cxgb4_main.c 143.3 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66
#include <linux/uaccess.h>
67
#include <linux/crash_dump.h>
68 69

#include "cxgb4.h"
70
#include "cxgb4_filter.h"
71
#include "t4_regs.h"
72
#include "t4_values.h"
73 74
#include "t4_msg.h"
#include "t4fw_api.h"
75
#include "t4fw_version.h"
76
#include "cxgb4_dcb.h"
77
#include "cxgb4_debugfs.h"
78
#include "clip_tbl.h"
79
#include "l2t.h"
80
#include "sched.h"
81
#include "cxgb4_tc_u32.h"
82

83 84
char cxgb4_driver_name[] = KBUILD_MODNAME;

85 86 87
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
88
#define DRV_VERSION "2.0.0-ko"
89
const char cxgb4_driver_version[] = DRV_VERSION;
90
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 92 93 94 95

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

96 97 98
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99
	static const struct pci_device_id cxgb4_pci_tbl[] = {
100
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
101

102 103 104 105 106 107 108 109 110 111 112 113 114
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
115

116
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
117
#define FW5_FNAME "cxgb4/t5fw.bin"
118
#define FW6_FNAME "cxgb4/t6fw.bin"
119
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
120
#define FW5_CFNAME "cxgb4/t5-config.txt"
121
#define FW6_CFNAME "cxgb4/t6-config.txt"
122 123 124 125
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
126 127 128 129 130 131

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
133
MODULE_FIRMWARE(FW5_FNAME);
134
MODULE_FIRMWARE(FW6_FNAME);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

164 165 166 167 168 169 170 171 172 173 174
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

175 176
static struct dentry *cxgb4_debugfs_root;

177 178
LIST_HEAD(adapter_list);
DEFINE_MUTEX(uld_mutex);
179 180 181 182 183 184 185 186

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

187
		const char *s;
188 189 190
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
191 192
		case 100:
			s = "100Mbps";
193
			break;
194
		case 1000:
195
			s = "1Gbps";
196
			break;
197 198 199 200 201
		case 10000:
			s = "10Gbps";
			break;
		case 25000:
			s = "25Gbps";
202
			break;
203
		case 40000:
204 205
			s = "40Gbps";
			break;
206 207 208
		case 100000:
			s = "100Gbps";
			break;
209 210 211 212
		default:
			pr_info("%s: unsupported speed: %d\n",
				dev->name, p->link_cfg.speed);
			return;
213 214 215 216 217 218 219
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

236 237 238 239
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 241 242 243 244 245
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
246
		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 248
					    &name, &value,
					    -FW_CMD_MAX_TIMEOUT);
249 250 251 252 253

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
254 255
		else
			txq->dcb_prio = value;
256 257 258
	}
}

259
static int cxgb4_dcb_enabled(const struct net_device *dev)
260 261 262 263 264 265 266 267 268
{
	struct port_info *pi = netdev_priv(dev);

	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
}
A
Arnd Bergmann 已提交
269
#endif /* CONFIG_CHELSIO_T4_DCB */
270

271 272 273 274 275 276 277 278
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
279 280
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
281 282 283 284
			if (cxgb4_dcb_enabled(dev)) {
				cxgb4_dcb_state_init(dev);
				dcb_tx_queue_prio_enable(dev, false);
			}
285
#endif /* CONFIG_CHELSIO_T4_DCB */
286
			netif_carrier_off(dev);
287
		}
288 289 290 291 292 293 294 295

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
296
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 298 299 300 301 302 303
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
304
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
305
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 307 308 309 310 311 312 313 314 315 316
	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
		netdev_info(dev, "%s: unsupported port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
		netdev_info(dev, "%s: unknown port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
		netdev_info(dev, "%s: transceiver module error\n", dev->name);
	else
		netdev_info(dev, "%s: unknown module type %d inserted\n",
			    dev->name, pi->mod_type);
317 318
}

319 320 321 322
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

323
/*
324
 * usecs to sleep while draining the dbfifo
325
 */
326 327 328 329 330 331
static int dbfifo_drain_delay = 1000;
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

static inline int cxgb4_set_addr_hash(struct port_info *pi)
332
{
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	struct adapter *adap = pi->adapter;
	u64 vec = 0;
	bool ucast = false;
	struct hash_mac_addr *entry;

	/* Calculate the hash vector for the updated list and program it */
	list_for_each_entry(entry, &adap->mac_hlist, list) {
		ucast |= is_unicast_ether_addr(entry->addr);
		vec |= (1ULL << hash_mac_addr(entry->addr));
	}
	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
				vec, false);
}

static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
352 353
	u64 mhash = 0;
	u64 uhash = 0;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	bool free = false;
	bool ucast = is_unicast_ether_addr(mac_addr);
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *new_entry;

	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
				NULL, ucast ? &uhash : &mhash, false);
	if (ret < 0)
		goto out;
	/* if hash != 0, then add the addr to hash addr list
	 * so on the end we will calculate the hash for the
	 * list and program it
	 */
	if (uhash || mhash) {
		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
		if (!new_entry)
			return -ENOMEM;
		ether_addr_copy(new_entry->addr, mac_addr);
		list_add_tail(&new_entry->list, &adap->mac_hlist);
		ret = cxgb4_set_addr_hash(pi);
374
	}
375 376 377
out:
	return ret < 0 ? ret : 0;
}
378

379 380 381 382 383 384 385
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *entry, *tmp;
386

387 388 389 390 391 392 393 394
	/* If the MAC address to be removed is in the hash addr
	 * list, delete it from the list and update hash vector
	 */
	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
		if (ether_addr_equal(entry->addr, mac_addr)) {
			list_del(&entry->list);
			kfree(entry);
			return cxgb4_set_addr_hash(pi);
395 396 397
		}
	}

398 399
	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
	return ret < 0 ? -EINVAL : 0;
400 401 402 403 404 405 406 407 408
}

/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	struct port_info *pi = netdev_priv(dev);
409
	struct adapter *adapter = pi->adapter;
410

411 412
	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 414 415 416 417

	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
			     (dev->flags & IFF_PROMISC) ? 1 : 0,
			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
			     sleep_ok);
418 419 420 421 422 423 424 425 426 427 428 429
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
430
	unsigned int mb = pi->adapter->pf;
431 432 433 434 435

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
436
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438
	if (ret == 0) {
439
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
440
				    pi->xact_addr_filt, dev->dev_addr, true,
441
				    true);
442 443 444 445 446 447
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
448
		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449
				    &pi->link_cfg);
450 451
	if (ret == 0) {
		local_bh_disable();
452 453
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
454 455
		local_bh_enable();
	}
456

457 458 459
	return ret;
}

460 461 462 463
#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
464
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465
	struct net_device *dev = adap->port[adap->chan_map[port]];
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
481
/* Response queue handler for the FW event queue.
482 483 484 485 486 487 488
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

504 505
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
506
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507
		struct sge_txq *txq;
508

509
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510
		txq->restarts++;
511
		if (txq->q_type == CXGB4_TXQ_ETH) {
512 513 514 515 516
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
517
			struct sge_uld_txq *oq;
518

519
			oq = container_of(txq, struct sge_uld_txq, q);
520 521 522 523 524
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

525 526
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
527
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528
		unsigned int action =
529
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530 531 532

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_GET_PORT_INFO) {
533
			int port = FW_PORT_CMD_PORTID_G(
534
					be32_to_cpu(pcmd->op_to_portid));
535 536
			struct net_device *dev =
				q->adap->port[q->adap->chan_map[port]];
537
			int state_input = ((pcmd->u.info.dcbxdis_pkd &
538
					    FW_PORT_CMD_DCBXDIS_F)
539 540 541 542 543 544 545 546 547 548 549 550 551
					   ? CXGB4_DCB_INPUT_FW_DISABLED
					   : CXGB4_DCB_INPUT_FW_ENABLED);

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
552 553 554 555
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
556 557 558 559
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
560 561 562
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
563
out:
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
584
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585

586
	if (v & PFSW_F) {
587
		adap->swintr = 1;
588
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589
	}
590 591
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
592 593 594 595 596 597 598 599
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
600
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601 602

	/* non-data interrupts */
603
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604 605

	/* FW events */
606 607
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
608 609 610 611 612 613

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

614
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 616 617 618 619 620 621 622
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
623
	int err, ethqidx;
624
	int msi_index = 2;
625 626 627 628 629 630 631

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
632 633 634
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
635 636 637
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
638
		msi_index++;
639 640 641 642 643
	}
	return 0;

unwind:
	while (--ethqidx >= 0)
644 645
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
646 647 648 649 650 651
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
652
	int i, msi_index = 2;
653 654 655 656
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
657
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 659
}

660
/**
661
 *	cxgb4_write_rss - write the RSS table for a given port
662 663 664 665 666
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
667
 *	Should never be called before setting up sge eth rx queues
668
 */
669
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 671 672
{
	u16 *rss;
	int i, err;
673 674
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
675

676
	rxq = &adapter->sge.ethrxq[pi->first_qset];
677 678 679 680 681 682
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
683
		rss[i] = rxq[*queues].rspq.abs_id;
684

685
	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686
				  pi->rss_size, rss, pi->rss_size);
687 688 689 690 691 692 693 694 695 696 697 698 699
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
700 701 702 703
	kfree(rss);
	return err;
}

704 705 706 707
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
708
 *	Sets up RSS for each port.
709 710 711
 */
static int setup_rss(struct adapter *adap)
{
712
	int i, j, err;
713 714 715 716

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

717 718 719 720
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

721
		err = cxgb4_write_rss(pi, pi->rss);
722 723 724 725 726 727
		if (err)
			return err;
	}
	return 0;
}

728 729 730 731 732 733 734 735 736
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

737 738 739 740 741 742 743
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

