cxgb4_main.c 131.8 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66 67 68 69
#include <asm/uaccess.h>

#include "cxgb4.h"
#include "t4_regs.h"
70
#include "t4_values.h"
71 72
#include "t4_msg.h"
#include "t4fw_api.h"
73
#include "t4fw_version.h"
74
#include "cxgb4_dcb.h"
75
#include "cxgb4_debugfs.h"
76
#include "clip_tbl.h"
77 78
#include "l2t.h"

79 80
char cxgb4_driver_name[] = KBUILD_MODNAME;

81 82 83
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
84
#define DRV_VERSION "2.0.0-ko"
85
const char cxgb4_driver_version[] = DRV_VERSION;
86
#define DRV_DESC "Chelsio T4/T5 Network Driver"
87

V
Vipul Pandya 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* Host shadow copy of ingress filter entry.  This is in host native format
 * and doesn't match the ordering or bit order, etc. of the hardware of the
 * firmware command.  The use of bit-field structure elements is purely to
 * remind ourselves of the field size limitations and save memory in the case
 * where the filter table is large.
 */
struct filter_entry {
	/* Administrative fields for filter.
	 */
	u32 valid:1;            /* filter allocated and valid */
	u32 locked:1;           /* filter is administratively locked */

	u32 pending:1;          /* filter action is pending firmware reply */
	u32 smtidx:8;           /* Source MAC Table index for smac */
	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */

	/* The filter itself.  Most of this is a straight copy of information
	 * provided by the extended ioctl().  Some fields are translated to
	 * internal forms -- for instance the Ingress Queue ID passed in from
	 * the ioctl() is translated into the Absolute Ingress Queue ID.
	 */
	struct ch_filter_specification fs;
};

112 113 114 115
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

116 117 118
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119
	static const struct pci_device_id cxgb4_pci_tbl[] = {
120
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
121

122 123 124 125 126 127 128 129 130 131 132 133 134
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
135

136
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
137
#define FW5_FNAME "cxgb4/t5fw.bin"
138
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
139
#define FW5_CFNAME "cxgb4/t5-config.txt"
140 141 142 143 144 145

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
147
MODULE_FIRMWARE(FW5_FNAME);
148

149 150 151 152 153 154 155 156 157 158 159
/*
 * Normally we're willing to become the firmware's Master PF but will be happy
 * if another PF has already become the Master and initialized the adapter.
 * Setting "force_init" will cause this driver to forcibly establish itself as
 * the Master PF and initialize the adapter.
 */
static uint force_init;

module_param(force_init, uint, 0644);
MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");

160 161 162 163 164 165 166 167 168
/*
 * Normally if the firmware we connect to has Configuration File support, we
 * use that and only fall back to the old Driver-based initialization if the
 * Configuration File fails for some reason.  If force_old_init is set, then
 * we'll always use the old Driver-based initialization sequence.
 */
static uint force_old_init;

module_param(force_old_init, uint, 0644);
169 170
MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
		 " parameter");
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static int dflt_msg_enable = DFLT_MSG_ENABLE;

module_param(dflt_msg_enable, int, 0644);
MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

/*
 * Queue interrupt hold-off timer values.  Queues default to the first of these
 * upon creation.
 */
static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };

module_param_array(intr_holdoff, uint, NULL, 0644);
MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199
		 "0..4 in microseconds, deprecated parameter");
200 201 202 203 204

static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };

module_param_array(intr_cnt, uint, NULL, 0644);
MODULE_PARM_DESC(intr_cnt,
205 206
		 "thresholds 1..3 for queue interrupt packet counters, "
		 "deprecated parameter");
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

222
static bool vf_acls;
223 224 225

#ifdef CONFIG_PCI_IOV
module_param(vf_acls, bool, 0644);
226 227
MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
		 "deprecated parameter");
228

229 230
/* Configure the number of PCI-E Virtual Function which are to be instantiated
 * on SR-IOV Capable Physical Functions.
S
Santosh Rastapur 已提交
231
 */
232
static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233 234

module_param_array(num_vf, uint, NULL, 0644);
235
MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 237
#endif

238 239 240 241 242 243 244 245 246 247 248
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

249
static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250

V
Vipul Pandya 已提交
251
module_param(tp_vlan_pri_map, uint, 0644);
252 253
MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
		 "deprecated parameter");
V
Vipul Pandya 已提交
254

255 256 257 258
static struct dentry *cxgb4_debugfs_root;

static LIST_HEAD(adapter_list);
static DEFINE_MUTEX(uld_mutex);
259 260 261
/* Adapter list to be accessed from atomic context */
static LIST_HEAD(adap_rcu_list);
static DEFINE_SPINLOCK(adap_rcu_lock);
262 263 264 265 266 267 268 269 270 271 272 273 274 275
static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
static const char *uld_str[] = { "RDMA", "iSCSI" };

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

		const char *s = "10Mbps";
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
276
		case 10000:
277 278
			s = "10Gbps";
			break;
279
		case 1000:
280 281
			s = "1000Mbps";
			break;
282
		case 100:
283 284
			s = "100Mbps";
			break;
285
		case 40000:
286 287
			s = "40Gbps";
			break;
288 289 290 291 292 293 294
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

311 312 313 314
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315 316 317 318 319 320 321 322 323 324 325 326 327
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
		err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
					    &name, &value);

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
328 329
		else
			txq->dcb_prio = value;
330 331 332 333
	}
}
#endif /* CONFIG_CHELSIO_T4_DCB */

334 335 336 337 338 339 340 341
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
342 343 344 345 346
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
			cxgb4_dcb_state_init(dev);
			dcb_tx_queue_prio_enable(dev, false);
#endif /* CONFIG_CHELSIO_T4_DCB */
347
			netif_carrier_off(dev);
348
		}
349 350 351 352 353 354 355 356

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
357
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358 359 360 361 362 363 364
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
365
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
}

/*
 * Configure the exact and hash address filters to handle a port's multicast
 * and secondary unicast MAC addresses.
 */
static int set_addr_filters(const struct net_device *dev, bool sleep)
{
	u64 mhash = 0;
	u64 uhash = 0;
	bool free = true;
	u16 filt_idx[7];
	const u8 *addr[7];
	int ret, naddr = 0;
	const struct netdev_hw_addr *ha;
	int uc_cnt = netdev_uc_count(dev);
383
	int mc_cnt = netdev_mc_count(dev);
384
	const struct port_info *pi = netdev_priv(dev);
385
	unsigned int mb = pi->adapter->fn;
386 387 388 389 390

	/* first do the secondary unicast addresses */
	netdev_for_each_uc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392 393 394 395 396 397 398 399 400 401
					naddr, addr, filt_idx, &uhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

	/* next set up the multicast addresses */
402 403 404
	netdev_for_each_mc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406 407 408 409 410 411 412 413 414
					naddr, addr, filt_idx, &mhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

415
	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416 417 418
				uhash | mhash, sleep);
}

419 420 421 422
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

423 424 425 426
/*
 * usecs to sleep while draining the dbfifo
 */
static int dbfifo_drain_delay = 1000;
427 428 429 430
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

431 432 433 434 435 436 437 438 439 440 441
/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	ret = set_addr_filters(dev, sleep_ok);
	if (ret == 0)
442
		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443
				    (dev->flags & IFF_PROMISC) ? 1 : 0,
444
				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445 446 447 448 449 450 451 452 453 454 455 456 457 458
				    sleep_ok);
	return ret;
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
459
	unsigned int mb = pi->adapter->fn;
460 461 462 463 464

