max_tx_rate * 1000, 0, pktsize);
	if (ret) {
		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
			ret);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev,
		 "Class %d with MSS %u configured with rate %u\n",
		 class_id, pktsize, max_tx_rate);

	/* bind VF to configured Traffic Class */
	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
	fw_class = class_id;
	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
			    &fw_class);
	if (ret) {
		dev_err(adap->pdev_dev,
			"Err %d in binding VF %d to Traffic Class %d\n",
			ret, vf, class_id);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
		 adap->pf, vf, class_id);
	adap->vfinfo[vf].tx_rate = max_tx_rate;
	return 0;
}

2778 2779
#endif

2780 2781 2782 2783 2784 2785 2786
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2787
		return -EADDRNOTAVAIL;
2788

2789
	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2790
			    pi->xact_addr_filt, addr->sa_data, true, true);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sched_class *e;
	struct ch_sched_params p;
	struct ch_sched_queue qe;
	u32 req_rate;
	int err = 0;

	if (!can_sched(dev))
		return -ENOTSUPP;

	if (index < 0 || index > pi->nqsets - 1)
		return -EINVAL;

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to rate limit on queue %d. Link Down?\n",
			index);
		return -EINVAL;
	}

	/* Convert from Mbps to Kbps */
	req_rate = rate << 10;

	/* Max rate is 10 Gbps */
	if (req_rate >= SCHED_MAX_RATE_KBPS) {
		dev_err(adap->pdev_dev,
			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
			rate, SCHED_MAX_RATE_KBPS);
		return -ERANGE;
	}

	/* First unbind the queue from any existing class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = SCHED_CLS_NONE;

	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err) {
		dev_err(adap->pdev_dev,
			"Unbinding Queue %d on port %d fail. Err: %d\n",
			index, pi->port_id, err);
		return err;
	}

	/* Queue already unbound */
	if (!req_rate)
		return 0;

	/* Fetch any available unused or matching scheduling class */
	memset(&p, 0, sizeof(p));
	p.type = SCHED_CLASS_TYPE_PACKET;
	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
	p.u.params.channel  = pi->tx_chan;
	p.u.params.class    = SCHED_CLS_NONE;
	p.u.params.minrate  = 0;
	p.u.params.maxrate  = req_rate;
	p.u.params.weight   = 0;
	p.u.params.pktsize  = dev->mtu;

	e = cxgb4_sched_class_alloc(dev, &p);
	if (!e)
		return -ENOMEM;

	/* Bind the queue to a scheduling class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = e->idx;

	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err)
		dev_err(adap->pdev_dev,
			"Queue rate limiting failed. Err: %d\n", err);
	return err;
}

2897 2898 2899
static int cxgb_setup_tc_flower(struct net_device *dev,
				struct tc_cls_flower_offload *cls_flower)
{
2900
	if (cls_flower->common.chain_index)
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
		return -EOPNOTSUPP;

	switch (cls_flower->command) {
	case TC_CLSFLOWER_REPLACE:
		return cxgb4_tc_flower_replace(dev, cls_flower);
	case TC_CLSFLOWER_DESTROY:
		return cxgb4_tc_flower_destroy(dev, cls_flower);
	case TC_CLSFLOWER_STATS:
		return cxgb4_tc_flower_stats(dev, cls_flower);
	default:
		return -EOPNOTSUPP;
	}
}

2915 2916 2917
static int cxgb_setup_tc_cls_u32(struct net_device *dev,
				 struct tc_cls_u32_offload *cls_u32)
{
2918
	if (cls_u32->common.chain_index)
2919 2920 2921 2922 2923
		return -EOPNOTSUPP;

	switch (cls_u32->command) {
	case TC_CLSU32_NEW_KNODE:
	case TC_CLSU32_REPLACE_KNODE:
2924
		return cxgb4_config_knode(dev, cls_u32);
2925
	case TC_CLSU32_DELETE_KNODE:
2926
		return cxgb4_delete_knode(dev, cls_u32);
2927 2928 2929 2930 2931
	default:
		return -EOPNOTSUPP;
	}
}

2932 2933
static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
				  void *cb_priv)
2934
{
2935
	struct net_device *dev = cb_priv;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	struct port_info *pi = netdev2pinfo(dev);
	struct adapter *adap = netdev2adap(dev);

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to setup tc on port %d. Link Down?\n",
			pi->port_id);
		return -EINVAL;
	}

2946 2947
	switch (type) {
	case TC_SETUP_CLSU32:
2948
		return cxgb_setup_tc_cls_u32(dev, type_data);
2949 2950
	case TC_SETUP_CLSFLOWER:
		return cxgb_setup_tc_flower(dev, type_data);
2951 2952
	default:
		return -EOPNOTSUPP;
2953 2954 2955
	}
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
static int cxgb_setup_tc_block(struct net_device *dev,
			       struct tc_block_offload *f)
{
	struct port_info *pi = netdev2pinfo(dev);

	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
		return -EOPNOTSUPP;

	switch (f->command) {
	case TC_BLOCK_BIND:
		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
					     pi, dev);
	case TC_BLOCK_UNBIND:
		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
			 void *type_data)
{
	switch (type) {
	case TC_SETUP_BLOCK:
		return cxgb_setup_tc_block(dev, type_data);
	default:
		return -EOPNOTSUPP;
	}
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static netdev_features_t cxgb_fix_features(struct net_device *dev,
					   netdev_features_t features)
{
	/* Disable GRO, if RX_CSUM is disabled */
	if (!(features & NETIF_F_RXCSUM))
		features &= ~NETIF_F_GRO;

	return features;
}

2997 2998 2999 3000
static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
3001
	.ndo_select_queue     =	cxgb_select_queue,
3002
	.ndo_get_stats64      = cxgb_get_stats,
3003 3004
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
3005
	.ndo_set_features     = cxgb_set_features,
3006 3007 3008 3009 3010 3011
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
3012 3013 3014 3015
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
3016
	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3017
	.ndo_setup_tc         = cxgb_setup_tc,
3018
	.ndo_fix_features     = cxgb_fix_features,
3019 3020
};

3021
#ifdef CONFIG_PCI_IOV
3022 3023
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
	.ndo_open             = dummy_open,
3024
	.ndo_set_vf_mac       = cxgb_set_vf_mac,
3025
	.ndo_get_vf_config    = cxgb_get_vf_config,
3026
	.ndo_set_vf_rate      = cxgb_set_vf_rate,
3027
	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
3028
};
3029
#endif
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = netdev2adap(dev);