744
	for (i = 0; i < adap->sge.ingr_sz; i++) {
745 746
		struct sge_rspq *q = adap->sge.ingr_map[i];

747
		if (q && q->handler)
748 749 750 751
			napi_disable(&q->napi);
	}
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

767 768 769 770 771 772 773
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

774
	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 776 777 778
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
779
		if (q->handler)
780
			napi_enable(&q->napi);
781

782
		/* 0-increment GTS to start the timer and enable interrupts */
783 784 785
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
786 787 788
	}
}

789

790
static int setup_fw_sge_queues(struct adapter *adap)
791 792
{
	struct sge *s = &adap->sge;
793
	int err = 0;
794

795 796
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
797 798

	if (adap->flags & USING_MSIX)
799
		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800 801
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802
				       NULL, NULL, NULL, -1);
803 804
		if (err)
			return err;
805
		adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 807 808
	}

	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809
			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	if (err)
		t4_free_sge_resources(adap);
	return err;
}

/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, i, j;
	struct sge *s = &adap->sge;
	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
	unsigned int cmplqid = 0;
829 830 831 832 833 834 835 836

	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
837 838
			if (adap->msi_idx > 0)
				adap->msi_idx++;
839
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840
					       adap->msi_idx, &q->fl,
841
					       t4_ethrx_handler,
842
					       NULL,
843 844
					       t4_get_mps_bg_map(adap,
								 pi->tx_chan));
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	for_each_port(adap, i) {
860
		/* Note that cmplqid below is 0 if we don't
861 862
		 * have RDMA queues, and that's the right value.
		 */
863 864 865
		if (rxq_info)
			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;

866
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867
					    s->fw_evtq.cntxt_id, cmplqid);
868 869 870 871
		if (err)
			goto freeout;
	}

872
	t4_write_reg(adap, is_t4(adap->params.chip) ?
873 874 875 876
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877
	return 0;
878 879 880
freeout:
	t4_free_sge_resources(adap);
	return err;
881 882
}

883 884 885 886 887 888 889 890 891 892 893
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
894
	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
895 896 897 898 899 900 901 902 903 904 905
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
906 907 908 909
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
962
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
963 964 965 966 967 968 969
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
970 971
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
972
{
973 974
	struct adapter *adap = q->adap;

975 976 977 978 979 980 981 982 983 984
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
985 986 987 988
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
989 990
			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
					    &v, &new_idx);
991 992 993 994 995 996 997
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
998
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
999 1000 1001
	return 0;
}

1002
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1003
{
1004
	const struct port_info *pi = netdev_priv(dev);
1005
	netdev_features_t changed = dev->features ^ features;
1006 1007
	int err;

1008
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1009
		return 0;
1010

1011
	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1012
			    -1, -1, -1,
1013
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1014
	if (unlikely(err))
1015
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1016
	return err;
D
Dimitris Michailidis 已提交
1017 1018
}

B
Bill Pemberton 已提交
1019
static int setup_debugfs(struct adapter *adap)
1020 1021 1022 1023
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1024 1025 1026
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1045
		atid = (p - t->atid_tab) + t->atid_base;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1060
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
1085
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1086 1087 1088 1089 1090 1091
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1092 1093 1094 1095
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
1096
		if (family == PF_INET6) {
1097
			t->stids_in_use += 2;
1098 1099 1100 1101
			t->v6_stids_in_use += 2;
		} else {
			t->stids_in_use++;
		}
1102 1103 1104 1105 1106 1107
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1127 1128
		stid -= t->nstids;
		stid += t->sftid_base;
1129
		t->sftids_in_use++;
1130 1131 1132 1133 1134 1135 1136
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1137 1138 1139
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1140 1141 1142 1143 1144 1145 1146 1147
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1148 1149 1150 1151
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
1152
		bitmap_release_region(t->stid_bmap, stid, 1);
1153
	t->stid_tab[stid].data = NULL;
1154
	if (stid < t->nstids) {
1155
		if (family == PF_INET6) {
1156
			t->stids_in_use -= 2;
1157 1158 1159 1160
			t->v6_stids_in_use -= 2;
		} else {
			t->stids_in_use--;
		}
1161 1162 1163
	} else {
		t->sftids_in_use--;
	}
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1187 1188
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1199
		queue_work(adap->workq, &adap->tid_release_task);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
1240 1241
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
		      unsigned short family)
1242 1243 1244 1245
{
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

1246 1247 1248 1249
	WARN_ON(tid >= t->ntids);

	if (t->tid_tab[tid]) {
		t->tid_tab[tid] = NULL;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		atomic_dec(&t->conns_in_use);
		if (t->hash_base && (tid >= t->hash_base)) {
			if (family == AF_INET6)
				atomic_sub(2, &t->hash_tids_in_use);
			else
				atomic_dec(&t->hash_tids_in_use);
		} else {
			if (family == AF_INET6)
				atomic_sub(2, &t->tids_in_use);
			else
				atomic_dec(&t->tids_in_use);
		}
1262 1263
	}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
1278
	struct adapter *adap = container_of(t, struct adapter, tids);
1279 1280 1281 1282 1283
	unsigned int max_ftids = t->nftids + t->nsftids;
	unsigned int natids = t->natids;
	unsigned int stid_bmap_size;
	unsigned int ftid_bmap_size;
	size_t size;
1284

1285
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1286
	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
V
Vipul Pandya 已提交
1287 1288
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1289
	       t->nstids * sizeof(*t->stid_tab) +
1290
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1291
	       stid_bmap_size * sizeof(long) +
1292 1293
	       max_ftids * sizeof(*t->ftid_tab) +
	       ftid_bmap_size * sizeof(long);
V
Vipul Pandya 已提交
1294

1295
	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1296 1297 1298 1299 1300
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1301
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1302
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1303
	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1304 1305
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);
1306
	spin_lock_init(&t->ftid_lock);
1307 1308

	t->stids_in_use = 0;
1309
	t->v6_stids_in_use = 0;
1310
	t->sftids_in_use = 0;
1311 1312 1313
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);
1314
	atomic_set(&t->conns_in_use, 0);
1315
	atomic_set(&t->hash_tids_in_use, 0);
1316 1317 1318 1319 1320 1321 1322

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (is_offload(adap)) {
		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
		/* Reserve stid 0 for T4/T5 adapters */
		if (!t->stid_base &&
		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
			__set_bit(0, t->stid_bmap);
	}

	bitmap_zero(t->ftid_bmap, t->nftids);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1348 1349
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1350 1351 1352 1353 1354
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1355
	int ret;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1369
	chan = rxq_to_chan(&adap->sge, queue);
1370
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1371 1372
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1373 1374
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1375 1376 1377
}
EXPORT_SYMBOL(cxgb4_create_server);

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1413
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414 1415
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1438 1439
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1440 1441 1442 1443 1444
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/**
 *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
 *	@chip: chip type
 *	@viid: VI id of the given port
 *
 *	Return the SMT index for this VI.
 */
unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
{
	/* In T4/T5, SMT contains 256 SMAC entries organized in
	 * 128 rows of 2 entries each.
	 * In T6, SMT contains 256 SMAC entries in 256 rows.
	 * TODO: The below code needs to be updated when we add support
	 * for 256 VFs.
	 */
	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
		return ((viid & 0x7f) << 1);
	else
		return (viid & 0x7f);
}
EXPORT_SYMBOL(cxgb4_tp_smt_idx);

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1573 1574 1575
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1576
	u32 v1, v2, lp_count, hp_count;
1577

1578 1579
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1580
	if (is_t4(adap->params.chip)) {
1581 1582
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1583
	} else {
1584 1585
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1586 1587
	}
	return lpfifo ? lp_count : hp_count;
1588 1589 1590
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
	t4_tp_get_tcp_stats(adap, v4, v6);
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1631 1632 1633 1634
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
1635 1636 1637
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

1638 1639 1640 1641
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);

1642
	return t4_sge_ctxt_flush(adap, adap->mbox);
1643 1644 1645 1646 1647
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
1648
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1649 1650 1651
	__be64 indices;
	int ret;

1652 1653 1654 1655 1656
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
1657
	if (!ret) {
1658 1659
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
1677
		u32 val;
1678 1679 1680 1681 1682

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
1683 1684 1685 1686 1687

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1688
		wmb();
1689 1690
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
1691 1692 1693 1694 1695 1696
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

1697 1698 1699 1700
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
1701
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
1715 1716 1717 1718 1719 1720
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
1736
		} else if (is_t5(adap->params.chip)) {
1737 1738
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1739 1740 1741 1742 1743 1744 1745 1746
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
1747 1748 1749
		} else {
			/* T4/T6 only has a single memory channel */
			goto err;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

1765 1766 1767 1768 1769 1770
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
1771 1772
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1773 1774 1775 1776 1777

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

1778 1779 1780
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
1781
			 int user,
1782 1783 1784
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
1785
	return t4_bar2_sge_qregs(netdev2adap(dev),
1786 1787 1788 1789
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
1790
				 user,
1791 1792 1793 1794 1795
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

1796 1797 1798 1799 1800 1801 1802
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

1803
	if (is_vlan_dev(netdev))
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

1829 1830
static void drain_db_fifo(struct adapter *adap, int usecs)
{
1831
	u32 v1, v2, lp_count, hp_count;
1832 1833

	do {
1834 1835
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1836
		if (is_t4(adap->params.chip)) {
1837 1838
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
1839
		} else {
1840 1841
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
1842 1843 1844 1845
		}

		if (lp_count == 0 && hp_count == 0)
			break;
1846 1847 1848 1849 1850 1851 1852
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
1853 1854 1855
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
1856
	q->db_disabled = 1;
1857
	spin_unlock_irqrestore(&q->db_lock, flags);
1858 1859
}