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
465
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467
	if (ret == 0) {
468
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
469
				    pi->xact_addr_filt, dev->dev_addr, true,
470
				    true);
471 472 473 474 475 476
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
477 478
		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
				    &pi->link_cfg);
479 480
	if (ret == 0) {
		local_bh_disable();
481 482
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
483 484
		local_bh_enable();
	}
485

486 487 488
	return ret;
}

489 490 491 492 493
int cxgb4_dcb_enabled(const struct net_device *dev)
{
#ifdef CONFIG_CHELSIO_T4_DCB
	struct port_info *pi = netdev_priv(dev);

A
Anish Bhatt 已提交
494 495 496 497 498
	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 500 501 502 503 504 505 506 507 508
#else
	return 0;
#endif
}
EXPORT_SYMBOL(cxgb4_dcb_enabled);

#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
509
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	struct net_device *dev = adap->port[port];
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/* Clear a filter and release any of its resources that we own.  This also
 * clears the filter's "pending" status.
 */
static void clear_filter(struct adapter *adap, struct filter_entry *f)
{
	/* If the new or old filter have loopback rewriteing rules then we'll
	 * need to free any existing Layer Two Table (L2T) entries of the old
	 * filter rule.  The firmware will handle freeing up any Source MAC
	 * Table (SMT) entries used for rewriting Source MAC Addresses in
	 * loopback rules.
	 */
	if (f->l2t)
		cxgb4_l2t_release(f->l2t);

	/* The zeroing of the filter rule below clears the filter valid,
	 * pending, locked flags, l2t pointer, etc. so it's all we need for
	 * this operation.
	 */
	memset(f, 0, sizeof(*f));
}

/* Handle a filter write/deletion reply.
 */
static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
{
	unsigned int idx = GET_TID(rpl);
	unsigned int nidx = idx - adap->tids.ftid_base;
	unsigned int ret;
	struct filter_entry *f;

	if (idx >= adap->tids.ftid_base && nidx <
	   (adap->tids.nftids + adap->tids.nsftids)) {
		idx = nidx;
559
		ret = TCB_COOKIE_G(rpl->cookie);
V
Vipul Pandya 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		f = &adap->tids.ftid_tab[idx];

		if (ret == FW_FILTER_WR_FLT_DELETED) {
			/* Clear the filter when we get confirmation from the
			 * hardware that the filter has been deleted.
			 */
			clear_filter(adap, f);
		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
				idx);
			clear_filter(adap, f);
		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
			f->pending = 0;  /* asynchronous setup completed */
			f->valid = 1;
		} else {
			/* Something went wrong.  Issue a warning about the
			 * problem and clear everything out.
			 */
			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
				idx, ret);
			clear_filter(adap, f);
		}
	}
}

/* Response queue handler for the FW event queue.
587 588 589 590 591 592 593
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

609 610
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
611
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612
		struct sge_txq *txq;
613

614
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615
		txq->restarts++;
616
		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617 618 619 620 621 622 623 624 625 626 627 628 629
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
			struct sge_ofld_txq *oq;

			oq = container_of(txq, struct sge_ofld_txq, q);
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

630 631
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
632
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633
		unsigned int action =
634
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635 636 637

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_GET_PORT_INFO) {
638
			int port = FW_PORT_CMD_PORTID_G(
639 640 641
					be32_to_cpu(pcmd->op_to_portid));
			struct net_device *dev = q->adap->port[port];
			int state_input = ((pcmd->u.info.dcbxdis_pkd &
642
					    FW_PORT_CMD_DCBXDIS_F)
643 644 645 646 647 648 649 650 651 652 653 654 655
					   ? CXGB4_DCB_INPUT_FW_DISABLED
					   : CXGB4_DCB_INPUT_FW_ENABLED);

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
656 657 658 659
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
660 661 662 663
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
664 665 666
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
667
out:
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	return 0;
}

/**
 *	uldrx_handler - response queue handler for ULD queues
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the offload message
 *	@gl: the gather list of packet fragments
 *
 *	Deliver an ingress offload packet to a ULD.  All processing is done by
 *	the ULD, we just maintain statistics.
 */
static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
			 const struct pkt_gl *gl)
{
	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);

685 686 687 688 689 690
	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
	 */
	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
		rsp += 2;

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
		rxq->stats.nomem++;
		return -1;
	}
	if (gl == NULL)
		rxq->stats.imm++;
	else if (gl == CXGB4_MSG_AN)
		rxq->stats.an++;
	else
		rxq->stats.pkts++;
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
721
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722

723
	if (v & PFSW_F) {
724
		adap->swintr = 1;
725
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726
	}
727 728
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
729 730 731 732 733 734 735 736
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
737
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738 739

	/* non-data interrupts */
740
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741 742

	/* FW events */
743 744
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
745 746 747 748 749 750

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

751
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
752 753 754 755 756
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}

	/* offload queues */
757 758
	for_each_ofldrxq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759
			 adap->port[0]->name, i);
760 761 762

	for_each_rdmarxq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763
			 adap->port[0]->name, i);
764 765 766 767

	for_each_rdmaciq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
			 adap->port[0]->name, i);
768 769 770 771 772
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
773 774
	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
	int msi_index = 2;
775 776 777 778 779 780 781

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
782 783 784
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
785 786 787
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
788
		msi_index++;
789 790
	}
	for_each_ofldrxq(s, ofldqidx) {
791 792 793
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
794 795 796
				  &s->ofldrxq[ofldqidx].rspq);
		if (err)
			goto unwind;
797
		msi_index++;
798 799
	}
	for_each_rdmarxq(s, rdmaqidx) {
800 801 802
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
803 804 805
				  &s->rdmarxq[rdmaqidx].rspq);
		if (err)
			goto unwind;
806
		msi_index++;
807
	}
808 809 810 811 812 813 814 815 816
	for_each_rdmaciq(s, rdmaciqqidx) {
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
				  &s->rdmaciq[rdmaciqqidx].rspq);
		if (err)
			goto unwind;
		msi_index++;
	}
817 818 819
	return 0;

unwind:
820 821 822
	while (--rdmaciqqidx >= 0)
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->rdmaciq[rdmaciqqidx].rspq);
823
	while (--rdmaqidx >= 0)
824
		free_irq(adap->msix_info[--msi_index].vec,
825 826
			 &s->rdmarxq[rdmaqidx].rspq);
	while (--ofldqidx >= 0)
827
		free_irq(adap->msix_info[--msi_index].vec,
828 829
			 &s->ofldrxq[ofldqidx].rspq);
	while (--ethqidx >= 0)
830 831
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
832 833 834 835 836 837
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
838
	int i, msi_index = 2;
839 840 841 842
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
843
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844
	for_each_ofldrxq(s, i)
845
		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846
	for_each_rdmarxq(s, i)
847
		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848 849
	for_each_rdmaciq(s, i)
		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850 851
}

852
/**
853
 *	cxgb4_write_rss - write the RSS table for a given port
854 855 856 857 858
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
859
 *	Should never be called before setting up sge eth rx queues
860
 */
861
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
862 863 864
{
	u16 *rss;
	int i, err;
865 866
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
867