	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
	strlcpy(info->version, cxgb4_driver_version,
		sizeof(info->version));
	strlcpy(info->bus_info, pci_name(adapter->pdev),
		sizeof(info->bus_info));
}

static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
	.get_drvinfo       = get_drvinfo,
};

3046 3047
void t4_fatal_err(struct adapter *adap)
{
3048 3049
	int port;

3050 3051 3052
	if (pci_channel_offline(adap->pdev))
		return;

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	/* Disable the SGE since ULDs are going to free resources that
	 * could be exposed to the adapter.  RDMA MWs for example...
	 */
	t4_shutdown_adapter(adap);
	for_each_port(adap, port) {
		struct net_device *dev = adap->port[port];

		/* If we get here in very early initialization the network
		 * devices may not have been set up yet.
		 */
		if (!dev)
			continue;

		netif_tx_stop_all_queues(dev);
		netif_carrier_off(dev);
	}
3069 3070 3071 3072 3073
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
3074
	u32 nic_win_base = t4_get_util_window(adap);
3075

3076
	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3077 3078 3079 3080
}

static void setup_memwin_rdma(struct adapter *adap)
{
3081
	if (adap->vres.ocq.size) {
3082 3083
		u32 start;
		unsigned int sz_kb;
3084

3085 3086 3087
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3088 3089
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
3090 3091
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3092
		t4_write_reg(adap,
3093
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3094 3095
			     adap->vres.ocq.start);
		t4_read_reg(adap,
3096
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3097
	}
3098 3099
}

3100 3101 3102 3103 3104 3105 3106
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
3107 3108
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3109
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3110
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3111 3112 3113
	if (ret < 0)
		return ret;

3114 3115
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3116
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3117 3118 3119
	if (ret < 0)
		return ret;

3120
	ret = t4_config_glbl_rss(adap, adap->pf,
3121
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3122 3123
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3124 3125 3126
	if (ret < 0)
		return ret;

3127
	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3128 3129
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3130 3131 3132 3133 3134 3135
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3136
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3137
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3138 3139 3140
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3141

3142 3143
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3144 3145
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3146 3147 3148

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3149
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3150
			  &v, 1, TP_TX_SCHED_HDR_A);
3151
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3152
			  &v, 1, TP_TX_SCHED_FIFO_A);
3153
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3154
			  &v, 1, TP_TX_SCHED_PCMD_A);
3155 3156 3157

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3168 3169
	}

3170
	/* get basic stuff going */
3171
	return t4_early_init(adap, adap->pf);
3172 3173
}

3174 3175 3176 3177 3178
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3213 3214 3215
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3216 3217 3218 3219 3220

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3221 3222
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3223 3224 3225 3226

	return 0;
}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
 * unto themselves and they contain their own firmware to perform their
 * tasks ...
 */
static int phy_aq1202_version(const u8 *phy_fw_data,
			      size_t phy_fw_size)
{
	int offset;

	/* At offset 0x8 you're looking for the primary image's
	 * starting offset which is 3 Bytes wide
	 *
	 * At offset 0xa of the primary image, you look for the offset
	 * of the DRAM segment which is 3 Bytes wide.
	 *
	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
	 * wide
	 */
	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
	#define le24(__p) (le16(__p) | ((__p)[2] << 16))

	offset = le24(phy_fw_data + 0x8) << 12;
	offset = le24(phy_fw_data + offset + 0xa);
	return be16(phy_fw_data + offset + 0x27e);

	#undef be16
	#undef le16
	#undef le24
}

static struct info_10gbt_phy_fw {
	unsigned int phy_fw_id;		/* PCI Device ID */
	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
	int phy_flash;			/* Has FLASH for PHY Firmware */
} phy_info_array[] = {
	{
		PHY_AQ1202_DEVICEID,
		PHY_AQ1202_FIRMWARE,
		phy_aq1202_version,
		1,
	},
	{
		PHY_BCM84834_DEVICEID,
		PHY_BCM84834_FIRMWARE,
		NULL,
		0,
	},
	{ 0, NULL, NULL },
};

static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
		if (phy_info_array[i].phy_fw_id == devid)
			return &phy_info_array[i];
	}
	return NULL;
}

/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
 * we return a negative error number.  If we transfer new firmware we return 1
 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
 */
static int adap_init0_phy(struct adapter *adap)
{
	const struct firmware *phyf;
	int ret;
	struct info_10gbt_phy_fw *phy_info;

	/* Use the device ID to determine which PHY file to flash.
	 */
	phy_info = find_phy_info(adap->pdev->device);
	if (!phy_info) {
		dev_warn(adap->pdev_dev,
			 "No PHY Firmware file found for this PHY\n");
		return -EOPNOTSUPP;
	}

	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
	 * use that. The adapter firmware provides us with a memory buffer
	 * where we can load a PHY firmware file from the host if we want to
	 * override the PHY firmware File in flash.
	 */
	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
				      adap->pdev_dev);
	if (ret < 0) {
		/* For adapters without FLASH attached to PHY for their
		 * firmware, it's obviously a fatal error if we can't get the
		 * firmware to the adapter.  For adapters with PHY firmware
		 * FLASH storage, it's worth a warning if we can't find the
		 * PHY Firmware but we'll neuter the error ...
		 */
		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
			"/lib/firmware/%s, error %d\n",
			phy_info->phy_fw_file, -ret);
		if (phy_info->phy_flash) {
			int cur_phy_fw_ver = 0;

			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
			ret = 0;
		}

		return ret;
	}

	/* Load PHY Firmware onto adapter.
	 */
	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
			     phy_info->phy_fw_version,
			     (u8 *)phyf->data, phyf->size);
	if (ret < 0)
		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
			-ret);
	else if (ret > 0) {
		int new_phy_fw_ver = 0;

		if (phy_info->phy_fw_version)
			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
								  phyf->size);
		dev_info(adap->pdev_dev, "Successfully transferred PHY "
			 "Firmware /lib/firmware/%s, version %#x\n",
			 phy_info->phy_fw_file, new_phy_fw_ver);
	}

	release_firmware(phyf);

	return ret;
}

3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3372 3373
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3374
	char *fw_config_file, fw_config_file_path[256];
3375
	char *config_name = NULL;
3376 3377 3378 3379 3380 3381