1860
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1861 1862
{
	spin_lock_irq(&q->db_lock);
1863 1864 1865 1866 1867
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
1868 1869
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1870 1871
		q->db_pidx_inc = 0;
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				disable_txq_db(&txq->q);
			}
		}
	}
1894 1895 1896 1897 1898 1899 1900 1901 1902
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
1903
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				enable_txq_db(adap, &txq->q);
			}
		}
	}
1916
	for_each_port(adap, i)
1917 1918 1919 1920 1921
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
1922 1923 1924 1925
	enum cxgb4_uld type = CXGB4_ULD_RDMA;

	if (adap->uld && adap->uld[type].handle)
		adap->uld[type].control(adap->uld[type].handle, cmd);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1937 1938 1939 1940 1941 1942 1943
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
	else
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1944 1945 1946 1947 1948 1949 1950
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

1951
	spin_lock_irq(&q->db_lock);
1952 1953 1954 1955 1956
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
1957
		u32 val;
1958 1959 1960 1961 1962

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
1963 1964 1965 1966 1967

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1968
		wmb();
1969 1970
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
1971 1972 1973
	}
out:
	q->db_disabled = 0;
1974 1975
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
1976 1977 1978
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
1979

1980 1981 1982 1983 1984 1985
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				sync_txq_pidx(adap, &txq->q);
			}
		}
	}
1997 1998 1999 2000
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2001 2002 2003 2004
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2005
	adap = container_of(work, struct adapter, db_drop_task);
2006

2007
	if (is_t4(adap->params.chip)) {
2008
		drain_db_fifo(adap, dbfifo_drain_delay);
2009
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2010
		drain_db_fifo(adap, dbfifo_drain_delay);
2011
		recover_all_queues(adap);
2012
		drain_db_fifo(adap, dbfifo_drain_delay);
2013
		enable_dbs(adap);
2014
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2015
	} else if (is_t5(adap->params.chip)) {
2016 2017 2018
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2019 2020 2021
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2022

2023
		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2024
					0, &bar2_qoffset, &bar2_qid);
2025 2026 2027 2028
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2029
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2030
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2031 2032 2033 2034 2035

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2036 2037
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2038 2039 2040 2041
}

void t4_db_full(struct adapter *adap)
{
2042
	if (is_t4(adap->params.chip)) {
2043 2044
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2045 2046
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2047
		queue_work(adap->workq, &adap->db_full_task);
2048
	}
2049 2050 2051 2052
}

void t4_db_dropped(struct adapter *adap)
{
2053 2054 2055 2056
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2057
	queue_work(adap->workq, &adap->db_drop_task);
2058 2059
}

2060 2061
void t4_register_netevent_notifier(void)
{
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2075 2076 2077 2078 2079
		if (adap->uld && adap->uld[i].handle) {
			adap->uld[i].state_change(adap->uld[i].handle,
					     CXGB4_STATE_DETACH);
			adap->uld[i].handle = NULL;
		}
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2093 2094 2095
		if (adap->uld && adap->uld[i].handle)
			adap->uld[i].state_change(adap->uld[i].handle,
						  new_state);
2096 2097 2098
	mutex_unlock(&uld_mutex);
}

2099
#if IS_ENABLED(CONFIG_IPV6)
2100 2101
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2102
{
2103 2104 2105 2106
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2107
	struct adapter *adap;
2108
#endif
2109
	if (is_vlan_dev(event_dev))
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2130

2131 2132
	if (event_dev)
		parent = event_dev->dev.parent;
2133

2134
	if (parent && parent->driver == &cxgb4_driver.driver) {
2135 2136
		switch (event) {
		case NETDEV_UP:
2137
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2138 2139
			break;
		case NETDEV_DOWN:
2140
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2141 2142 2143 2144 2145
			break;
		default:
			break;
		}
	}
2146
	return NOTIFY_OK;
2147 2148
}

2149
static bool inet6addr_registered;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2167
			ret = cxgb4_update_root_dev_clip(dev);
2168 2169 2170 2171 2172 2173

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2174
#endif /* IS_ENABLED(CONFIG_IPV6) */
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2188
	int err;
2189

2190 2191 2192 2193 2194 2195
	err = setup_sge_queues(adap);
	if (err)
		goto out;
	err = setup_rss(adap);
	if (err)
		goto freeq;
2196 2197

	if (adap->flags & USING_MSIX) {
2198
		name_msix_vecs(adap);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;
		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2211
				  adap->port[0]->name, adap);
2212 2213 2214
		if (err)
			goto irq_err;
	}
2215 2216

	mutex_lock(&uld_mutex);
2217 2218 2219
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2220
	adap->flags |= FULL_INIT_DONE;
2221 2222
	mutex_unlock(&uld_mutex);

2223
	notify_ulds(adap, CXGB4_STATE_UP);
2224
#if IS_ENABLED(CONFIG_IPV6)
2225
	update_clip(adap);
2226
#endif
2227 2228
	/* Initialize hash mac addr list*/
	INIT_LIST_HEAD(&adap->mac_hlist);
2229 2230 2231 2232
 out:
	return err;
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2233 2234
 freeq:
	t4_free_sge_resources(adap);
2235 2236 2237 2238 2239 2240
	goto out;
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2241 2242
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2243
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2244
	adapter->tid_release_head = NULL;
2245

2246 2247 2248
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2260 2261
	netif_carrier_off(dev);

2262 2263 2264 2265 2266
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2267

2268 2269 2270 2271 2272 2273 2274
	/* It's possible that the basic port information could have
	 * changed since we first read it.
	 */
	err = t4_update_port_info(pi);
	if (err < 0)
		return err;

2275 2276 2277 2278
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2279 2280 2281 2282 2283 2284 2285 2286 2287
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2288
	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2289 2290
}

2291
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2292 2293
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2303
	/* Adjust stid to correct filter index */
2304
	stid -= adap->tids.sftid_base;
2305 2306
	stid += adap->tids.nftids;

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2325
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2326 2327 2328 2329
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2330
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2331 2332 2333 2334
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2335

2336
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2337 2338 2339 2340
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2341 2342 2343 2344 2345 2346
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

2347 2348 2349 2350
	/* Save the actual tid. We need this to get the corresponding
	 * filter entry structure in filter_rpl.
	 */
	f->tid = stid + adap->tids.ftid_base;
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2368 2369

	/* Adjust stid to correct filter index */
2370
	stid -= adap->tids.sftid_base;
2371 2372
	stid += adap->tids.nftids;

2373 2374 2375 2376
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

2377
	return delete_filter(adap, stid);
2378 2379 2380
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2381 2382
static void cxgb_get_stats(struct net_device *dev,
			   struct rtnl_link_stats64 *ns)
2383 2384 2385 2386 2387
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2388 2389 2390 2391
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2392
	spin_lock(&adapter->stats_lock);
2393 2394
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
2395
		return;
2396
	}
2397 2398
	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
				 &p->stats_base);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
2413
	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2433
	unsigned int mbox;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2456
		mbox = pi->adapter->pf;
2457
		if (cmd == SIOCGMIIREG)
2458
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2459 2460
					 data->reg_num, &data->val_out);
		else
2461
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2462 2463
					 data->reg_num, data->val_in);
		break;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	case SIOCGHWTSTAMP:
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
	case SIOCSHWTSTAMP:
		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
				   sizeof(pi->tstamp_config)))
			return -EFAULT;

		switch (pi->tstamp_config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			pi->rxtstamp = false;
			break;
		case HWTSTAMP_FILTER_ALL:
			pi->rxtstamp = true;
			break;
		default:
			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
			return -ERANGE;
		}

		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

2505
	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2506
			    -1, -1, -1, true);
2507 2508 2509 2510 2511
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

2512
#ifdef CONFIG_PCI_IOV
2513 2514 2515 2516 2517 2518 2519 2520 2521
static int dummy_open(struct net_device *dev)
{
	/* Turn carrier off since we don't have to transmit anything on this
	 * interface.
	 */
	netif_carrier_off(dev);
	return 0;
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/* Fill MAC address that will be assigned by the FW */
static void fill_vf_station_mac_addr(struct adapter *adap)
{
	unsigned int i;
	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
	int err;
	u8 *na;
	u16 a, b;

	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
	if (!err) {
		na = adap->params.vpd.na;
		for (i = 0; i < ETH_ALEN; i++)
			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
				      hex2val(na[2 * i + 1]));
		a = (hw_addr[0] << 8) | hw_addr[1];
		b = (hw_addr[1] << 8) | hw_addr[2];
		a ^= b;
		a |= 0x0200;    /* locally assigned Ethernet MAC address */
		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
		macaddr[0] = a >> 8;
		macaddr[1] = a & 0xff;

		for (i = 2; i < 5; i++)
			macaddr[i] = hw_addr[i + 1];

		for (i = 0; i < adap->num_vfs; i++) {
			macaddr[5] = adap->pf * 16 + i;
			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
		}
	}
}

2555 2556 2557 2558
static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2559
	int ret;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570

	/* verify MAC addr is valid */
	if (!is_valid_ether_addr(mac)) {
		dev_err(pi->adapter->pdev_dev,
			"Invalid Ethernet address %pM for VF %d\n",
			mac, vf);
		return -EINVAL;
	}

	dev_info(pi->adapter->pdev_dev,
		 "Setting MAC %pM on VF %d\n", mac, vf);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
	if (!ret)
		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
	return ret;
}

static int cxgb_get_vf_config(struct net_device *dev,
			      int vf, struct ifla_vf_info *ivi)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (vf >= adap->num_vfs)
		return -EINVAL;
	ivi->vf = vf;
2586 2587
	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
	ivi->min_tx_rate = 0;
2588 2589
	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
	return 0;
2590
}
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

static int cxgb_get_phys_port_id(struct net_device *dev,
				 struct netdev_phys_item_id *ppid)
{
	struct port_info *pi = netdev_priv(dev);
	unsigned int phy_port_id;