868
	rxq = &adapter->sge.ethrxq[pi->first_qset];
869 870 871 872 873 874
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
875
		rss[i] = rxq[*queues].rspq.abs_id;
876

877
	err = t4_config_rss_range(adapter, adapter->fn, pi->viid, 0,
878
				  pi->rss_size, rss, pi->rss_size);
879 880 881 882 883 884 885 886 887 888 889 890 891
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
892 893 894 895
	kfree(rss);
	return err;
}

896 897 898 899
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
900
 *	Sets up RSS for each port.
901 902 903
 */
static int setup_rss(struct adapter *adap)
{
904
	int i, j, err;
905 906 907 908

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

909 910 911 912
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

913
		err = cxgb4_write_rss(pi, pi->rss);
914 915 916 917 918 919
		if (err)
			return err;
	}
	return 0;
}

920 921 922 923 924 925 926 927 928
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

929 930 931 932 933 934 935
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

936
	for (i = 0; i < adap->sge.ingr_sz; i++) {
937 938
		struct sge_rspq *q = adap->sge.ingr_map[i];

939
		if (q && q->handler) {
940
			napi_disable(&q->napi);
941 942 943 944 945 946
			local_bh_disable();
			while (!cxgb_poll_lock_napi(q))
				mdelay(1);
			local_bh_enable();
		}

947 948 949
	}
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

965 966 967 968 969 970 971
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

972
	for (i = 0; i < adap->sge.ingr_sz; i++) {
973 974 975 976
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
977 978
		if (q->handler) {
			cxgb_busy_poll_init_lock(q);
979
			napi_enable(&q->napi);
980
		}
981
		/* 0-increment GTS to start the timer and enable interrupts */
982 983 984
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
985 986 987
	}
}

988 989 990 991 992 993 994 995 996 997 998 999
static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
			   unsigned int nq, unsigned int per_chan, int msi_idx,
			   u16 *ids)
{
	int i, err;

	for (i = 0; i < nq; i++, q++) {
		if (msi_idx > 0)
			msi_idx++;
		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
				       adap->port[i / per_chan],
				       msi_idx, q->fl.size ? &q->fl : NULL,
1000
				       uldrx_handler, 0);
1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (err)
			return err;
		memset(&q->stats, 0, sizeof(q->stats));
		if (ids)
			ids[i] = q->rspq.abs_id;
	}
	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, msi_idx, i, j;
	struct sge *s = &adap->sge;

1023 1024
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
1025 1026 1027 1028 1029

	if (adap->flags & USING_MSIX)
		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1030
				       NULL, NULL, -1);
1031 1032 1033 1034 1035
		if (err)
			return err;
		msi_idx = -((int)s->intrq.abs_id + 1);
	}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
	 * don't forget to update the following which need to be
	 * synchronized to and changes here.
	 *
	 * 1. The calculations of MAX_INGQ in cxgb4.h.
	 *
	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
	 *    to accommodate any new/deleted Ingress Queues
	 *    which need MSI-X Vectors.
	 *
	 * 3. Update sge_qinfo_show() to include information on the
	 *    new/deleted queues.
	 */
1049
	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1050
			       msi_idx, NULL, fwevtq_handler, -1);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (err) {
freeout:	t4_free_sge_resources(adap);
		return err;
	}

	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
			if (msi_idx > 0)
				msi_idx++;
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
					       msi_idx, &q->fl,
1067 1068 1069
					       t4_ethrx_handler,
					       t4_get_mps_bg_map(adap,
								 pi->tx_chan));
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
	for_each_ofldrxq(s, i) {
1086 1087
		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
					    adap->port[i / j],
1088 1089 1090 1091 1092
					    s->fw_evtq.cntxt_id);
		if (err)
			goto freeout;
	}

1093 1094 1095 1096 1097 1098 1099
#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
	if (err) \
		goto freeout; \
	if (msi_idx > 0) \
		msi_idx += nq; \
} while (0)
1100

1101 1102
	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1103 1104
	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1105

1106
#undef ALLOC_OFLD_RXQS
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	for_each_port(adap, i) {
		/*
		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
		 * have RDMA queues, and that's the right value.
		 */
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
					    s->fw_evtq.cntxt_id,
					    s->rdmarxq[i].rspq.cntxt_id);
		if (err)
			goto freeout;
	}

1120
	t4_write_reg(adap, is_t4(adap->params.chip) ?
1121 1122 1123 1124
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1125 1126 1127 1128 1129 1130 1131 1132 1133
	return 0;
}

/*
 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
 * The allocated memory is cleared.
 */
void *t4_alloc_mem(size_t size)
{
1134
	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1135 1136

	if (!p)
E
Eric Dumazet 已提交
1137
		p = vzalloc(size);
1138 1139 1140 1141 1142 1143
	return p;
}

/*
 * Free memory allocated through alloc_mem().
 */
1144
void t4_free_mem(void *addr)
1145 1146 1147 1148 1149 1150 1151
{
	if (is_vmalloc_addr(addr))
		vfree(addr);
	else
		kfree(addr);
}

V
Vipul Pandya 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/* Send a Work Request to write the filter at a specified index.  We construct
 * a Firmware Filter Work Request to have the work done and put the indicated
 * filter into "pending" mode which will prevent any further actions against
 * it till we get a reply from the firmware on the completion status of the
 * request.
 */
static int set_filter_wr(struct adapter *adapter, int fidx)
{
	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
	struct sk_buff *skb;
	struct fw_filter_wr *fwr;
	unsigned int ftid;

1165 1166 1167 1168
	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

V
Vipul Pandya 已提交
1169 1170 1171 1172 1173 1174 1175
	/* If the new filter requires loopback Destination MAC and/or VLAN
	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
	 * the filter.
	 */
	if (f->fs.newdmac || f->fs.newvlan) {
		/* allocate L2T entry for new filter */
		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1176 1177
		if (f->l2t == NULL) {
			kfree_skb(skb);
V
Vipul Pandya 已提交
1178
			return -EAGAIN;
1179
		}
V
Vipul Pandya 已提交
1180 1181 1182 1183
		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
					f->fs.eport, f->fs.dmac)) {
			cxgb4_l2t_release(f->l2t);
			f->l2t = NULL;
1184
			kfree_skb(skb);
V
Vipul Pandya 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
			return -ENOMEM;
		}
	}

	ftid = adapter->tids.ftid_base + fidx;

	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
	memset(fwr, 0, sizeof(*fwr));