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3382
				  PIORSTMODE_F | PIORST_F);
3383 3384 3385 3386
		if (ret < 0)
			goto bye;
	}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	/* If this is a 10Gb/s-BT adapter make sure the chip-external
	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
	 * to be performed after any global adapter RESET above since some
	 * PHYs only have local RAM copies of the PHY firmware.
	 */
	if (is_10gbt_device(adapter->pdev->device)) {
		ret = adap_init0_phy(adapter);
		if (ret < 0)
			goto bye;
	}
3397 3398 3399 3400 3401
	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3402
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3403
	case CHELSIO_T4:
3404
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3405 3406 3407 3408
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
3409 3410 3411
	case CHELSIO_T6:
		fw_config_file = FW6_CFNAME;
		break;
S
Santosh Rastapur 已提交
3412 3413 3414 3415 3416 3417 3418 3419
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3420
	if (ret < 0) {
3421
		config_name = "On FLASH";
3422 3423 3424 3425 3426
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3427 3428 3429 3430
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3431 3432 3433
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3434 3435
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3436
			ret = t4_query_params(adapter, adapter->mbox,
3437
					      adapter->pf, 0, 1, params, val);
3438 3439
			if (ret == 0) {
				/*
3440
				 * For t4_memory_rw() below addresses and
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3453 3454
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3455

3456 3457 3458
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3469 3470 3471 3472
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3473
				}
3474
				spin_unlock(&adapter->win0_lock);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3491 3492 3493
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3494
	caps_cmd.cfvalid_to_len16 =
3495 3496 3497
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3498 3499 3500
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3511 3512 3513
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3514 3515 3516 3517 3518 3519 3520
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3536 3537 3538
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3539
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3561 3562
	/* Emit Firmware Configuration File information and return
	 * successfully.
3563 3564
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3565 3566
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3567 3568 3569 3570 3571 3572 3573 3574
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3575 3576 3577
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3578 3579 3580
	return ret;
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	}, {
		.chip = CHELSIO_T6,
		.fs_name = FW6_CFNAME,
		.fw_mod_name = FW6_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T6,
			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
			.intfver_nic = FW_INTFVER(T6, NIC),
			.intfver_vnic = FW_INTFVER(T6, VNIC),
			.intfver_ofld = FW_INTFVER(T6, OFLD),
			.intfver_ri = FW_INTFVER(T6, RI),
			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
			.intfver_fcoe = FW_INTFVER(T6, FCOE),
		},
3624
	}
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3648
	struct fw_caps_config_cmd caps_cmd;
3649
	int reset = 1;
3650

3651 3652 3653 3654 3655 3656 3657
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3658
	/* Contact FW, advertising Master capability */
3659 3660
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3661 3662 3663 3664 3665
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3666 3667
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3668

3669 3670 3671 3672 3673 3674 3675
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3676

3677
	t4_get_version_info(adap);
3678 3679
	ret = t4_check_fw_version(adap);
	/* If firmware is too old (not supported by driver) force an update. */
3680
	if (ret)
3681
		state = DEV_STATE_UNINIT;
3682
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3698
		}
3699 3700 3701 3702

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
3703
		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3722
		release_firmware(fw);
3723
		kvfree(card_fw);
3724

3725
		if (ret < 0)
3726
			goto bye;
3727
	}
3728

3729 3730 3731 3732 3733 3734 3735
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
3736
	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3737 3738 3739
	if (ret < 0)
		goto bye;

3740
	/*
3741 3742 3743
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3744 3745
	 */
	v =
3746 3747
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3748
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3749 3750 3751
	if (ret < 0)
		goto bye;

3752 3753 3754
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3755 3756
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3757 3758 3759 3760 3761 3762 3763 3764
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3765 3766 3767

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3768
		 */
3769 3770
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3771
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3772
				      params, val);
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3792 3793
		}
		if (ret < 0) {
3794 3795
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3796 3797 3798 3799
			goto bye;
		}
	}

3800 3801 3802
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3803
	 */
3804 3805 3806
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3807

3808 3809 3810
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3811 3812 3813 3814
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3815 3816
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3817

3818
#define FW_PARAM_PFVF(param) \
3819 3820 3821 3822
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3823

3824
	params[0] = FW_PARAM_PFVF(EQ_START);
3825 3826 3827 3828
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3829
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3830
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3831 3832
	if (ret < 0)
		goto bye;
3833 3834 3835
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3836 3837
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3838
	adap->sge.ingr_start = val[5];
3839

3840 3841 3842 3843 3844 3845 3846 3847
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3848
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
3869
	 * ie starving_fl, txq_maperr and blocked_fl.
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3885 3886 3887 3888 3889 3890 3891 3892 3893
#ifdef CONFIG_DEBUG_FS
	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.blocked_fl) {
		ret = -ENOMEM;
		goto bye;
	}
#endif

3894 3895
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
3896
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3897 3898 3899 3900 3901
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3902 3903 3904 3905 3906 3907
	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
	 * Classes supported by the hardware/firmware so we hard code it here
	 * for now.
	 */
	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;

3908 3909 3910
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3911
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3912 3913 3914 3915 3916 3917 3918 3919 3920
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3921 3922 3923 3924 3925 3926 3927
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
3928
	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3929

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3940
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3941 3942 3943 3944
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3945 3946 3947 3948 3949 3950
	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
			      1, params, val);
	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	/* See if FW supports FW_FILTER2 work request */
	if (is_t4(adap->params.chip)) {
		adap->params.filter2_wr_support = 0;
	} else {
		params[0] = FW_PARAM_DEV(FILTER2_WR);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
				      1, params, val);
		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
	}

3961 3962 3963 3964 3965
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3966 3967
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3968
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3969 3970 3971 3972 3973
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3974 3975
	if (caps_cmd.ofldcaps ||
	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
3976 3977 3978 3979 3980 3981 3982
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3983
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3984
				      params, val);
3985 3986 3987 3988 3989 3990
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3991
		/*
3992
		 * Setup server filter region. Divide the available filter
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
4008 4009 4010
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
4011

4012 4013 4014 4015 4016 4017 4018
		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
			if (init_hash_filter(adap) < 0)
				goto bye;
		} else {
			adap->params.offload = 1;
			adap->num_ofld_uld += 1;
		}
4019
	}
4020
	if (caps_cmd.rdmacaps) {
4021 4022 4023 4024 4025 4026
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
4027
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4028
				      params, val);
4029 4030 4031 4032 4033 4034 4035 4036
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
4037 4038 4039 4040 4041