	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
	ppid->id_len = sizeof(phy_port_id);
	memcpy(ppid->id, &phy_port_id, ppid->id_len);
	return 0;
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
			    int max_tx_rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct fw_port_cmd port_cmd, port_rpl;
	u32 link_status, speed = 0;
	u32 fw_pfvf, fw_class;
	int class_id = vf;
	int link_ok, ret;
	u16 pktsize;

	if (vf >= adap->num_vfs)
		return -EINVAL;

	if (min_tx_rate) {
		dev_err(adap->pdev_dev,
			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
			min_tx_rate, vf);
		return -EINVAL;
	}
	/* Retrieve link details for VF port */
	memset(&port_cmd, 0, sizeof(port_cmd));
	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					    FW_CMD_REQUEST_F |
					    FW_CMD_READ_F |
					    FW_PORT_CMD_PORTID_V(pi->port_id));
	port_cmd.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
			    FW_LEN16(port_cmd));
	ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
			 &port_rpl);
	if (ret != FW_SUCCESS) {
		dev_err(adap->pdev_dev,
			"Failed to get link status for VF %d\n", vf);
		return -EINVAL;
	}
	link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
	link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0;
	if (!link_ok) {
		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
		return -EINVAL;
	}
	/* Determine link speed */
	if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
		speed = 100;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
		speed = 1000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
		speed = 10000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
		speed = 25000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
		speed = 40000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
		speed = 100000;

	if (max_tx_rate > speed) {
		dev_err(adap->pdev_dev,
			"Max tx rate %d for VF %d can't be > link-speed %u",
			max_tx_rate, vf, speed);
		return -EINVAL;
	}
	pktsize = be16_to_cpu(port_rpl.u.info.mtu);
	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
	pktsize = pktsize - sizeof(struct ethhdr) - 4;
	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
	/* configure Traffic Class for rate-limiting */
	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
			      SCHED_CLASS_LEVEL_CL_RL,
			      SCHED_CLASS_MODE_CLASS,
			      SCHED_CLASS_RATEUNIT_BITS,
			      SCHED_CLASS_RATEMODE_ABS,
			      pi->port_id, class_id, 0,
			      max_tx_rate * 1000, 0, pktsize);
	if (ret) {
		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
			ret);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev,
		 "Class %d with MSS %u configured with rate %u\n",
		 class_id, pktsize, max_tx_rate);

	/* bind VF to configured Traffic Class */
	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
	fw_class = class_id;
	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
			    &fw_class);
	if (ret) {
		dev_err(adap->pdev_dev,
			"Err %d in binding VF %d to Traffic Class %d\n",
			ret, vf, class_id);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
		 adap->pf, vf, class_id);
	adap->vfinfo[vf].tx_rate = max_tx_rate;
	return 0;
}

2707 2708
#endif

2709 2710 2711 2712 2713 2714 2715
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2716
		return -EADDRNOTAVAIL;
2717

2718
	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2719
			    pi->xact_addr_filt, addr->sa_data, true, true);
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sched_class *e;
	struct ch_sched_params p;
	struct ch_sched_queue qe;
	u32 req_rate;
	int err = 0;

	if (!can_sched(dev))
		return -ENOTSUPP;

	if (index < 0 || index > pi->nqsets - 1)
		return -EINVAL;

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to rate limit on queue %d. Link Down?\n",
			index);
		return -EINVAL;
	}

	/* Convert from Mbps to Kbps */
	req_rate = rate << 10;

	/* Max rate is 10 Gbps */
	if (req_rate >= SCHED_MAX_RATE_KBPS) {
		dev_err(adap->pdev_dev,
			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
			rate, SCHED_MAX_RATE_KBPS);
		return -ERANGE;
	}

	/* First unbind the queue from any existing class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = SCHED_CLS_NONE;

	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err) {
		dev_err(adap->pdev_dev,
			"Unbinding Queue %d on port %d fail. Err: %d\n",
			index, pi->port_id, err);
		return err;
	}

	/* Queue already unbound */
	if (!req_rate)
		return 0;

	/* Fetch any available unused or matching scheduling class */
	memset(&p, 0, sizeof(p));
	p.type = SCHED_CLASS_TYPE_PACKET;
	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
	p.u.params.channel  = pi->tx_chan;
	p.u.params.class    = SCHED_CLS_NONE;
	p.u.params.minrate  = 0;
	p.u.params.maxrate  = req_rate;
	p.u.params.weight   = 0;
	p.u.params.pktsize  = dev->mtu;

	e = cxgb4_sched_class_alloc(dev, &p);
	if (!e)
		return -ENOMEM;

	/* Bind the queue to a scheduling class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = e->idx;

	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err)
		dev_err(adap->pdev_dev,
			"Queue rate limiting failed. Err: %d\n", err);
	return err;
}

2826 2827
static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
			 __be16 proto, struct tc_to_netdev *tc)
2828 2829 2830 2831
{
	struct port_info *pi = netdev2pinfo(dev);
	struct adapter *adap = netdev2adap(dev);

2832 2833 2834
	if (chain_index)
		return -EOPNOTSUPP;

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to setup tc on port %d. Link Down?\n",
			pi->port_id);
		return -EINVAL;
	}

	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
	    tc->type == TC_SETUP_CLSU32) {
		switch (tc->cls_u32->command) {
		case TC_CLSU32_NEW_KNODE:
		case TC_CLSU32_REPLACE_KNODE:
			return cxgb4_config_knode(dev, proto, tc->cls_u32);
		case TC_CLSU32_DELETE_KNODE:
			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
		default:
			return -EOPNOTSUPP;
		}
	}

	return -EOPNOTSUPP;
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static netdev_features_t cxgb_fix_features(struct net_device *dev,
					   netdev_features_t features)
{
	/* Disable GRO, if RX_CSUM is disabled */
	if (!(features & NETIF_F_RXCSUM))
		features &= ~NETIF_F_GRO;

	return features;
}

2868 2869 2870 2871
static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
2872
	.ndo_select_queue     =	cxgb_select_queue,
2873
	.ndo_get_stats64      = cxgb_get_stats,
2874 2875
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
2876
	.ndo_set_features     = cxgb_set_features,
2877 2878 2879 2880 2881 2882
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
2883 2884 2885 2886
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
2887
	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2888
	.ndo_setup_tc         = cxgb_setup_tc,
2889
	.ndo_fix_features     = cxgb_fix_features,
2890 2891
};

2892
#ifdef CONFIG_PCI_IOV
2893 2894
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
	.ndo_open             = dummy_open,
2895
	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2896
	.ndo_get_vf_config    = cxgb_get_vf_config,
2897
	.ndo_set_vf_rate      = cxgb_set_vf_rate,
2898
	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2899
};
2900
#endif
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = netdev2adap(dev);

	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
	strlcpy(info->version, cxgb4_driver_version,
		sizeof(info->version));
	strlcpy(info->bus_info, pci_name(adapter->pdev),
		sizeof(info->bus_info));
}

static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
	.get_drvinfo       = get_drvinfo,
};

2917 2918
void t4_fatal_err(struct adapter *adap)
{
2919 2920
	int port;

2921 2922 2923
	if (pci_channel_offline(adap->pdev))
		return;

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/* Disable the SGE since ULDs are going to free resources that
	 * could be exposed to the adapter.  RDMA MWs for example...
	 */
	t4_shutdown_adapter(adap);
	for_each_port(adap, port) {
		struct net_device *dev = adap->port[port];

		/* If we get here in very early initialization the network
		 * devices may not have been set up yet.
		 */
		if (!dev)
			continue;

		netif_tx_stop_all_queues(dev);
		netif_carrier_off(dev);
	}
2940 2941 2942 2943 2944
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
2945
	u32 nic_win_base = t4_get_util_window(adap);
2946

2947
	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2948 2949 2950 2951
}

static void setup_memwin_rdma(struct adapter *adap)
{
2952
	if (adap->vres.ocq.size) {
2953 2954
		u32 start;
		unsigned int sz_kb;
2955

2956 2957 2958
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2959 2960
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
2961 2962
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2963
		t4_write_reg(adap,
2964
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2965 2966
			     adap->vres.ocq.start);
		t4_read_reg(adap,
2967
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2968
	}
2969 2970
}

2971 2972 2973 2974 2975 2976 2977
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
2978 2979
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2980
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2981
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2982 2983 2984
	if (ret < 0)
		return ret;

2985 2986
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2987
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2988 2989 2990
	if (ret < 0)
		return ret;

2991
	ret = t4_config_glbl_rss(adap, adap->pf,
2992
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2993 2994
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2995 2996 2997
	if (ret < 0)
		return ret;

2998
	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2999 3000
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3001 3002 3003 3004 3005 3006
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3007
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3008
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3009 3010 3011
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3012

3013 3014
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3015 3016
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3017 3018 3019

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3020
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3021
			  &v, 1, TP_TX_SCHED_HDR_A);
3022
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3023
			  &v, 1, TP_TX_SCHED_FIFO_A);
3024
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3025
			  &v, 1, TP_TX_SCHED_PCMD_A);
3026 3027 3028

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3039 3040
	}

3041
	/* get basic stuff going */
3042
	return t4_early_init(adap, adap->pf);
3043 3044
}

3045 3046 3047 3048 3049
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3084 3085 3086
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3087 3088 3089 3090 3091

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3092 3093
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3094 3095 3096 3097

	return 0;
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
 * unto themselves and they contain their own firmware to perform their
 * tasks ...
 */
static int phy_aq1202_version(const u8 *phy_fw_data,
			      size_t phy_fw_size)
{
	int offset;