	/* It would be nice to put most of the following in t4_hw.c but most
	 * of the work is translating the cxgbtool ch_filter_specification
	 * into the Work Request and the definition of that structure is
	 * currently in cxgbtool.h which isn't appropriate to pull into the
	 * common code.  We may eventually try to come up with a more neutral
	 * filter specification structure but for now it's easiest to simply
	 * put this fairly direct code in line ...
	 */
1202 1203
	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
V
Vipul Pandya 已提交
1204
	fwr->tid_to_iq =
1205 1206 1207 1208
		htonl(FW_FILTER_WR_TID_V(ftid) |
		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
		      FW_FILTER_WR_NOREPLY_V(0) |
		      FW_FILTER_WR_IQ_V(f->fs.iq));
V
Vipul Pandya 已提交
1209
	fwr->del_filter_to_l2tix =
1210 1211 1212 1213 1214 1215 1216 1217 1218
		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
V
Vipul Pandya 已提交
1219
					     f->fs.newvlan == VLAN_REWRITE) |
1220
		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
V
Vipul Pandya 已提交
1221
					    f->fs.newvlan == VLAN_REWRITE) |
1222 1223 1224 1225
		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
V
Vipul Pandya 已提交
1226 1227 1228
	fwr->ethtype = htons(f->fs.val.ethtype);
	fwr->ethtypem = htons(f->fs.mask.ethtype);
	fwr->frag_to_ovlan_vldm =
1229 1230 1231 1232 1233 1234
		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
V
Vipul Pandya 已提交
1235 1236
	fwr->smac_sel = 0;
	fwr->rx_chan_rx_rpl_iq =
1237 1238
		htons(FW_FILTER_WR_RX_CHAN_V(0) |
		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
V
Vipul Pandya 已提交
1239
	fwr->maci_to_matchtypem =
1240 1241 1242 1243 1244 1245 1246 1247
		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
V
Vipul Pandya 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	fwr->ptcl = f->fs.val.proto;
	fwr->ptclm = f->fs.mask.proto;
	fwr->ttyp = f->fs.val.tos;
	fwr->ttypm = f->fs.mask.tos;
	fwr->ivlan = htons(f->fs.val.ivlan);
	fwr->ivlanm = htons(f->fs.mask.ivlan);
	fwr->ovlan = htons(f->fs.val.ovlan);
	fwr->ovlanm = htons(f->fs.mask.ovlan);
	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
	fwr->lp = htons(f->fs.val.lport);
	fwr->lpm = htons(f->fs.mask.lport);
	fwr->fp = htons(f->fs.val.fport);
	fwr->fpm = htons(f->fs.mask.fport);
	if (f->fs.newsmac)
		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));

	/* Mark the filter as "pending" and ship off the Filter Work Request.
	 * When we get the Work Request Reply we'll clear the pending status.
	 */
	f->pending = 1;
	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
	t4_ofld_send(adapter, skb);
	return 0;
}

/* Delete the filter at a specified index.
 */
static int del_filter_wr(struct adapter *adapter, int fidx)
{
	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
	struct sk_buff *skb;
	struct fw_filter_wr *fwr;
	unsigned int len, ftid;

	len = sizeof(*fwr);
	ftid = adapter->tids.ftid_base + fidx;

1288 1289 1290 1291
	skb = alloc_skb(len, GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

V
Vipul Pandya 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);

	/* Mark the filter as "pending" and ship off the Filter Work Request.
	 * When we get the Work Request Reply we'll clear the pending status.
	 */
	f->pending = 1;
	t4_mgmt_tx(adapter, skb);
	return 0;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
	if (cxgb4_dcb_enabled(dev)) {
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
1326 1327 1328 1329
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static inline int is_offload(const struct adapter *adap)
{
	return adap->params.offload;
}

static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
1387
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1388 1389 1390 1391 1392 1393 1394
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
1395 1396
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
1397
{
1398 1399
	struct adapter *adap = q->adap;

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
1410 1411 1412 1413
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1414 1415
			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
					    &new_idx);
1416 1417 1418 1419 1420 1421 1422
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1423
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1424 1425 1426
	return 0;
}

1427
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1428
{
1429
	const struct port_info *pi = netdev_priv(dev);
1430
	netdev_features_t changed = dev->features ^ features;
1431 1432
	int err;

1433
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1434
		return 0;
1435

1436 1437
	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
			    -1, -1, -1,
1438
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1439
	if (unlikely(err))
1440
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1441
	return err;
D
Dimitris Michailidis 已提交
1442 1443
}

B
Bill Pemberton 已提交
1444
static int setup_debugfs(struct adapter *adap)
1445 1446 1447 1448
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1449 1450 1451
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1470
		atid = (p - t->atid_tab) + t->atid_base;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1485
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1517 1518 1519 1520 1521 1522 1523 1524
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
		if (family == PF_INET)
			t->stids_in_use++;
		else
			t->stids_in_use += 4;
1525 1526 1527 1528 1529 1530
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1550 1551
		stid -= t->nstids;
		stid += t->sftid_base;
1552 1553 1554 1555 1556 1557 1558 1559
		t->stids_in_use++;
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1560 1561 1562
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1563 1564 1565 1566 1567 1568 1569 1570
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1571 1572 1573 1574 1575 1576
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
		bitmap_release_region(t->stid_bmap, stid, 2);
	t->stid_tab[stid].data = NULL;
1577 1578 1579 1580
	if (family == PF_INET)
		t->stids_in_use--;
	else
		t->stids_in_use -= 4;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1603 1604
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1615
		queue_work(adap->workq, &adap->tid_release_task);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
{
	void *old;
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

	old = t->tid_tab[tid];
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		t->tid_tab[tid] = NULL;
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
	if (old)
		atomic_dec(&t->tids_in_use);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
	size_t size;
V
Vipul Pandya 已提交
1681
	unsigned int stid_bmap_size;
1682
	unsigned int natids = t->natids;
1683
	struct adapter *adap = container_of(t, struct adapter, tids);
1684

1685
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
V
Vipul Pandya 已提交
1686 1687
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1688
	       t->nstids * sizeof(*t->stid_tab) +
1689
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1690
	       stid_bmap_size * sizeof(long) +
1691 1692
	       t->nftids * sizeof(*t->ftid_tab) +
	       t->nsftids * sizeof(*t->ftid_tab);
V
Vipul Pandya 已提交
1693

1694 1695 1696 1697 1698 1699
	t->tid_tab = t4_alloc_mem(size);
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1700
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1701
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);

	t->stids_in_use = 0;
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1716
	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1717 1718 1719 1720 1721
	/* Reserve stid 0 for T4/T5 adapters */
	if (!t->stid_base &&
	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
		__set_bit(0, t->stid_bmap);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1737 1738
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1739 1740 1741 1742 1743
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1744
	int ret;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1758
	chan = rxq_to_chan(&adap->sge, queue);
1759
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1760 1761
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1762 1763
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1764 1765 1766
}
EXPORT_SYMBOL(cxgb4_create_server);

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1802
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1803 1804
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1827 1828
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1829 1830 1831 1832 1833
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1940 1941 1942
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1943
	u32 v1, v2, lp_count, hp_count;
1944

1945 1946
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1947
	if (is_t4(adap->params.chip)) {
1948 1949
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1950
	} else {
1951 1952
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1953 1954
	}
	return lpfifo ? lp_count : hp_count;
1955 1956 1957
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
	t4_tp_get_tcp_stats(adap, v4, v6);
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1998 1999 2000 2001
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
2002 2003 2004
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

2005 2006 2007 2008 2009 2010
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);
	int ret;

	ret = t4_fwaddrspace_write(adap, adap->mbox,
2011
				   0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
2012 2013 2014 2015 2016 2017
	return ret;
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
2018
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2019 2020 2021
	__be64 indices;
	int ret;

2022 2023 2024 2025 2026
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
2027
	if (!ret) {
2028 2029
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
2047
		u32 val;
2048 2049 2050 2051 2052

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
2053 2054 2055 2056 2057

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
2058
		wmb();
2059 2060
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
2061 2062 2063 2064 2065 2066
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