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
4042 4043
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
4044
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4045
				      val);
4046 4047 4048 4049 4050 4051
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
4052 4053
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
4054 4055 4056

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4057
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4058
				      val);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
4071
		adap->num_ofld_uld += 2;
4072
	}
4073
	if (caps_cmd.iscsicaps) {
4074 4075
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
4076
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4077
				      params, val);
4078 4079 4080 4081
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
4082 4083
		/* LIO target and cxgb4i initiaitor */
		adap->num_ofld_uld += 2;
4084
	}
4085 4086
	if (caps_cmd.cryptocaps) {
		/* Should query params here...TODO */
H
Harsh Jain 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095
		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
				      params, val);
		if (ret < 0) {
			if (ret != -EINVAL)
				goto bye;
		} else {
			adap->vres.ncrypto_fc = val[0];
		}
4096 4097 4098
		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
		adap->num_uld += 1;
	}
4099 4100 4101
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

4102 4103 4104 4105
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
4106
	 */
4107
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
4133

4134 4135 4136
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
4137
	t4_init_sge_params(adap);
4138
	adap->flags |= FW_OK;
4139
	t4_init_tp_params(adap, true);
4140 4141 4142
	return 0;

	/*
4143 4144 4145
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
4146
	 */
4147
bye:
4148 4149 4150 4151
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
4152 4153 4154
#ifdef CONFIG_DEBUG_FS
	kfree(adap->sge.blocked_fl);
#endif
4155 4156
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4157 4158 4159
	return ret;
}

D
Dimitris Michailidis 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4174
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4175 4176
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4177 4178 4179 4180
		if (dev) {
			netif_device_detach(dev);
			netif_carrier_off(dev);
		}
D
Dimitris Michailidis 已提交
4181
	}
4182
	spin_unlock(&adap->stats_lock);
4183
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4184 4185 4186
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4187 4188 4189 4190
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4207 4208 4209 4210 4211 4212 4213
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4214 4215 4216 4217 4218 4219 4220
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4221
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4222
		return PCI_ERS_RESULT_DISCONNECT;
4223
	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4224 4225 4226 4227 4228 4229 4230 4231
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4232
		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4233
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4234 4235 4236 4237 4238 4239 4240 4241
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4242
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4259 4260 4261 4262 4263 4264
		if (dev) {
			if (netif_running(dev)) {
				link_start(dev);
				cxgb_set_rxmode(dev);
			}
			netif_device_attach(dev);
D
Dimitris Michailidis 已提交
4265 4266 4267 4268 4269
		}
	}
	rtnl_unlock();
}

4270
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4271 4272 4273 4274 4275
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4276 4277 4278
/* Return true if the Link Configuration supports "High Speeds" (those greater
 * than 1Gb/s).
 */
4279
static inline bool is_x_10g_port(const struct link_config *lc)
4280
{
4281 4282
	unsigned int speeds, high_speeds;

4283 4284 4285
	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
	high_speeds = speeds &
			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4286 4287

	return high_speeds != 0;
4288 4289 4290 4291 4292 4293 4294
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4295
static void cfg_queues(struct adapter *adap)
4296 4297
{
	struct sge *s = &adap->sge;
4298
	int i = 0, n10g = 0, qidx = 0;
4299 4300 4301
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4302

4303 4304
	/* Reduce memory usage in kdump environment, disable all offload.
	 */
4305
	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4306
		adap->params.offload = 0;
4307 4308 4309
		adap->params.crypto = 0;
	}

4310
	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4321

4322 4323 4324 4325
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4326
		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4327 4328 4329
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4330 4331 4332 4333 4334 4335
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4336 4337
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4338

4339 4340 4341
	if (is_kdump_kernel())
		q10g = 1;

4342 4343 4344 4345
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4346
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4347 4348
		qidx += pi->nqsets;
	}
4349
#endif /* !CONFIG_CHELSIO_T4_DCB */
4350 4351 4352 4353

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

4354
	if (is_uld(adap)) {
4355 4356 4357 4358 4359 4360
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
4361
			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4362 4363 4364 4365
			s->ofldqsets = roundup(i, adap->params.nports);
		} else {
			s->ofldqsets = adap->params.nports;
		}
4366 4367 4368 4369 4370
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4371
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4372 4373 4374 4375 4376 4377 4378 4379 4380
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

4381 4382 4383
	if (!is_t4(adap->params.chip))
		s->ptptxq.q.size = 8;

4384
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4385
	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4386 4387 4388 4389 4390 4391
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4392
static void reduce_ethqs(struct adapter *adap, int n)
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

4416 4417 4418
static int get_msix_info(struct adapter *adap)
{
	struct uld_msix_info *msix_info;
4419 4420 4421 4422 4423 4424 4425 4426 4427
	unsigned int max_ingq = 0;

	if (is_offload(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
	if (is_pci_uld(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_uld;

	if (!max_ingq)
		goto out;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
	if (!msix_info)
		return -ENOMEM;

	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
						 sizeof(long), GFP_KERNEL);
	if (!adap->msix_bmap_ulds.msix_bmap) {
		kfree(msix_info);
		return -ENOMEM;
	}
	spin_lock_init(&adap->msix_bmap_ulds.lock);
	adap->msix_info_ulds = msix_info;
4441
out:
4442 4443 4444 4445 4446
	return 0;
}

static void free_msix_info(struct adapter *adap)
{
4447
	if (!(adap->num_uld && adap->num_ofld_uld))
4448 4449 4450 4451 4452 4453
		return;

	kfree(adap->msix_info_ulds);
	kfree(adap->msix_bmap_ulds.msix_bmap);
}

4454 4455 4456
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4457
static int enable_msix(struct adapter *adap)
4458
{
4459 4460
	int ofld_need = 0, uld_need = 0;
	int i, j, want, need, allocated;
4461 4462
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4463
	struct msix_entry *entries;
4464
	int max_ingq = MAX_INGQ;
4465

4466 4467 4468 4469
	if (is_pci_uld(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
	if (is_offload(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4470
	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4471 4472 4473
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4474