	/* At offset 0x8 you're looking for the primary image's
	 * starting offset which is 3 Bytes wide
	 *
	 * At offset 0xa of the primary image, you look for the offset
	 * of the DRAM segment which is 3 Bytes wide.
	 *
	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
	 * wide
	 */
	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
	#define le24(__p) (le16(__p) | ((__p)[2] << 16))

	offset = le24(phy_fw_data + 0x8) << 12;
	offset = le24(phy_fw_data + offset + 0xa);
	return be16(phy_fw_data + offset + 0x27e);

	#undef be16
	#undef le16
	#undef le24
}

static struct info_10gbt_phy_fw {
	unsigned int phy_fw_id;		/* PCI Device ID */
	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
	int phy_flash;			/* Has FLASH for PHY Firmware */
} phy_info_array[] = {
	{
		PHY_AQ1202_DEVICEID,
		PHY_AQ1202_FIRMWARE,
		phy_aq1202_version,
		1,
	},
	{
		PHY_BCM84834_DEVICEID,
		PHY_BCM84834_FIRMWARE,
		NULL,
		0,
	},
	{ 0, NULL, NULL },
};

static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
		if (phy_info_array[i].phy_fw_id == devid)
			return &phy_info_array[i];
	}
	return NULL;
}

/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
 * we return a negative error number.  If we transfer new firmware we return 1
 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
 */
static int adap_init0_phy(struct adapter *adap)
{
	const struct firmware *phyf;
	int ret;
	struct info_10gbt_phy_fw *phy_info;

	/* Use the device ID to determine which PHY file to flash.
	 */
	phy_info = find_phy_info(adap->pdev->device);
	if (!phy_info) {
		dev_warn(adap->pdev_dev,
			 "No PHY Firmware file found for this PHY\n");
		return -EOPNOTSUPP;
	}

	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
	 * use that. The adapter firmware provides us with a memory buffer
	 * where we can load a PHY firmware file from the host if we want to
	 * override the PHY firmware File in flash.
	 */
	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
				      adap->pdev_dev);
	if (ret < 0) {
		/* For adapters without FLASH attached to PHY for their
		 * firmware, it's obviously a fatal error if we can't get the
		 * firmware to the adapter.  For adapters with PHY firmware
		 * FLASH storage, it's worth a warning if we can't find the
		 * PHY Firmware but we'll neuter the error ...
		 */
		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
			"/lib/firmware/%s, error %d\n",
			phy_info->phy_fw_file, -ret);
		if (phy_info->phy_flash) {
			int cur_phy_fw_ver = 0;

			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
			ret = 0;
		}

		return ret;
	}

	/* Load PHY Firmware onto adapter.
	 */
	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
			     phy_info->phy_fw_version,
			     (u8 *)phyf->data, phyf->size);
	if (ret < 0)
		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
			-ret);
	else if (ret > 0) {
		int new_phy_fw_ver = 0;

		if (phy_info->phy_fw_version)
			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
								  phyf->size);
		dev_info(adap->pdev_dev, "Successfully transferred PHY "
			 "Firmware /lib/firmware/%s, version %#x\n",
			 phy_info->phy_fw_file, new_phy_fw_ver);
	}

	release_firmware(phyf);

	return ret;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242
/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3243 3244
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3245
	char *fw_config_file, fw_config_file_path[256];
3246
	char *config_name = NULL;
3247 3248 3249 3250 3251 3252

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3253
				  PIORSTMODE_F | PIORST_F);
3254 3255 3256 3257
		if (ret < 0)
			goto bye;
	}

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	/* If this is a 10Gb/s-BT adapter make sure the chip-external
	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
	 * to be performed after any global adapter RESET above since some
	 * PHYs only have local RAM copies of the PHY firmware.
	 */
	if (is_10gbt_device(adapter->pdev->device)) {
		ret = adap_init0_phy(adapter);
		if (ret < 0)
			goto bye;
	}
3268 3269 3270 3271 3272
	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3273
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3274
	case CHELSIO_T4:
3275
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3276 3277 3278 3279
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
3280 3281 3282
	case CHELSIO_T6:
		fw_config_file = FW6_CFNAME;
		break;
S
Santosh Rastapur 已提交
3283 3284 3285 3286 3287 3288 3289 3290
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3291
	if (ret < 0) {
3292
		config_name = "On FLASH";
3293 3294 3295 3296 3297
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3298 3299 3300 3301
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3302 3303 3304
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3305 3306
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3307
			ret = t4_query_params(adapter, adapter->mbox,
3308
					      adapter->pf, 0, 1, params, val);
3309 3310
			if (ret == 0) {
				/*
3311
				 * For t4_memory_rw() below addresses and
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3324 3325
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3326

3327 3328 3329
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3340 3341 3342 3343
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3344
				}
3345
				spin_unlock(&adapter->win0_lock);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3362 3363 3364
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3365
	caps_cmd.cfvalid_to_len16 =
3366 3367 3368
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3369 3370 3371
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3382 3383 3384
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3385 3386 3387 3388 3389 3390 3391
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3407 3408 3409
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3410
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3432 3433
	/* Emit Firmware Configuration File information and return
	 * successfully.
3434 3435
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3436 3437
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3438 3439 3440 3441 3442 3443 3444 3445
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3446 3447 3448
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3449 3450 3451
	return ret;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	}, {
		.chip = CHELSIO_T6,
		.fs_name = FW6_CFNAME,
		.fw_mod_name = FW6_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T6,
			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
			.intfver_nic = FW_INTFVER(T6, NIC),
			.intfver_vnic = FW_INTFVER(T6, VNIC),
			.intfver_ofld = FW_INTFVER(T6, OFLD),
			.intfver_ri = FW_INTFVER(T6, RI),
			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
			.intfver_fcoe = FW_INTFVER(T6, FCOE),
		},
3495
	}
3496

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3519
	struct fw_caps_config_cmd caps_cmd;
3520
	int reset = 1;
3521

3522 3523 3524 3525 3526 3527 3528
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3529
	/* Contact FW, advertising Master capability */
3530 3531
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3532 3533 3534 3535 3536
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3537 3538
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3539

3540 3541 3542 3543 3544 3545 3546
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3547
	t4_get_fw_version(adap, &adap->params.fw_vers);
3548
	t4_get_bs_version(adap, &adap->params.bs_vers);
3549
	t4_get_tp_version(adap, &adap->params.tp_vers);
3550 3551
	t4_get_exprom_version(adap, &adap->params.er_vers);

3552 3553
	ret = t4_check_fw_version(adap);
	/* If firmware is too old (not supported by driver) force an update. */
3554
	if (ret)
3555
		state = DEV_STATE_UNINIT;
3556
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3572
		}
3573 3574 3575 3576

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
3577
		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3596
		release_firmware(fw);
3597
		kvfree(card_fw);
3598

3599
		if (ret < 0)
3600
			goto bye;
3601
	}
3602

3603 3604 3605 3606 3607 3608 3609
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
3610
	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3611 3612 3613
	if (ret < 0)
		goto bye;

3614
	/*
3615 3616 3617
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3618 3619
	 */
	v =
3620 3621
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3622
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3623 3624 3625
	if (ret < 0)
		goto bye;

3626 3627 3628
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3629 3630
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3631 3632 3633 3634 3635 3636 3637 3638
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3639 3640 3641

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3642
		 */
3643 3644
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3645
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3646
				      params, val);
3647

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3666 3667
		}
		if (ret < 0) {
3668 3669
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3670 3671 3672 3673
			goto bye;
		}
	}

3674 3675 3676
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3677
	 */
3678 3679 3680
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3681

3682 3683 3684
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3685 3686 3687 3688
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3689 3690
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3691

3692
#define FW_PARAM_PFVF(param) \
3693 3694 3695 3696
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3697

3698
	params[0] = FW_PARAM_PFVF(EQ_START);
3699 3700 3701 3702
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3703
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3704
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3705 3706
	if (ret < 0)
		goto bye;
3707 3708 3709
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3710 3711
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3712
	adap->sge.ingr_start = val[5];
3713

3714 3715 3716 3717 3718 3719 3720 3721
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3722
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
3743
	 * ie starving_fl, txq_maperr and blocked_fl.
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3759 3760 3761 3762 3763 3764 3765 3766 3767
#ifdef CONFIG_DEBUG_FS
	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.blocked_fl) {
		ret = -ENOMEM;
		goto bye;
	}
#endif

3768 3769
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
3770
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3771 3772 3773 3774 3775
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3776 3777 3778 3779 3780 3781
	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
	 * Classes supported by the hardware/firmware so we hard code it here
	 * for now.
	 */
	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;

3782 3783 3784
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3785
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3786 3787 3788 3789 3790 3791 3792 3793 3794
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3795 3796 3797 3798 3799 3800 3801
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
3802
	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3814
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3815 3816 3817 3818
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3819 3820 3821 3822 3823 3824
	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
			      1, params, val);
	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);

3825 3826 3827 3828 3829
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3830 3831
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3832
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3833 3834 3835 3836 3837
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3838
	if (caps_cmd.ofldcaps) {
3839 3840 3841 3842 3843 3844 3845
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3846
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3847
				      params, val);
3848 3849 3850 3851 3852 3853
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3854
		/*
3855
		 * Setup server filter region. Divide the available filter
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
3871 3872 3873
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
3874

3875
		adap->params.offload = 1;
3876
		adap->num_ofld_uld += 1;
3877
	}
3878
	if (caps_cmd.rdmacaps) {
3879 3880 3881 3882 3883 3884
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3885
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3886
				      params, val);
3887 3888 3889 3890 3891 3892 3893 3894
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3895 3896 3897 3898 3899

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3900 3901
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
3902
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3903
				      val);
3904 3905 3906 3907 3908 3909
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
3910 3911
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
3912 3913 3914