2067 2068 2069 2070 2071
void cxgb4_disable_db_coalescing(struct net_device *dev)
{
	struct adapter *adap;

	adap = netdev2adap(dev);
2072
	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2073
			 NOCOALESCE_F);
2074 2075 2076 2077 2078 2079 2080 2081
}
EXPORT_SYMBOL(cxgb4_disable_db_coalescing);

void cxgb4_enable_db_coalescing(struct net_device *dev)
{
	struct adapter *adap;

	adap = netdev2adap(dev);
2082
	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2083 2084 2085
}
EXPORT_SYMBOL(cxgb4_enable_db_coalescing);

2086 2087 2088 2089
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
2090
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
2104 2105 2106 2107 2108 2109
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
		} else if (is_t4(adap->params.chip)) {
			/* T4 only has a single memory channel */
			goto err;
		} else {
2129 2130
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

2154 2155 2156 2157 2158 2159
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
2160 2161
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2162 2163 2164 2165 2166

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

2167 2168 2169 2170 2171 2172
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
2173
	return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2174 2175 2176 2177 2178 2179 2180 2181 2182
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

	if (netdev->priv_flags & IFF_802_1Q_VLAN)
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

2216 2217
static void drain_db_fifo(struct adapter *adap, int usecs)
{
2218
	u32 v1, v2, lp_count, hp_count;
2219 2220

	do {
2221 2222
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2223
		if (is_t4(adap->params.chip)) {
2224 2225
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
2226
		} else {
2227 2228
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
2229 2230 2231 2232
		}

		if (lp_count == 0 && hp_count == 0)
			break;
2233 2234 2235 2236 2237 2238 2239
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
2240 2241 2242
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
2243
	q->db_disabled = 1;
2244
	spin_unlock_irqrestore(&q->db_lock, flags);
2245 2246
}

2247
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2248 2249
{
	spin_lock_irq(&q->db_lock);
2250 2251 2252 2253 2254
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
2255 2256
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2257 2258
		q->db_pidx_inc = 0;
	}
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
	for_each_ofldrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ofldtxq[i].q);
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
2280
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2281
	for_each_ofldrxq(&adap->sge, i)
2282
		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2283
	for_each_port(adap, i)
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
	if (adap->uld_handle[CXGB4_ULD_RDMA])
		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
				cmd);
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2303 2304 2305
	t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2306 2307 2308 2309 2310 2311 2312
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

2313
	spin_lock_irq(&q->db_lock);
2314 2315 2316 2317 2318
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
2319
		u32 val;
2320 2321 2322 2323 2324

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
2325 2326 2327 2328 2329

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
2330
		wmb();
2331 2332
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
2333 2334 2335
	}
out:
	q->db_disabled = 0;
2336 2337
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
	for_each_ofldrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2353 2354 2355 2356
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2357
	adap = container_of(work, struct adapter, db_drop_task);
2358

2359
	if (is_t4(adap->params.chip)) {
2360
		drain_db_fifo(adap, dbfifo_drain_delay);
2361
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2362
		drain_db_fifo(adap, dbfifo_drain_delay);
2363
		recover_all_queues(adap);
2364
		drain_db_fifo(adap, dbfifo_drain_delay);
2365
		enable_dbs(adap);
2366
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2367 2368 2369 2370
	} else {
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2371 2372 2373
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2374

2375
		ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2376 2377 2378 2379 2380
					&bar2_qoffset, &bar2_qid);
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2381
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2382
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2383 2384 2385 2386 2387

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2388
	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2389 2390 2391 2392
}

void t4_db_full(struct adapter *adap)
{
2393
	if (is_t4(adap->params.chip)) {
2394 2395
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2396 2397
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2398
		queue_work(adap->workq, &adap->db_full_task);
2399
	}
2400 2401 2402 2403
}

void t4_db_dropped(struct adapter *adap)
{
2404 2405 2406 2407
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2408
	queue_work(adap->workq, &adap->db_drop_task);
2409 2410
}

2411 2412 2413 2414
static void uld_attach(struct adapter *adap, unsigned int uld)
{
	void *handle;
	struct cxgb4_lld_info lli;
2415
	unsigned short i;
2416 2417

	lli.pdev = adap->pdev;
2418
	lli.pf = adap->fn;
2419 2420 2421 2422 2423 2424 2425
	lli.l2t = adap->l2t;
	lli.tids = &adap->tids;
	lli.ports = adap->port;
	lli.vr = &adap->vres;
	lli.mtus = adap->params.mtus;
	if (uld == CXGB4_ULD_RDMA) {
		lli.rxq_ids = adap->sge.rdma_rxq;
2426
		lli.ciq_ids = adap->sge.rdma_ciq;
2427
		lli.nrxq = adap->sge.rdmaqs;
2428
		lli.nciq = adap->sge.rdmaciqs;
2429 2430 2431 2432 2433 2434 2435 2436
	} else if (uld == CXGB4_ULD_ISCSI) {
		lli.rxq_ids = adap->sge.ofld_rxq;
		lli.nrxq = adap->sge.ofldqsets;
	}
	lli.ntxq = adap->sge.ofldqsets;
	lli.nchan = adap->params.nports;
	lli.nports = adap->params.nports;
	lli.wr_cred = adap->params.ofldq_wr_cred;
2437
	lli.adapter_type = adap->params.chip;
2438
	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2439
	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2440 2441
	lli.udb_density = 1 << adap->params.sge.eq_qpp;
	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2442
	lli.filt_mode = adap->params.tp.vlan_pri_map;
2443 2444 2445
	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
	for (i = 0; i < NCHAN; i++)
		lli.tx_modq[i] = i;
2446 2447
	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2448
	lli.fw_vers = adap->params.fw_vers;
2449
	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2450 2451
	lli.sge_ingpadboundary = adap->sge.fl_align;
	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2452 2453
	lli.sge_pktshift = adap->sge.pktshift;
	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2454 2455
	lli.max_ordird_qp = adap->params.max_ordird_qp;
	lli.max_ird_adapter = adap->params.max_ird_adapter;
2456
	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2457
	lli.nodeid = dev_to_node(adap->pdev_dev);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

	handle = ulds[uld].add(&lli);
	if (IS_ERR(handle)) {
		dev_warn(adap->pdev_dev,
			 "could not attach to the %s driver, error %ld\n",
			 uld_str[uld], PTR_ERR(handle));
		return;
	}

	adap->uld_handle[uld] = handle;

	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
2473 2474 2475

	if (adap->flags & FULL_INIT_DONE)
		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2476 2477 2478 2479 2480 2481
}

static void attach_ulds(struct adapter *adap)
{
	unsigned int i;

2482 2483 2484 2485
	spin_lock(&adap_rcu_lock);
	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
	spin_unlock(&adap_rcu_lock);

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	mutex_lock(&uld_mutex);
	list_add_tail(&adap->list_node, &adapter_list);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (ulds[i].add)
			uld_attach(adap, i);
	mutex_unlock(&uld_mutex);
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i]) {
			ulds[i].state_change(adap->uld_handle[i],
					     CXGB4_STATE_DETACH);
			adap->uld_handle[i] = NULL;
		}
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
2511 2512 2513 2514

	spin_lock(&adap_rcu_lock);
	list_del_rcu(&adap->rcu_node);
	spin_unlock(&adap_rcu_lock);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i])
			ulds[i].state_change(adap->uld_handle[i], new_state);
	mutex_unlock(&uld_mutex);
}