4475
	/* map for msix */
4476 4477
	if (get_msix_info(adap)) {
		adap->params.offload = 0;
4478
		adap->params.crypto = 0;
4479
	}
4480 4481

	for (i = 0; i < max_ingq + 1; ++i)
4482 4483 4484 4485
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4486 4487
		want += adap->num_ofld_uld * s->ofldqsets;
		ofld_need = adap->num_ofld_uld * nchan;
4488
	}
4489
	if (is_pci_uld(adap)) {
4490 4491
		want += adap->num_uld * s->ofldqsets;
		uld_need = adap->num_uld * nchan;
4492
	}
4493 4494 4495 4496
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
4497
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4498
#else
4499
	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4500
#endif
4501 4502 4503 4504 4505 4506 4507
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4508

4509
	/* Distribute available vectors to the various queue groups.
4510 4511 4512
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4513
	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4514 4515 4516 4517 4518
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
4519
	if (is_uld(adap)) {
4520 4521 4522
		if (allocated < want)
			s->nqs_per_uld = nchan;
		else
4523
			s->nqs_per_uld = s->ofldqsets;
4524 4525
	}

4526
	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4527
		adap->msix_info[i].vec = entries[i].vector;
4528 4529
	if (is_uld(adap)) {
		for (j = 0 ; i < allocated; ++i, j++) {
4530
			adap->msix_info_ulds[j].vec = entries[i].vector;
4531 4532
			adap->msix_info_ulds[j].idx = i;
		}
4533 4534
		adap->msix_bmap_ulds.mapsize = j;
	}
4535
	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4536 4537
		 "nic %d per uld %d\n",
		 allocated, s->max_ethqsets, s->nqs_per_uld);
4538

4539
	kfree(entries);
4540
	return 0;
4541 4542 4543 4544
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4545
static int init_rss(struct adapter *adap)
4546
{
4547 4548 4549 4550 4551 4552
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
					enum pci_bus_speed *speed,
					enum pcie_link_width *width)
{
	u32 lnkcap1, lnkcap2;
	int err1, err2;

#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */

	*speed = PCI_SPEED_UNKNOWN;
	*width = PCIE_LNK_WIDTH_UNKNOWN;

	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
					  &lnkcap1);
	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
					  &lnkcap2);
	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
			*speed = PCIE_SPEED_8_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
			*speed = PCIE_SPEED_5_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
			*speed = PCIE_SPEED_2_5GT;
	}
	if (!err1) {
		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
		if (!lnkcap2) { /* pre-r3.0 */
			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
				*speed = PCIE_SPEED_5_0GT;
			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
				*speed = PCIE_SPEED_2_5GT;
		}
	}

	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
		return err1 ? err1 : err2 ? err2 : -EINVAL;
	return 0;
}

static void cxgb4_check_pcie_caps(struct adapter *adap)
{
	enum pcie_link_width width, width_cap;
	enum pci_bus_speed speed, speed_cap;

#define PCIE_SPEED_STR(speed) \
	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
	 "Unknown")

	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCIe device BW capabilities\n");
		return;
	}

	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCI Express bandwidth.\n");
		return;
	}

	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
		 width, width_cap);
	if (speed < speed_cap || width < width_cap)
		dev_info(adap->pdev_dev,
			 "A slot with more lanes and/or higher speed is "
			 "suggested for optimal performance.\n");
}

4637 4638 4639
/* Dump basic information about the adapter */
static void print_adapter_info(struct adapter *adapter)
{
4640 4641
	/* Hardware/Firmware/etc. Version/Revision IDs */
	t4_dump_version_info(adapter);
4642 4643 4644 4645 4646 4647 4648 4649 4650

	/* Software/Hardware configuration */
	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
		 is_offload(adapter) ? "R" : "",
		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
		  (adapter->flags & USING_MSI) ? "MSI" : ""),
		 is_offload(adapter) ? "Offload" : "non-Offload");
}

B
Bill Pemberton 已提交
4651
static void print_port_info(const struct net_device *dev)
4652 4653
{
	char buf[80];
4654
	char *bufp = buf;
4655
	const char *spd = "";
4656 4657
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4658 4659 4660 4661 4662

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4663 4664
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4665

4666
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4667
		bufp += sprintf(bufp, "100M/");
4668
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4669
		bufp += sprintf(bufp, "1G/");
4670
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4671
		bufp += sprintf(bufp, "10G/");
4672
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4673
		bufp += sprintf(bufp, "25G/");
4674
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4675
		bufp += sprintf(bufp, "40G/");
4676 4677 4678
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
		bufp += sprintf(bufp, "50G/");
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4679
		bufp += sprintf(bufp, "100G/");
4680 4681 4682 4683
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
		bufp += sprintf(bufp, "200G/");
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
		bufp += sprintf(bufp, "400G/");
4684 4685
	if (bufp != buf)
		--bufp;
4686
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4687

4688 4689
	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
		    dev->name, adap->params.vpd.id, adap->name, buf);
4690 4691
}

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

4703
	kvfree(adapter->smt);
4704
	kvfree(adapter->l2t);
4705
	t4_cleanup_sched(adapter);
4706
	kvfree(adapter->tids.tid_tab);
4707
	cxgb4_cleanup_tc_flower(adapter);
4708
	cxgb4_cleanup_tc_u32(adapter);
4709 4710 4711 4712
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4713 4714 4715
#ifdef CONFIG_DEBUG_FS
	kfree(adapter->sge.blocked_fl);
#endif
4716 4717 4718
	disable_msi(adapter);

	for_each_port(adapter, i)
4719
		if (adapter->port[i]) {
4720 4721 4722 4723 4724
			struct port_info *pi = adap2pinfo(adapter, i);

			if (pi->viid != 0)
				t4_free_vi(adapter, adapter->mbox, adapter->pf,
					   0, pi->viid);
4725
			kfree(adap2pinfo(adapter, i)->rss);
4726
			free_netdev(adapter->port[i]);
4727
		}
4728
	if (adapter->flags & FW_OK)
4729
		t4_fw_bye(adapter, adapter->pf);
4730 4731
}

4732
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4733
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4734
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4735
#define SEGMENT_SIZE 128
4736

4737 4738 4739 4740 4741 4742
static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
{
	u16 device_id;

	/* Retrieve adapter's device ID */
	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4743 4744

	switch (device_id >> 12) {
4745
	case CHELSIO_T4:
4746
		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4747
	case CHELSIO_T5:
4748
		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4749
	case CHELSIO_T6:
4750
		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4751 4752 4753 4754
	default:
		dev_err(&pdev->dev, "Device %d is not supported\n",
			device_id);
	}
4755
	return -EINVAL;
4756 4757
}