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3915
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3916
				      val);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
3929
		adap->num_ofld_uld += 2;
3930
	}
3931
	if (caps_cmd.iscsicaps) {
3932 3933
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
3934
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3935
				      params, val);
3936 3937 3938 3939
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
3940 3941
		/* LIO target and cxgb4i initiaitor */
		adap->num_ofld_uld += 2;
3942
	}
3943 3944
	if (caps_cmd.cryptocaps) {
		/* Should query params here...TODO */
H
Harsh Jain 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953
		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
				      params, val);
		if (ret < 0) {
			if (ret != -EINVAL)
				goto bye;
		} else {
			adap->vres.ncrypto_fc = val[0];
		}
3954 3955 3956
		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
		adap->num_uld += 1;
	}
3957 3958 3959
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

3960 3961 3962 3963
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
3964
	 */
3965
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
3991

3992 3993 3994
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
3995
	t4_init_sge_params(adap);
3996
	adap->flags |= FW_OK;
3997
	t4_init_tp_params(adap);
3998 3999 4000
	return 0;

	/*
4001 4002 4003
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
4004
	 */
4005
bye:
4006 4007 4008 4009
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
4010 4011 4012
#ifdef CONFIG_DEBUG_FS
	kfree(adap->sge.blocked_fl);
#endif
4013 4014
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4015 4016 4017
	return ret;
}

D
Dimitris Michailidis 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4032
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4033 4034
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4035 4036 4037 4038
		if (dev) {
			netif_device_detach(dev);
			netif_carrier_off(dev);
		}
D
Dimitris Michailidis 已提交
4039
	}
4040
	spin_unlock(&adap->stats_lock);
4041
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4042 4043 4044
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4045 4046 4047 4048
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4065 4066 4067 4068 4069 4070 4071
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4072 4073 4074 4075 4076 4077 4078
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4079
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4080
		return PCI_ERS_RESULT_DISCONNECT;
4081
	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4082 4083 4084 4085 4086 4087 4088 4089
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4090
		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4091
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4092 4093 4094 4095 4096 4097 4098 4099
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4100
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4117 4118 4119 4120 4121 4122
		if (dev) {
			if (netif_running(dev)) {
				link_start(dev);
				cxgb_set_rxmode(dev);
			}
			netif_device_attach(dev);
D
Dimitris Michailidis 已提交
4123 4124 4125 4126 4127
		}
	}
	rtnl_unlock();
}

4128
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4129 4130 4131 4132 4133
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4134 4135 4136
/* Return true if the Link Configuration supports "High Speeds" (those greater
 * than 1Gb/s).
 */
4137
static inline bool is_x_10g_port(const struct link_config *lc)
4138
{
4139 4140 4141 4142 4143 4144
	unsigned int speeds, high_speeds;

	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);

	return high_speeds != 0;
4145 4146 4147 4148 4149 4150 4151
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4152
static void cfg_queues(struct adapter *adap)
4153 4154
{
	struct sge *s = &adap->sge;
4155
	int i = 0, n10g = 0, qidx = 0;
4156 4157 4158
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4159

4160 4161
	/* Reduce memory usage in kdump environment, disable all offload.
	 */
4162
	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4163
		adap->params.offload = 0;
4164 4165 4166
		adap->params.crypto = 0;
	}

4167
	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4178

4179 4180 4181 4182
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4183
		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4184 4185 4186
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4187 4188 4189 4190 4191 4192
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4193 4194
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4195

4196 4197 4198
	if (is_kdump_kernel())
		q10g = 1;

4199 4200 4201 4202
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4203
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4204 4205
		qidx += pi->nqsets;
	}
4206
#endif /* !CONFIG_CHELSIO_T4_DCB */
4207 4208 4209 4210

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

4211
	if (is_uld(adap)) {
4212 4213 4214 4215 4216 4217
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
4218
			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4219 4220 4221 4222
			s->ofldqsets = roundup(i, adap->params.nports);
		} else {
			s->ofldqsets = adap->params.nports;
		}
4223 4224 4225 4226 4227
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4228
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4229 4230 4231 4232 4233 4234 4235 4236 4237
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

4238
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4239
	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4240 4241 4242 4243 4244 4245
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4246
static void reduce_ethqs(struct adapter *adap, int n)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

4270 4271 4272
static int get_msix_info(struct adapter *adap)
{
	struct uld_msix_info *msix_info;
4273 4274 4275 4276 4277 4278 4279 4280 4281
	unsigned int max_ingq = 0;

	if (is_offload(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
	if (is_pci_uld(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_uld;

	if (!max_ingq)
		goto out;
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
	if (!msix_info)
		return -ENOMEM;

	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
						 sizeof(long), GFP_KERNEL);
	if (!adap->msix_bmap_ulds.msix_bmap) {
		kfree(msix_info);
		return -ENOMEM;
	}
	spin_lock_init(&adap->msix_bmap_ulds.lock);
	adap->msix_info_ulds = msix_info;
4295
out:
4296 4297 4298 4299 4300
	return 0;
}

static void free_msix_info(struct adapter *adap)
{
4301
	if (!(adap->num_uld && adap->num_ofld_uld))
4302 4303 4304 4305 4306 4307
		return;

	kfree(adap->msix_info_ulds);
	kfree(adap->msix_bmap_ulds.msix_bmap);
}

4308 4309 4310
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4311
static int enable_msix(struct adapter *adap)
4312
{
4313 4314
	int ofld_need = 0, uld_need = 0;
	int i, j, want, need, allocated;
4315 4316
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4317
	struct msix_entry *entries;
4318
	int max_ingq = MAX_INGQ;
4319

4320 4321 4322 4323
	if (is_pci_uld(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
	if (is_offload(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4324
	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4325 4326 4327
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4328

4329
	/* map for msix */
4330 4331
	if (get_msix_info(adap)) {
		adap->params.offload = 0;
4332
		adap->params.crypto = 0;
4333
	}
4334 4335

	for (i = 0; i < max_ingq + 1; ++i)
4336 4337 4338 4339
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4340 4341
		want += adap->num_ofld_uld * s->ofldqsets;
		ofld_need = adap->num_ofld_uld * nchan;
4342
	}
4343
	if (is_pci_uld(adap)) {
4344 4345
		want += adap->num_uld * s->ofldqsets;
		uld_need = adap->num_uld * nchan;
4346
	}
4347 4348 4349 4350
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
4351
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4352
#else
4353
	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4354
#endif
4355 4356 4357 4358 4359 4360 4361
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4362

4363
	/* Distribute available vectors to the various queue groups.
4364 4365 4366
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4367
	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4368 4369 4370 4371 4372
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
4373
	if (is_uld(adap)) {
4374 4375 4376
		if (allocated < want)
			s->nqs_per_uld = nchan;
		else
4377
			s->nqs_per_uld = s->ofldqsets;
4378 4379
	}

4380
	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4381
		adap->msix_info[i].vec = entries[i].vector;
4382 4383
	if (is_uld(adap)) {
		for (j = 0 ; i < allocated; ++i, j++) {
4384
			adap->msix_info_ulds[j].vec = entries[i].vector;
4385 4386
			adap->msix_info_ulds[j].idx = i;
		}
4387 4388
		adap->msix_bmap_ulds.mapsize = j;
	}
4389
	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4390 4391
		 "nic %d per uld %d\n",
		 allocated, s->max_ethqsets, s->nqs_per_uld);
4392

4393
	kfree(entries);
4394
	return 0;
4395 4396 4397 4398
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4399
static int init_rss(struct adapter *adap)
4400
{
4401 4402 4403 4404 4405 4406
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
					enum pci_bus_speed *speed,
					enum pcie_link_width *width)
{
	u32 lnkcap1, lnkcap2;
	int err1, err2;

#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */

	*speed = PCI_SPEED_UNKNOWN;
	*width = PCIE_LNK_WIDTH_UNKNOWN;

	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
					  &lnkcap1);
	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
					  &lnkcap2);
	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
			*speed = PCIE_SPEED_8_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
			*speed = PCIE_SPEED_5_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
			*speed = PCIE_SPEED_2_5GT;
	}
	if (!err1) {
		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
		if (!lnkcap2) { /* pre-r3.0 */
			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
				*speed = PCIE_SPEED_5_0GT;
			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
				*speed = PCIE_SPEED_2_5GT;
		}
	}

	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
		return err1 ? err1 : err2 ? err2 : -EINVAL;
	return 0;
}

static void cxgb4_check_pcie_caps(struct adapter *adap)
{
	enum pcie_link_width width, width_cap;
	enum pci_bus_speed speed, speed_cap;

#define PCIE_SPEED_STR(speed) \
	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
	 "Unknown")

	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCIe device BW capabilities\n");
		return;
	}

	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCI Express bandwidth.\n");
		return;
	}

	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
		 width, width_cap);
	if (speed < speed_cap || width < width_cap)
		dev_info(adap->pdev_dev,
			 "A slot with more lanes and/or higher speed is "
			 "suggested for optimal performance.\n");
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
/* Dump basic information about the adapter */
static void print_adapter_info(struct adapter *adapter)
{
	/* Device information */
	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
		 adapter->params.vpd.id,
		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
		 adapter->params.vpd.sn, adapter->params.vpd.pn);

	/* Firmware Version */
	if (!adapter->params.fw_vers)
		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
	else
		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));

	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
	 * Firmware, so dev_info() is more appropriate here.)
	 */
	if (!adapter->params.bs_vers)
		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
	else
		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));

	/* TP Microcode Version */
	if (!adapter->params.tp_vers)
		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
	else
		dev_info(adapter->pdev_dev,
			 "TP Microcode version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));

	/* Expansion ROM version */
	if (!adapter->params.er_vers)
		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
	else
		dev_info(adapter->pdev_dev,
			 "Expansion ROM version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));

	/* Software/Hardware configuration */
	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
		 is_offload(adapter) ? "R" : "",
		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
		  (adapter->flags & USING_MSI) ? "MSI" : ""),
		 is_offload(adapter) ? "Offload" : "non-Offload");
}