/**
 *	cxgb4_register_uld - register an upper-layer driver
 *	@type: the ULD type
 *	@p: the ULD methods
 *
 *	Registers an upper-layer driver with this driver and notifies the ULD
 *	about any presently available devices that support its type.  Returns
 *	%-EBUSY if a ULD of the same type is already registered.
 */
int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
{
	int ret = 0;
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	if (ulds[type].add) {
		ret = -EBUSY;
		goto out;
	}
	ulds[type] = *p;
	list_for_each_entry(adap, &adapter_list, list_node)
		uld_attach(adap, type);
out:	mutex_unlock(&uld_mutex);
	return ret;
}
EXPORT_SYMBOL(cxgb4_register_uld);

/**
 *	cxgb4_unregister_uld - unregister an upper-layer driver
 *	@type: the ULD type
 *
 *	Unregisters an existing upper-layer driver.
 */
int cxgb4_unregister_uld(enum cxgb4_uld type)
{
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	list_for_each_entry(adap, &adapter_list, list_node)
		adap->uld_handle[type] = NULL;
	ulds[type].add = NULL;
	mutex_unlock(&uld_mutex);
	return 0;
}
EXPORT_SYMBOL(cxgb4_unregister_uld);

2578
#if IS_ENABLED(CONFIG_IPV6)
2579 2580
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2581
{
2582 2583 2584 2585
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2586
	struct adapter *adap;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
#endif
	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2609

2610 2611
	if (event_dev)
		parent = event_dev->dev.parent;
2612

2613
	if (parent && parent->driver == &cxgb4_driver.driver) {
2614 2615
		switch (event) {
		case NETDEV_UP:
2616
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2617 2618
			break;
		case NETDEV_DOWN:
2619
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2620 2621 2622 2623 2624
			break;
		default:
			break;
		}
	}
2625
	return NOTIFY_OK;
2626 2627
}

2628
static bool inet6addr_registered;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2646
			ret = cxgb4_update_root_dev_clip(dev);
2647 2648 2649 2650 2651 2652

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2653
#endif /* IS_ENABLED(CONFIG_IPV6) */
2654

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2667
	int err;
2668

2669 2670 2671 2672 2673 2674
	err = setup_sge_queues(adap);
	if (err)
		goto out;
	err = setup_rss(adap);
	if (err)
		goto freeq;
2675 2676

	if (adap->flags & USING_MSIX) {
2677
		name_msix_vecs(adap);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;

		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2691
				  adap->port[0]->name, adap);
2692 2693 2694 2695 2696 2697
		if (err)
			goto irq_err;
	}
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2698
	adap->flags |= FULL_INIT_DONE;
2699
	notify_ulds(adap, CXGB4_STATE_UP);
2700
#if IS_ENABLED(CONFIG_IPV6)
2701
	update_clip(adap);
2702
#endif
2703 2704 2705 2706
 out:
	return err;
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2707 2708
 freeq:
	t4_free_sge_resources(adap);
2709 2710 2711 2712 2713 2714
	goto out;
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2715 2716
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2717
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2718
	adapter->tid_release_head = NULL;
2719

2720 2721 2722
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2734 2735
	netif_carrier_off(dev);

2736 2737 2738 2739 2740
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2741

2742 2743 2744 2745
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2746 2747 2748 2749 2750 2751 2752 2753 2754
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2755
	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2756 2757
}

V
Vipul Pandya 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/* Return an error number if the indicated filter isn't writable ...
 */
static int writable_filter(struct filter_entry *f)
{
	if (f->locked)
		return -EPERM;
	if (f->pending)
		return -EBUSY;

	return 0;
}

/* Delete the filter at the specified index (if valid).  The checks for all
 * the common problems with doing this like the filter being locked, currently
 * pending in another operation, etc.
 */
static int delete_filter(struct adapter *adapter, unsigned int fidx)
{
	struct filter_entry *f;
	int ret;

2779
	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
V
Vipul Pandya 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		return -EINVAL;

	f = &adapter->tids.ftid_tab[fidx];
	ret = writable_filter(f);
	if (ret)
		return ret;
	if (f->valid)
		return del_filter_wr(adapter, fidx);

	return 0;
}

2792
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2793 2794
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2795 2796 2797 2798 2799 2800 2801 2802 2803
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2804
	/* Adjust stid to correct filter index */
2805
	stid -= adap->tids.sftid_base;
2806 2807
	stid += adap->tids.nftids;

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2826
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2827 2828 2829 2830
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2831
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2832 2833 2834 2835
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2836

2837
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2838 2839 2840 2841
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2866 2867

	/* Adjust stid to correct filter index */
2868
	stid -= adap->tids.sftid_base;
2869 2870
	stid += adap->tids.nftids;

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

	ret = delete_filter(adap, stid);
	if (ret)
		return ret;

	return 0;
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2883 2884
static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
						struct rtnl_link_stats64 *ns)
2885 2886 2887 2888 2889
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2890 2891 2892 2893
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2894
	spin_lock(&adapter->stats_lock);
2895 2896 2897 2898
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
		return ns;
	}
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	t4_get_port_stats(adapter, p->tx_chan, &stats);
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
	return ns;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2935
	unsigned int mbox;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2958
		mbox = pi->adapter->fn;
2959
		if (cmd == SIOCGMIIREG)
2960
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2961 2962
					 data->reg_num, &data->val_out);
		else
2963
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
					 data->reg_num, data->val_in);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
		return -EINVAL;
2985 2986
	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
			    -1, -1, -1, true);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2999
		return -EADDRNOTAVAIL;
3000

3001 3002
	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
			    pi->xact_addr_filt, addr->sa_data, true, true);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
3032
	.ndo_select_queue     =	cxgb_select_queue,
3033
	.ndo_get_stats64      = cxgb_get_stats,
3034 3035
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
3036
	.ndo_set_features     = cxgb_set_features,
3037 3038 3039 3040 3041 3042
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
3043 3044 3045 3046
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
3047 3048 3049 3050
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll        = cxgb_busy_poll,
#endif

3051 3052 3053 3054
};

void t4_fatal_err(struct adapter *adap)
{
3055
	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3056 3057 3058 3059
	t4_intr_disable(adap);
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/* Return the specified PCI-E Configuration Space register from our Physical
 * Function.  We try first via a Firmware LDST Command since we prefer to let
 * the firmware own all of these registers, but if that fails we go for it
 * directly ourselves.
 */
static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
{
	struct fw_ldst_cmd ldst_cmd;
	u32 val;
	int ret;

	/* Construct and send the Firmware LDST Command to retrieve the
	 * specified PCI-E Configuration Space register.
	 */
	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
	ldst_cmd.op_to_addrspace =
3076 3077 3078
		htonl(FW_CMD_OP_V(FW_LDST_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F |
3079
		      FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3080
	ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3081
	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3082
	ldst_cmd.u.pcie.ctrl_to_fn =
3083
		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	ldst_cmd.u.pcie.r = reg;
	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
			 &ldst_cmd);

	/* If the LDST Command suucceeded, exctract the returned register
	 * value.  Otherwise read it directly ourself.
	 */
	if (ret == 0)
		val = ntohl(ldst_cmd.u.pcie.data[0]);
	else
		t4_hw_pci_read_cfg4(adap, reg, &val);

	return val;
}

3099 3100
static void setup_memwin(struct adapter *adap)
{
3101
	u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3102

3103
	if (is_t4(adap->params.chip)) {
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
		u32 bar0;