4758
#ifdef CONFIG_PCI_IOV
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
static void dummy_setup(struct net_device *dev)
{
	dev->type = ARPHRD_NONE;
	dev->mtu = 0;
	dev->hard_header_len = 0;
	dev->addr_len = 0;
	dev->tx_queue_len = 0;
	dev->flags |= IFF_NOARP;
	dev->priv_flags |= IFF_NO_QUEUE;

	/* Initialize the device structure. */
	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4772
	dev->needs_free_netdev = true;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
}

static int config_mgmt_dev(struct pci_dev *pdev)
{
	struct adapter *adap = pci_get_drvdata(pdev);
	struct net_device *netdev;
	struct port_info *pi;
	char name[IFNAMSIZ];
	int err;

	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4784 4785
	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
			      dummy_setup);
4786 4787 4788 4789 4790
	if (!netdev)
		return -ENOMEM;

	pi = netdev_priv(netdev);
	pi->adapter = adap;
4791
	pi->tx_chan = adap->pf % adap->params.nports;
4792 4793 4794
	SET_NETDEV_DEV(netdev, &pdev->dev);

	adap->port[0] = netdev;
4795
	pi->port_id = 0;
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

	err = register_netdev(adap->port[0]);
	if (err) {
		pr_info("Unable to register VF mgmt netdev %s\n", name);
		free_netdev(adap->port[0]);
		adap->port[0] = NULL;
		return err;
	}
	return 0;
}

4807 4808
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
{
4809
	struct adapter *adap = pci_get_drvdata(pdev);
4810 4811 4812 4813
	int err = 0;
	int current_vfs = pci_num_vf(pdev);
	u32 pcie_fw;

4814
	pcie_fw = readl(adap->regs + PCIE_FW_A);
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	/* Check if cxgb4 is the MASTER and fw is initialized */
	if (!(pcie_fw & PCIE_FW_INIT_F) ||
	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
		dev_warn(&pdev->dev,
			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
		return -EOPNOTSUPP;
	}

	/* If any of the VF's is already assigned to Guest OS, then
	 * SRIOV for the same cannot be modified
	 */
	if (current_vfs && pci_vfs_assigned(pdev)) {
		dev_err(&pdev->dev,
			"Cannot modify SR-IOV while VFs are assigned\n");
		num_vfs = current_vfs;
		return num_vfs;
	}

	/* Disable SRIOV when zero is passed.
	 * One needs to disable SRIOV before modifying it, else
	 * stack throws the below warning:
	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
	 */
	if (!num_vfs) {
		pci_disable_sriov(pdev);
4841
		if (adap->port[0]) {
4842
			unregister_netdev(adap->port[0]);
4843 4844
			adap->port[0] = NULL;
		}
4845 4846 4847 4848
		/* free VF resources */
		kfree(adap->vfinfo);
		adap->vfinfo = NULL;
		adap->num_vfs = 0;
4849 4850 4851 4852 4853 4854 4855
		return num_vfs;
	}

	if (num_vfs != current_vfs) {
		err = pci_enable_sriov(pdev, num_vfs);
		if (err)
			return err;
4856

4857
		adap->num_vfs = num_vfs;
4858 4859 4860
		err = config_mgmt_dev(pdev);
		if (err)
			return err;
4861
	}
4862 4863 4864 4865 4866

	adap->vfinfo = kcalloc(adap->num_vfs,
			       sizeof(struct vf_info), GFP_KERNEL);
	if (adap->vfinfo)
		fill_vf_station_mac_addr(adap);
4867 4868 4869 4870
	return num_vfs;
}
#endif

4871
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4872
{
4873
	int func, i, err, s_qpp, qpp, num_seg;
4874
	struct port_info *pi;
4875
	bool highdma = false;
4876
	struct adapter *adapter = NULL;
4877
	struct net_device *netdev;
4878
	void __iomem *regs;
4879 4880
	u32 whoami, pl_rev;
	enum chip_type chip;
4881
	static int adap_idx = 1;
A
Arnd Bergmann 已提交
4882
#ifdef CONFIG_PCI_IOV
4883
	u32 v, port_vec;
A
Arnd Bergmann 已提交
4884
#endif
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4901 4902 4903 4904 4905 4906 4907
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4908 4909 4910 4911
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4912
	/* We control everything through one PF */
4913 4914 4915 4916 4917
	whoami = readl(regs + PL_WHOAMI_A);
	pl_rev = REV_G(readl(regs + PL_REV_A));
	chip = get_chip_type(pdev, pl_rev);
	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4918
	if (func != ent->driver_data) {
4919
#ifndef CONFIG_PCI_IOV
4920
		iounmap(regs);
4921
#endif
4922 4923 4924 4925 4926
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4927
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4928
		highdma = true;
4929 4930 4931 4932
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4933
			goto out_unmap_bar0;
4934 4935 4936 4937 4938
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4939
			goto out_unmap_bar0;
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
		}
	}

	pci_enable_pcie_error_reporting(pdev);
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4950
		goto out_unmap_bar0;
4951
	}
4952
	adap_idx++;
4953

4954 4955 4956 4957 4958 4959
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
		goto out_free_adapter;
	}
	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;

4970 4971 4972
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4973
	adapter->regs = regs;
4974 4975
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4976
	adapter->name = pci_name(pdev);
4977
	adapter->mbox = func;
4978
	adapter->pf = func;
4979
	adapter->msg_enable = DFLT_MSG_ENABLE;
4980 4981
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
	 * Ingress Packet Data to Free List Buffers in order to allow for
	 * chipset performance optimizations between the Root Complex and
	 * Memory Controllers.  (Messages to the associated Ingress Queue
	 * notifying new Packet Placement in the Free Lists Buffers will be
	 * send without the Relaxed Ordering Attribute thus guaranteeing that
	 * all preceding PCIe Transaction Layer Packets will be processed
	 * first.)  But some Root Complexes have various issues with Upstream
	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
	 * The PCIe devices which under the Root Complexes will be cleared the
	 * Relaxed Ordering bit in the configuration space, So we check our
	 * PCIe configuration space to see if it's flagged with advice against
	 * using Relaxed Ordering.
	 */
	if (!pcie_relaxed_ordering_enabled(pdev))
		adapter->flags |= ROOT_NO_RELAXED_ORDERING;