B
Bill Pemberton 已提交
4553
static void print_port_info(const struct net_device *dev)
4554 4555
{
	char buf[80];
4556
	char *bufp = buf;
4557
	const char *spd = "";
4558 4559
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4560 4561 4562 4563 4564

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4565 4566
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4567

4568
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4569
		bufp += sprintf(bufp, "100M/");
4570
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4571
		bufp += sprintf(bufp, "1G/");
4572 4573
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
		bufp += sprintf(bufp, "10G/");
4574 4575
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
		bufp += sprintf(bufp, "25G/");
4576 4577
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
		bufp += sprintf(bufp, "40G/");
4578 4579
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
		bufp += sprintf(bufp, "100G/");
4580 4581
	if (bufp != buf)
		--bufp;
4582
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4583

4584 4585
	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
		    dev->name, adap->params.vpd.id, adap->name, buf);
4586 4587
}

B
Bill Pemberton 已提交
4588
static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4589
{
4590
	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4591 4592
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

4604
	kvfree(adapter->l2t);
4605
	t4_cleanup_sched(adapter);
4606
	kvfree(adapter->tids.tid_tab);
4607
	cxgb4_cleanup_tc_u32(adapter);
4608 4609 4610 4611
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4612 4613 4614
#ifdef CONFIG_DEBUG_FS
	kfree(adapter->sge.blocked_fl);
#endif
4615 4616 4617
	disable_msi(adapter);

	for_each_port(adapter, i)
4618
		if (adapter->port[i]) {
4619 4620 4621 4622 4623
			struct port_info *pi = adap2pinfo(adapter, i);

			if (pi->viid != 0)
				t4_free_vi(adapter, adapter->mbox, adapter->pf,
					   0, pi->viid);
4624
			kfree(adap2pinfo(adapter, i)->rss);
4625
			free_netdev(adapter->port[i]);
4626
		}
4627
	if (adapter->flags & FW_OK)
4628
		t4_fw_bye(adapter, adapter->pf);
4629 4630
}

4631
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4632
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4633
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4634
#define SEGMENT_SIZE 128
4635

4636 4637 4638 4639 4640 4641
static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
{
	u16 device_id;

	/* Retrieve adapter's device ID */
	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4642 4643

	switch (device_id >> 12) {
4644
	case CHELSIO_T4:
4645
		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4646
	case CHELSIO_T5:
4647
		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4648
	case CHELSIO_T6:
4649
		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4650 4651 4652 4653
	default:
		dev_err(&pdev->dev, "Device %d is not supported\n",
			device_id);
	}
4654
	return -EINVAL;
4655 4656
}

4657
#ifdef CONFIG_PCI_IOV
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
static void dummy_setup(struct net_device *dev)
{
	dev->type = ARPHRD_NONE;
	dev->mtu = 0;
	dev->hard_header_len = 0;
	dev->addr_len = 0;
	dev->tx_queue_len = 0;
	dev->flags |= IFF_NOARP;
	dev->priv_flags |= IFF_NO_QUEUE;

	/* Initialize the device structure. */
	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4671
	dev->needs_free_netdev = true;
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
}

static int config_mgmt_dev(struct pci_dev *pdev)
{
	struct adapter *adap = pci_get_drvdata(pdev);
	struct net_device *netdev;
	struct port_info *pi;
	char name[IFNAMSIZ];
	int err;

	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4683 4684
	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
			      dummy_setup);
4685 4686 4687 4688 4689
	if (!netdev)
		return -ENOMEM;

	pi = netdev_priv(netdev);
	pi->adapter = adap;
4690
	pi->port_id = adap->pf % adap->params.nports;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	SET_NETDEV_DEV(netdev, &pdev->dev);

	adap->port[0] = netdev;

	err = register_netdev(adap->port[0]);
	if (err) {
		pr_info("Unable to register VF mgmt netdev %s\n", name);
		free_netdev(adap->port[0]);
		adap->port[0] = NULL;
		return err;
	}
	return 0;
}

4705 4706
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
{
4707
	struct adapter *adap = pci_get_drvdata(pdev);
4708 4709 4710 4711
	int err = 0;
	int current_vfs = pci_num_vf(pdev);
	u32 pcie_fw;

4712
	pcie_fw = readl(adap->regs + PCIE_FW_A);
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	/* Check if cxgb4 is the MASTER and fw is initialized */
	if (!(pcie_fw & PCIE_FW_INIT_F) ||
	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
		dev_warn(&pdev->dev,
			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
		return -EOPNOTSUPP;
	}

	/* If any of the VF's is already assigned to Guest OS, then
	 * SRIOV for the same cannot be modified
	 */
	if (current_vfs && pci_vfs_assigned(pdev)) {
		dev_err(&pdev->dev,
			"Cannot modify SR-IOV while VFs are assigned\n");
		num_vfs = current_vfs;
		return num_vfs;
	}

	/* Disable SRIOV when zero is passed.
	 * One needs to disable SRIOV before modifying it, else
	 * stack throws the below warning:
	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
	 */
	if (!num_vfs) {
		pci_disable_sriov(pdev);
4739
		if (adap->port[0]) {
4740
			unregister_netdev(adap->port[0]);
4741 4742
			adap->port[0] = NULL;
		}
4743 4744 4745 4746
		/* free VF resources */
		kfree(adap->vfinfo);
		adap->vfinfo = NULL;
		adap->num_vfs = 0;
4747 4748 4749 4750 4751 4752 4753
		return num_vfs;
	}

	if (num_vfs != current_vfs) {
		err = pci_enable_sriov(pdev, num_vfs);
		if (err)
			return err;
4754

4755
		adap->num_vfs = num_vfs;
4756 4757 4758
		err = config_mgmt_dev(pdev);
		if (err)
			return err;
4759
	}
4760 4761 4762 4763 4764

	adap->vfinfo = kcalloc(adap->num_vfs,
			       sizeof(struct vf_info), GFP_KERNEL);
	if (adap->vfinfo)
		fill_vf_station_mac_addr(adap);
4765 4766 4767 4768
	return num_vfs;
}
#endif

4769
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4770
{
4771
	int func, i, err, s_qpp, qpp, num_seg;
4772
	struct port_info *pi;
4773
	bool highdma = false;
4774
	struct adapter *adapter = NULL;
4775
	struct net_device *netdev;
4776
	void __iomem *regs;
4777 4778
	u32 whoami, pl_rev;
	enum chip_type chip;
4779
	static int adap_idx = 1;
A
Arnd Bergmann 已提交
4780
#ifdef CONFIG_PCI_IOV
4781
	u32 v, port_vec;
A
Arnd Bergmann 已提交
4782
#endif
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4799 4800 4801 4802 4803 4804 4805
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4806 4807 4808 4809
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4810
	/* We control everything through one PF */
4811 4812 4813 4814 4815
	whoami = readl(regs + PL_WHOAMI_A);
	pl_rev = REV_G(readl(regs + PL_REV_A));
	chip = get_chip_type(pdev, pl_rev);
	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4816
	if (func != ent->driver_data) {
4817
#ifndef CONFIG_PCI_IOV
4818
		iounmap(regs);
4819
#endif
4820 4821 4822 4823 4824
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4825
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4826
		highdma = true;
4827 4828 4829 4830
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4831
			goto out_unmap_bar0;
4832 4833 4834 4835 4836
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4837
			goto out_unmap_bar0;
4838 4839 4840 4841
		}
	}

	pci_enable_pcie_error_reporting(pdev);
4842
	enable_pcie_relaxed_ordering(pdev);
4843 4844 4845 4846 4847 4848
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4849
		goto out_unmap_bar0;
4850
	}
4851
	adap_idx++;
4852

4853 4854 4855 4856 4857 4858
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
		goto out_free_adapter;
	}
	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;

4869 4870 4871
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4872
	adapter->regs = regs;
4873 4874
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4875
	adapter->name = pci_name(pdev);
4876
	adapter->mbox = func;
4877
	adapter->pf = func;
4878
	adapter->msg_enable = DFLT_MSG_ENABLE;
4879 4880 4881 4882
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
4883
	spin_lock_init(&adapter->win0_lock);
4884 4885 4886
	spin_lock_init(&adapter->mbox_lock);

	INIT_LIST_HEAD(&adapter->mlist.list);
4887 4888

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4889 4890
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4891 4892 4893

	err = t4_prep_adapter(adapter);
	if (err)
4894 4895
		goto out_free_adapter;

4896

4897
	if (!is_t4(adapter->params.chip)) {
4898 4899
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4900
			adapter->pf);
4901 4902
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
4914
			goto out_free_adapter;
4915 4916 4917 4918 4919 4920
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
4921
			goto out_free_adapter;
4922 4923 4924
		}
	}

4925
	setup_memwin(adapter);
4926
	err = adap_init0(adapter);
4927 4928 4929
#ifdef CONFIG_DEBUG_FS
	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
4930
	setup_memwin_rdma(adapter);
4931 4932 4933
	if (err)
		goto out_unmap_bar;

4934 4935
	/* configure SGE_STAT_CFG_A to read WC stats */
	if (!is_t4(adapter->params.chip))
4936 4937 4938
		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
			      T6_STATMODE_V(0)));
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	for_each_port(adapter, i) {
		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

4957 4958 4959
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4960 4961
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
			NETIF_F_HW_TC;
4962 4963 4964
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
4965 4966
		netdev->vlan_features = netdev->features & VLAN_FEAT;

4967 4968
		netdev->priv_flags |= IFF_UNICAST_FLT;

4969 4970 4971 4972
		/* MTU range: 81 - 9600 */
		netdev->min_mtu = 81;
		netdev->max_mtu = MAX_MTU;