		/* Truncation intentional: we only read the bottom 32-bits of
		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
		 * mechanism to read BAR0 instead of using
		 * pci_resource_start() because we could be operating from
		 * within a Virtual Machine which is trapping our accesses to
		 * our Configuration Space and we need to set up the PCI-E
		 * Memory Window decoders with the actual addresses which will
		 * be coming across the PCI-E link.
		 */
		bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
		bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
		adap->t4_bar0 = bar0;

S
Santosh Rastapur 已提交
3119 3120 3121
		mem_win0_base = bar0 + MEMWIN0_BASE;
		mem_win1_base = bar0 + MEMWIN1_BASE;
		mem_win2_base = bar0 + MEMWIN2_BASE;
3122
		mem_win2_aperture = MEMWIN2_APERTURE;
S
Santosh Rastapur 已提交
3123 3124 3125
	} else {
		/* For T5, only relative offset inside the PCIe BAR is passed */
		mem_win0_base = MEMWIN0_BASE;
3126
		mem_win1_base = MEMWIN1_BASE;
S
Santosh Rastapur 已提交
3127
		mem_win2_base = MEMWIN2_BASE_T5;
3128
		mem_win2_aperture = MEMWIN2_APERTURE_T5;
S
Santosh Rastapur 已提交
3129
	}
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
		     mem_win0_base | BIR_V(0) |
		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
		     mem_win1_base | BIR_V(0) |
		     WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
		     mem_win2_base | BIR_V(0) |
		     WINDOW_V(ilog2(mem_win2_aperture) - 10));
	t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3140 3141 3142 3143
}

static void setup_memwin_rdma(struct adapter *adap)
{
3144
	if (adap->vres.ocq.size) {
3145 3146
		u32 start;
		unsigned int sz_kb;
3147

3148 3149 3150
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3151 3152
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
3153 3154
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3155
		t4_write_reg(adap,
3156
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3157 3158
			     adap->vres.ocq.start);
		t4_read_reg(adap,
3159
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3160
	}
3161 3162
}

3163 3164 3165 3166 3167 3168 3169
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
3170 3171
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3172
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3173
	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	if (ret < 0)
		return ret;

	/* select capabilities we'll be using */
	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
		if (!vf_acls)
			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
		else
			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
	} else if (vf_acls) {
		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
		return ret;
	}
3187 3188
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3189
	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3190 3191 3192
	if (ret < 0)
		return ret;

3193
	ret = t4_config_glbl_rss(adap, adap->fn,
3194
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3195 3196
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3197 3198 3199
	if (ret < 0)
		return ret;

3200 3201 3202
	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3203 3204 3205 3206 3207 3208
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3209
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3210
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3211 3212 3213
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3214

3215 3216
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3217 3218
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3219 3220 3221

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3222
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3223
			  &v, 1, TP_TX_SCHED_HDR_A);
3224
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3225
			  &v, 1, TP_TX_SCHED_FIFO_A);
3226
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3227
			  &v, 1, TP_TX_SCHED_PCMD_A);
3228 3229 3230

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3241 3242
	}

3243 3244
	/* get basic stuff going */
	return t4_early_init(adap, adap->fn);
3245 3246
}

3247 3248 3249 3250 3251
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3286 3287 3288
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3289 3290 3291 3292 3293

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3294 3295
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	return 0;
}

/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3309 3310
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3311
	char *fw_config_file, fw_config_file_path[256];
3312
	char *config_name = NULL;
3313 3314 3315 3316 3317 3318

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3319
				  PIORSTMODE_F | PIORST_F);
3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (ret < 0)
			goto bye;
	}

	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3329
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3330
	case CHELSIO_T4:
3331
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3344
	if (ret < 0) {
3345
		config_name = "On FLASH";
3346 3347 3348 3349 3350
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3351 3352 3353 3354
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3355 3356 3357
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3358 3359
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3360 3361 3362 3363
			ret = t4_query_params(adapter, adapter->mbox,
					      adapter->fn, 0, 1, params, val);
			if (ret == 0) {
				/*
3364
				 * For t4_memory_rw() below addresses and
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3377 3378
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3379

3380 3381 3382
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3393 3394 3395 3396
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3397
				}
3398
				spin_unlock(&adapter->win0_lock);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3415 3416 3417
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3418
	caps_cmd.cfvalid_to_len16 =
3419 3420 3421
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3422 3423 3424
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3435 3436 3437
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3438 3439 3440 3441 3442 3443 3444
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3460 3461 3462
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3463
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3485 3486
	/* Emit Firmware Configuration File information and return
	 * successfully.
3487 3488
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3489 3490
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3491 3492 3493 3494 3495 3496 3497 3498
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3499 3500 3501
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3502 3503 3504
	return ret;
}

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
	}
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3546 3547 3548 3549 3550 3551 3552 3553 3554
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3555
	struct fw_caps_config_cmd caps_cmd;
3556
	int reset = 1;
3557

3558 3559 3560 3561 3562 3563 3564
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3565 3566
	/* Contact FW, advertising Master capability */
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3567 3568 3569 3570 3571
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3572 3573
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3574

3575 3576 3577 3578 3579 3580 3581
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3582 3583
	t4_get_fw_version(adap, &adap->params.fw_vers);
	t4_get_tp_version(adap, &adap->params.tp_vers);
3584
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3600
		}
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
		card_fw = t4_alloc_mem(sizeof(*card_fw));

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3624
		release_firmware(fw);
3625 3626
		t4_free_mem(card_fw);

3627
		if (ret < 0)
3628
			goto bye;
3629
	}
3630

3631 3632 3633 3634 3635 3636 3637 3638
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
	ret = get_vpd_params(adap, &adap->params.vpd);
3639 3640 3641
	if (ret < 0)
		goto bye;

3642
	/*
3643 3644 3645
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3646 3647
	 */
	v =
3648 3649
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3650
	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3651 3652 3653
	if (ret < 0)
		goto bye;

3654 3655 3656
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3657 3658
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3659 3660 3661 3662 3663 3664 3665 3666
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3667 3668 3669

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3670
		 */
3671 3672 3673 3674
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
				      params, val);
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3694 3695
		}
		if (ret < 0) {
3696 3697
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3698 3699 3700 3701
			goto bye;
		}
	}

3702 3703 3704
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3705
	 */
3706 3707 3708
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3709

3710 3711 3712
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3713 3714 3715 3716
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3717 3718
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3719

3720
#define FW_PARAM_PFVF(param) \
3721 3722 3723 3724
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3725

3726
	params[0] = FW_PARAM_PFVF(EQ_START);
3727 3728 3729 3730
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3731
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3732
	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3733 3734
	if (ret < 0)
		goto bye;
3735 3736 3737
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3738 3739
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3740
	adap->sge.ingr_start = val[5];
3741

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
	 * ie starving_fl and txq_maperr.
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3787 3788 3789 3790 3791 3792 3793 3794
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3808 3809 3810 3811 3812 3813 3814 3815 3816
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3832 3833 3834 3835 3836
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3837 3838
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3839
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3840 3841 3842 3843 3844
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3845
	if (caps_cmd.ofldcaps) {
3846 3847 3848 3849 3850 3851 3852
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3853 3854
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
				      params, val);
3855 3856 3857 3858 3859 3860
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3861
		/*
3862
		 * Setup server filter region. Divide the available filter
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
3878 3879 3880
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
3881