4999 5000
	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
5001
	spin_lock_init(&adapter->win0_lock);
5002 5003 5004
	spin_lock_init(&adapter->mbox_lock);

	INIT_LIST_HEAD(&adapter->mlist.list);
5005 5006

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5007 5008
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5009 5010 5011

	err = t4_prep_adapter(adapter);
	if (err)
5012 5013
		goto out_free_adapter;

5014

5015
	if (!is_t4(adapter->params.chip)) {
5016 5017
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5018
			adapter->pf);
5019 5020
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
5032
			goto out_free_adapter;
5033 5034 5035 5036 5037 5038
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
5039
			goto out_free_adapter;
5040 5041 5042
		}
	}

5043
	setup_memwin(adapter);
5044
	err = adap_init0(adapter);
5045 5046 5047
#ifdef CONFIG_DEBUG_FS
	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
5048
	setup_memwin_rdma(adapter);
5049 5050 5051
	if (err)
		goto out_unmap_bar;

5052 5053
	/* configure SGE_STAT_CFG_A to read WC stats */
	if (!is_t4(adapter->params.chip))
5054 5055 5056
		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
			      T6_STATMODE_V(0)));
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	for_each_port(adapter, i) {
		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

5075 5076 5077
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5078 5079
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
			NETIF_F_HW_TC;
5080 5081 5082
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
5083 5084
		netdev->vlan_features = netdev->features & VLAN_FEAT;

5085 5086
		netdev->priv_flags |= IFF_UNICAST_FLT;

5087
		/* MTU range: 81 - 9600 */
5088
		netdev->min_mtu = 81;              /* accommodate SACK */
5089 5090
		netdev->max_mtu = MAX_MTU;

5091
		netdev->netdev_ops = &cxgb4_netdev_ops;
5092 5093 5094 5095
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
5096
		cxgb4_set_ethtool_ops(netdev);
5097 5098
	}

5099 5100
	cxgb4_init_ethtool_dump(adapter);

5101 5102 5103
	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
5104
		err = t4_port_init(adapter, func, func, 0);
5105 5106
		if (err)
			goto out_free_dev;
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	} else if (adapter->params.nports == 1) {
		/* If we don't have a connection to the firmware -- possibly
		 * because of an error -- grab the raw VPD parameters so we
		 * can set the proper MAC Address on the debug network
		 * interface that we've created.
		 */
		u8 hw_addr[ETH_ALEN];
		u8 *na = adapter->params.vpd.na;

		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
		if (!err) {
			for (i = 0; i < ETH_ALEN; i++)
				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
					      hex2val(na[2 * i + 1]));
			t4_set_hw_addr(adapter, 0, hw_addr);
		}
5123 5124
	}

5125
	/* Configure queues and allocate tables now, they can be needed as
5126 5127 5128 5129
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

5130 5131 5132 5133 5134 5135
	adapter->smt = t4_init_smt();
	if (!adapter->smt) {
		/* We tolerate a lack of SMT, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
	}

5136
	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5137 5138 5139 5140 5141 5142
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

5143
#if IS_ENABLED(CONFIG_IPV6)
5144 5145 5146 5147
	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
		/* CLIP functionality is not present in hardware,
		 * hence disable all offload features
5148 5149
		 */
		dev_warn(&pdev->dev,
5150
			 "CLIP not enabled in hardware, continuing\n");
5151
		adapter->params.offload = 0;
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	} else {
		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
						  adapter->clipt_end);
		if (!adapter->clipt) {
			/* We tolerate a lack of clip_table, giving up
			 * some functionality
			 */
			dev_warn(&pdev->dev,
				 "could not allocate Clip table, continuing\n");
			adapter->params.offload = 0;
		}
5163 5164
	}
#endif
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

	for_each_port(adapter, i) {
		pi = adap2pinfo(adapter, i);
		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
		if (!pi->sched_tbl)
			dev_warn(&pdev->dev,
				 "could not activate scheduling on port %d\n",
				 i);
	}

5175
	if (tid_init(&adapter->tids) < 0) {
5176 5177 5178
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
5179
	} else {
5180
		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5181 5182 5183
		if (!adapter->tc_u32)
			dev_warn(&pdev->dev,
				 "could not offload tc u32, continuing\n");
5184

5185 5186 5187
		if (cxgb4_init_tc_flower(adapter))
			dev_warn(&pdev->dev,
				 "could not offload tc flower, continuing\n");
5188 5189
	}

5190
	if (is_offload(adapter) || is_hashfilter(adapter)) {
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
			u32 hash_base, hash_reg;

			if (chip <= CHELSIO_T5) {
				hash_reg = LE_DB_TID_HASHBASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base / 4;
			} else {
				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base;
			}
		}
	}

5206 5207 5208
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
5209
	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5210
		adapter->flags |= USING_MSI;
5211 5212 5213
		if (msi > 1)
			free_msix_info(adapter);
	}
5214

5215 5216 5217
	/* check for PCI Express bandwidth capabiltites */
	cxgb4_check_pcie_caps(adapter);

5218 5219 5220 5221
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

5222 5223 5224 5225 5226 5227 5228
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
5229
		pi = adap2pinfo(adapter, i);
5230
		adapter->port[i]->dev_port = pi->lport;
5231 5232 5233
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

5234 5235
		netif_carrier_off(adapter->port[i]);

5236 5237
		err = register_netdev(adapter->port[i]);
		if (err)
5238 5239 5240
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
5241
	}
5242
	if (i == 0) {
5243 5244 5245
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
5246 5247 5248
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
5249
	}
5250 5251 5252 5253 5254 5255 5256

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
5257 5258 5259
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

5260 5261 5262 5263 5264
	if (is_uld(adapter)) {
		mutex_lock(&uld_mutex);
		list_add_tail(&adapter->list_node, &adapter_list);
		mutex_unlock(&uld_mutex);
	}
5265

5266 5267 5268
	if (!is_t4(adapter->params.chip))
		cxgb4_ptp_init(adapter);

5269
	print_adapter_info(adapter);
5270
	setup_fw_sge_queues(adapter);
5271
	return 0;
5272

5273
sriov:
5274
#ifdef CONFIG_PCI_IOV
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
		goto free_pci_region;
	}