4973
		netdev->netdev_ops = &cxgb4_netdev_ops;
4974 4975 4976 4977
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
4978
		cxgb4_set_ethtool_ops(netdev);
4979 4980 4981 4982 4983
	}

	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
4984
		err = t4_port_init(adapter, func, func, 0);
4985 4986
		if (err)
			goto out_free_dev;
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	} else if (adapter->params.nports == 1) {
		/* If we don't have a connection to the firmware -- possibly
		 * because of an error -- grab the raw VPD parameters so we
		 * can set the proper MAC Address on the debug network
		 * interface that we've created.
		 */
		u8 hw_addr[ETH_ALEN];
		u8 *na = adapter->params.vpd.na;

		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
		if (!err) {
			for (i = 0; i < ETH_ALEN; i++)
				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
					      hex2val(na[2 * i + 1]));
			t4_set_hw_addr(adapter, 0, hw_addr);
		}
5003 5004
	}

5005
	/* Configure queues and allocate tables now, they can be needed as
5006 5007 5008 5009
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

5010
	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5011 5012 5013 5014 5015 5016
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

5017
#if IS_ENABLED(CONFIG_IPV6)
5018 5019 5020 5021
	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
		/* CLIP functionality is not present in hardware,
		 * hence disable all offload features
5022 5023
		 */
		dev_warn(&pdev->dev,
5024
			 "CLIP not enabled in hardware, continuing\n");
5025
		adapter->params.offload = 0;
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	} else {
		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
						  adapter->clipt_end);
		if (!adapter->clipt) {
			/* We tolerate a lack of clip_table, giving up
			 * some functionality
			 */
			dev_warn(&pdev->dev,
				 "could not allocate Clip table, continuing\n");
			adapter->params.offload = 0;
		}
5037 5038
	}
#endif
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

	for_each_port(adapter, i) {
		pi = adap2pinfo(adapter, i);
		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
		if (!pi->sched_tbl)
			dev_warn(&pdev->dev,
				 "could not activate scheduling on port %d\n",
				 i);
	}

5049
	if (tid_init(&adapter->tids) < 0) {
5050 5051 5052
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
5053
	} else {
5054
		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5055 5056 5057
		if (!adapter->tc_u32)
			dev_warn(&pdev->dev,
				 "could not offload tc u32, continuing\n");
5058 5059
	}

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	if (is_offload(adapter)) {
		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
			u32 hash_base, hash_reg;

			if (chip <= CHELSIO_T5) {
				hash_reg = LE_DB_TID_HASHBASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base / 4;
			} else {
				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base;
			}
		}
	}

5076 5077 5078
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
5079
	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5080
		adapter->flags |= USING_MSI;
5081 5082 5083
		if (msi > 1)
			free_msix_info(adapter);
	}
5084

5085 5086 5087
	/* check for PCI Express bandwidth capabiltites */
	cxgb4_check_pcie_caps(adapter);

5088 5089 5090 5091
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

5092 5093 5094 5095 5096 5097 5098
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
5099
		pi = adap2pinfo(adapter, i);
5100
		adapter->port[i]->dev_port = pi->lport;
5101 5102 5103
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

5104 5105
		netif_carrier_off(adapter->port[i]);

5106 5107
		err = register_netdev(adapter->port[i]);
		if (err)
5108 5109 5110
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
5111
	}
5112
	if (i == 0) {
5113 5114 5115
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
5116 5117 5118
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
5119
	}
5120 5121 5122 5123 5124 5125 5126

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
5127 5128 5129
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

5130 5131 5132 5133 5134
	if (is_uld(adapter)) {
		mutex_lock(&uld_mutex);
		list_add_tail(&adapter->list_node, &adapter_list);
		mutex_unlock(&uld_mutex);
	}
5135

5136
	print_adapter_info(adapter);
5137
	setup_fw_sge_queues(adapter);
5138
	return 0;
5139

5140
sriov:
5141
#ifdef CONFIG_PCI_IOV
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
		goto free_pci_region;
	}

	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
	adapter->name = pci_name(pdev);
	adapter->mbox = func;
	adapter->pf = func;
	adapter->regs = regs;
5154
	adapter->adap_idx = adap_idx;
5155 5156 5157 5158 5159 5160
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
5161
		goto free_adapter;
5162
	}
5163 5164
	spin_lock_init(&adapter->mbox_lock);
	INIT_LIST_HEAD(&adapter->mlist.list);
5165 5166 5167 5168 5169 5170 5171

	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
			      &v, &port_vec);
	if (err < 0) {
		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5172
		goto free_mbox_log;
5173 5174 5175
	}

	adapter->params.nports = hweight32(port_vec);
5176 5177 5178
	pci_set_drvdata(pdev, adapter);
	return 0;

5179 5180
free_mbox_log:
	kfree(adapter->mbox_log);
5181 5182 5183 5184 5185 5186 5187 5188
 free_adapter:
	kfree(adapter);
 free_pci_region:
	iounmap(regs);
	pci_disable_sriov(pdev);
	pci_release_regions(pdev);
	return err;
#else
5189
	return 0;
5190
#endif
5191 5192

 out_free_dev:
5193
	free_some_resources(adapter);
5194 5195
	if (adapter->flags & USING_MSIX)
		free_msix_info(adapter);
5196 5197
	if (adapter->num_uld || adapter->num_ofld_uld)
		t4_uld_mem_free(adapter);
5198
 out_unmap_bar:
5199
	if (!is_t4(adapter->params.chip))
5200
		iounmap(adapter->bar2);
5201
 out_free_adapter:
5202 5203 5204
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

5205
	kfree(adapter->mbox_log);
5206
	kfree(adapter);
5207 5208
 out_unmap_bar0:
	iounmap(regs);
5209 5210 5211 5212 5213 5214 5215 5216
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
5217
static void remove_one(struct pci_dev *pdev)
5218 5219 5220
{
	struct adapter *adapter = pci_get_drvdata(pdev);

5221 5222 5223 5224
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}
5225

5226
	if (adapter->pf == 4) {
5227 5228
		int i;

5229 5230 5231 5232 5233
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

5234
		if (is_uld(adapter))
5235 5236
			detach_ulds(adapter);

5237 5238
		disable_interrupts(adapter);

5239
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
5240
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5241 5242
				unregister_netdev(adapter->port[i]);

5243
		debugfs_remove_recursive(adapter->debugfs_root);
5244

V
Vipul Pandya 已提交
5245 5246 5247
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
5248
		clear_all_filters(adapter);
V
Vipul Pandya 已提交
5249

5250 5251
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
5252

5253 5254
		if (adapter->flags & USING_MSIX)
			free_msix_info(adapter);
5255 5256
		if (adapter->num_uld || adapter->num_ofld_uld)
			t4_uld_mem_free(adapter);
5257
		free_some_resources(adapter);
5258 5259 5260
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
5261
		iounmap(adapter->regs);
5262
		if (!is_t4(adapter->params.chip))
5263
			iounmap(adapter->bar2);
5264
		pci_disable_pcie_error_reporting(pdev);
5265 5266 5267 5268
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
5269
		pci_release_regions(pdev);
5270
		kfree(adapter->mbox_log);
5271
		synchronize_rcu();
5272
		kfree(adapter);
5273 5274 5275
	}
#ifdef CONFIG_PCI_IOV
	else {
5276
		if (adapter->port[0])
5277 5278
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
5279
		kfree(adapter->vfinfo);
5280
		kfree(adapter->mbox_log);
5281 5282
		kfree(adapter);
		pci_disable_sriov(pdev);
5283
		pci_release_regions(pdev);
5284 5285
	}
#endif
5286 5287
}

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
 * delivery.  This is essentially a stripped down version of the PCI remove()
 * function where we do the minimal amount of work necessary to shutdown any
 * further activity.
 */
static void shutdown_one(struct pci_dev *pdev)
{
	struct adapter *adapter = pci_get_drvdata(pdev);

	/* As with remove_one() above (see extended comment), we only want do
	 * do cleanup on PCI Devices which went all the way through init_one()
	 * ...
	 */
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}

	if (adapter->pf == 4) {
		int i;

		for_each_port(adapter, i)
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
				cxgb_close(adapter->port[i]);

		t4_uld_clean_up(adapter);
		disable_interrupts(adapter);
		disable_msi(adapter);

		t4_sge_stop(adapter);
		if (adapter->flags & FW_OK)
			t4_fw_bye(adapter, adapter->mbox);
	}
#ifdef CONFIG_PCI_IOV
	else {
		if (adapter->port[0])
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
		kfree(adapter->vfinfo);
5327
		kfree(adapter->mbox_log);
5328 5329 5330 5331 5332 5333 5334
		kfree(adapter);
		pci_disable_sriov(pdev);
		pci_release_regions(pdev);
	}
#endif
}

5335 5336 5337 5338
static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
5339
	.remove   = remove_one,
5340
	.shutdown = shutdown_one,
5341 5342 5343
#ifdef CONFIG_PCI_IOV
	.sriov_configure = cxgb4_iov_configure,
#endif
D
Dimitris Michailidis 已提交
5344
	.err_handler = &cxgb4_eeh,
5345 5346 5347 5348 5349 5350 5351 5352 5353
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
5354
		pr_warn("could not create debugfs entry, continuing\n");
5355 5356

	ret = pci_register_driver(&cxgb4_driver);
5357
	if (ret < 0)
5358
		debugfs_remove(cxgb4_debugfs_root);
5359

5360
#if IS_ENABLED(CONFIG_IPV6)
5361 5362 5363 5364
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
5365
#endif
5366

5367 5368 5369 5370 5371
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
5372
#if IS_ENABLED(CONFIG_IPV6)
5373
	if (inet6addr_registered) {
5374 5375 5376
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
5377
#endif
5378 5379 5380 5381 5382 5383
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);