	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
	adapter->name = pci_name(pdev);
	adapter->mbox = func;
	adapter->pf = func;
	adapter->regs = regs;
5287
	adapter->adap_idx = adap_idx;
5288 5289 5290 5291 5292 5293
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
5294
		goto free_adapter;
5295
	}
5296 5297
	spin_lock_init(&adapter->mbox_lock);
	INIT_LIST_HEAD(&adapter->mlist.list);
5298 5299 5300 5301 5302 5303 5304

	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
			      &v, &port_vec);
	if (err < 0) {
		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5305
		goto free_mbox_log;
5306 5307 5308
	}

	adapter->params.nports = hweight32(port_vec);
5309 5310 5311
	pci_set_drvdata(pdev, adapter);
	return 0;

5312 5313
free_mbox_log:
	kfree(adapter->mbox_log);
5314 5315 5316 5317 5318 5319 5320 5321
 free_adapter:
	kfree(adapter);
 free_pci_region:
	iounmap(regs);
	pci_disable_sriov(pdev);
	pci_release_regions(pdev);
	return err;
#else
5322
	return 0;
5323
#endif
5324 5325

 out_free_dev:
5326
	free_some_resources(adapter);
5327 5328
	if (adapter->flags & USING_MSIX)
		free_msix_info(adapter);
5329 5330
	if (adapter->num_uld || adapter->num_ofld_uld)
		t4_uld_mem_free(adapter);
5331
 out_unmap_bar:
5332
	if (!is_t4(adapter->params.chip))
5333
		iounmap(adapter->bar2);
5334
 out_free_adapter:
5335 5336 5337
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

5338
	kfree(adapter->mbox_log);
5339
	kfree(adapter);
5340 5341
 out_unmap_bar0:
	iounmap(regs);
5342 5343 5344 5345 5346 5347 5348 5349
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
5350
static void remove_one(struct pci_dev *pdev)
5351 5352 5353
{
	struct adapter *adapter = pci_get_drvdata(pdev);

5354 5355 5356 5357
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}
5358

5359 5360
	adapter->flags |= SHUTTING_DOWN;

5361
	if (adapter->pf == 4) {
5362 5363
		int i;

5364 5365 5366 5367 5368
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

5369
		if (is_uld(adapter)) {
5370
			detach_ulds(adapter);
5371 5372
			t4_uld_clean_up(adapter);
		}
5373

5374 5375
		disable_interrupts(adapter);

5376
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
5377
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5378 5379
				unregister_netdev(adapter->port[i]);

5380
		debugfs_remove_recursive(adapter->debugfs_root);
5381

5382 5383 5384
		if (!is_t4(adapter->params.chip))
			cxgb4_ptp_stop(adapter);

V
Vipul Pandya 已提交
5385 5386 5387
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
5388
		clear_all_filters(adapter);
V
Vipul Pandya 已提交
5389

5390 5391
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
5392

5393 5394
		if (adapter->flags & USING_MSIX)
			free_msix_info(adapter);
5395 5396
		if (adapter->num_uld || adapter->num_ofld_uld)
			t4_uld_mem_free(adapter);
5397
		free_some_resources(adapter);
5398 5399 5400
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
5401
		iounmap(adapter->regs);
5402
		if (!is_t4(adapter->params.chip))
5403
			iounmap(adapter->bar2);
5404
		pci_disable_pcie_error_reporting(pdev);
5405 5406 5407 5408
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
5409
		pci_release_regions(pdev);
5410
		kfree(adapter->mbox_log);
5411
		synchronize_rcu();
5412
		kfree(adapter);
5413 5414 5415
	}
#ifdef CONFIG_PCI_IOV
	else {
5416
		if (adapter->port[0])
5417 5418
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
5419
		kfree(adapter->vfinfo);
5420
		kfree(adapter->mbox_log);
5421 5422
		kfree(adapter);
		pci_disable_sriov(pdev);
5423
		pci_release_regions(pdev);
5424 5425
	}
#endif
5426 5427
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
 * delivery.  This is essentially a stripped down version of the PCI remove()
 * function where we do the minimal amount of work necessary to shutdown any
 * further activity.
 */
static void shutdown_one(struct pci_dev *pdev)
{
	struct adapter *adapter = pci_get_drvdata(pdev);

	/* As with remove_one() above (see extended comment), we only want do
	 * do cleanup on PCI Devices which went all the way through init_one()
	 * ...
	 */
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}

5446 5447
	adapter->flags |= SHUTTING_DOWN;

5448 5449 5450 5451 5452 5453 5454
	if (adapter->pf == 4) {
		int i;

		for_each_port(adapter, i)
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
				cxgb_close(adapter->port[i]);

5455 5456 5457 5458 5459
		if (is_uld(adapter)) {
			detach_ulds(adapter);
			t4_uld_clean_up(adapter);
		}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
		disable_interrupts(adapter);
		disable_msi(adapter);

		t4_sge_stop(adapter);
		if (adapter->flags & FW_OK)
			t4_fw_bye(adapter, adapter->mbox);
	}
#ifdef CONFIG_PCI_IOV
	else {
		if (adapter->port[0])
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
		kfree(adapter->vfinfo);
5473
		kfree(adapter->mbox_log);
5474 5475 5476 5477 5478 5479 5480
		kfree(adapter);
		pci_disable_sriov(pdev);
		pci_release_regions(pdev);
	}
#endif
}

5481 5482 5483 5484
static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
5485
	.remove   = remove_one,
5486
	.shutdown = shutdown_one,
5487 5488 5489
#ifdef CONFIG_PCI_IOV
	.sriov_configure = cxgb4_iov_configure,
#endif
D
Dimitris Michailidis 已提交
5490
	.err_handler = &cxgb4_eeh,
5491 5492 5493 5494 5495 5496 5497 5498 5499
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
5500
		pr_warn("could not create debugfs entry, continuing\n");
5501 5502

	ret = pci_register_driver(&cxgb4_driver);
5503
	if (ret < 0)
5504
		debugfs_remove(cxgb4_debugfs_root);
5505

5506
#if IS_ENABLED(CONFIG_IPV6)
5507 5508 5509 5510
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
5511
#endif
5512

5513 5514 5515 5516 5517
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
5518
#if IS_ENABLED(CONFIG_IPV6)
5519
	if (inet6addr_registered) {
5520 5521 5522
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
5523
#endif
5524 5525 5526 5527 5528 5529
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);