3882 3883
		adap->params.offload = 1;
	}
3884
	if (caps_cmd.rdmacaps) {
3885 3886 3887 3888 3889 3890
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3891 3892
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
				      params, val);
3893 3894 3895 3896 3897 3898 3899 3900
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3901 3902 3903 3904 3905

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3906 3907
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
3908 3909
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
				      val);
3910 3911 3912 3913 3914 3915
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
3916 3917
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
3918 3919 3920

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3921 3922
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
				      val);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
3935
	}
3936
	if (caps_cmd.iscsicaps) {
3937 3938
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
3939 3940
		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
				      params, val);
3941 3942 3943 3944 3945 3946 3947 3948
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
	}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

3949 3950 3951 3952
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
3953
	 */
3954
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
3980

3981 3982 3983
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
3984
	t4_init_sge_params(adap);
3985
	t4_init_tp_params(adap);
3986
	adap->flags |= FW_OK;
3987 3988 3989
	return 0;

	/*
3990 3991 3992
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
3993
	 */
3994
bye:
3995 3996 3997 3998
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
3999 4000
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4001 4002 4003
	return ret;
}

D
Dimitris Michailidis 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4018
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4019 4020 4021 4022 4023 4024
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		netif_device_detach(dev);
		netif_carrier_off(dev);
	}
4025
	spin_unlock(&adap->stats_lock);
4026
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4027 4028 4029
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4030 4031 4032 4033
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4050 4051 4052 4053 4054 4055 4056
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4057 4058 4059 4060 4061 4062 4063
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4064
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4065
		return PCI_ERS_RESULT_DISCONNECT;
4066
	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4067 4068 4069 4070 4071 4072 4073 4074
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4075 4076
		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4077 4078 4079 4080 4081 4082 4083 4084
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4085
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		if (netif_running(dev)) {
			link_start(dev);
			cxgb_set_rxmode(dev);
		}
		netif_device_attach(dev);
	}
	rtnl_unlock();
}

4112
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4113 4114 4115 4116 4117
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4118
static inline bool is_x_10g_port(const struct link_config *lc)
4119
{
4120 4121
	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4122 4123
}

4124 4125
static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
			     unsigned int us, unsigned int cnt,
4126 4127
			     unsigned int size, unsigned int iqe_size)
{
4128
	q->adap = adap;
4129
	cxgb4_set_rspq_intr_params(q, us, cnt);
4130 4131 4132 4133 4134 4135 4136 4137 4138
	q->iqe_len = iqe_size;
	q->size = size;
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4139
static void cfg_queues(struct adapter *adap)
4140 4141
{
	struct sge *s = &adap->sge;
4142 4143 4144 4145
	int i, n10g = 0, qidx = 0;
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4146
	int ciq_size;
4147 4148

	for_each_port(adap, i)
4149
		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4160

4161 4162 4163 4164 4165 4166 4167 4168
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
		pi->nqsets = 8;
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4169 4170 4171 4172 4173 4174
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4175 4176
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4177 4178 4179 4180 4181

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4182
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4183 4184
		qidx += pi->nqsets;
	}
4185
#endif /* !CONFIG_CHELSIO_T4_DCB */
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

	if (is_offload(adap)) {
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
				  num_online_cpus());
			s->ofldqsets = roundup(i, adap->params.nports);
		} else
			s->ofldqsets = adap->params.nports;
		/* For RDMA one Rx queue per channel suffices */
		s->rdmaqs = adap->params.nports;
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		/* Try and allow at least 1 CIQ per cpu rounding down
		 * to the number of ports, with a minimum of 1 per port.
		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
		 */
		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
				adap->params.nports;
		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4214 4215 4216 4217 4218
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4219
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
		s->ofldtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
		struct sge_ofld_rxq *r = &s->ofldrxq[i];

4235
		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4236 4237 4238 4239 4240 4241 4242
		r->rspq.uld = CXGB4_ULD_ISCSI;
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
		struct sge_ofld_rxq *r = &s->rdmarxq[i];

4243
		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4244 4245 4246 4247
		r->rspq.uld = CXGB4_ULD_RDMA;
		r->fl.size = 72;
	}

4248 4249 4250 4251 4252 4253 4254 4255 4256
	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
	if (ciq_size > SGE_MAX_IQ_SIZE) {
		CH_WARN(adap, "CIQ size too small for available IQs\n");
		ciq_size = SGE_MAX_IQ_SIZE;
	}

	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
		struct sge_ofld_rxq *r = &s->rdmaciq[i];

4257
		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4258 4259 4260
		r->rspq.uld = CXGB4_ULD_RDMA;
	}

4261 4262
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4263 4264 4265 4266 4267 4268
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4269
static void reduce_ethqs(struct adapter *adap, int n)
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4296
static int enable_msix(struct adapter *adap)
4297 4298
{
	int ofld_need = 0;
4299
	int i, want, need, allocated;
4300 4301
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4302 4303 4304 4305 4306 4307
	struct msix_entry *entries;

	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4308

4309
	for (i = 0; i < MAX_INGQ + 1; ++i)
4310 4311 4312 4313
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4314
		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4315
		/* need nchan for each possible ULD */
4316
		ofld_need = 3 * nchan;
4317
	}
4318 4319 4320 4321 4322 4323
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
#else
4324
	need = adap->params.nports + EXTRA_VECS + ofld_need;
4325
#endif
4326 4327 4328 4329 4330 4331 4332
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4333

4334
	/* Distribute available vectors to the various queue groups.
4335 4336 4337
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4338
	i = allocated - EXTRA_VECS - ofld_need;
4339 4340 4341 4342 4343 4344
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
	if (is_offload(adap)) {
4345 4346 4347 4348 4349 4350 4351 4352
		if (allocated < want) {
			s->rdmaqs = nchan;
			s->rdmaciqs = nchan;
		}

		/* leftovers go to OFLD */
		i = allocated - EXTRA_VECS - s->max_ethqsets -
		    s->rdmaqs - s->rdmaciqs;
4353 4354
		s->ofldqsets = (i / nchan) * nchan;  /* round down */
	}
4355
	for (i = 0; i < allocated; ++i)
4356 4357
		adap->msix_info[i].vec = entries[i].vector;

4358
	kfree(entries);
4359
	return 0;
4360 4361 4362 4363
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4364
static int init_rss(struct adapter *adap)
4365
{
4366 4367 4368 4369 4370 4371
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

B
Bill Pemberton 已提交
4383
static void print_port_info(const struct net_device *dev)
4384 4385
{
	char buf[80];
4386
	char *bufp = buf;
4387
	const char *spd = "";
4388 4389
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4390 4391 4392 4393 4394

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4395 4396
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4397

4398 4399 4400 4401 4402 4403
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
		bufp += sprintf(bufp, "100/");
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
		bufp += sprintf(bufp, "1000/");
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
		bufp += sprintf(bufp, "10G/");
4404 4405
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
		bufp += sprintf(bufp, "40G/");
4406 4407
	if (bufp != buf)
		--bufp;
4408
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4409 4410

	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
S
Santosh Rastapur 已提交
4411
		    adap->params.vpd.id,
4412
		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4413 4414 4415
		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
		    (adap->flags & USING_MSIX) ? " MSI-X" :
		    (adap->flags & USING_MSI) ? " MSI" : "");
4416 4417
	netdev_info(dev, "S/N: %s, P/N: %s\n",
		    adap->params.vpd.sn, adap->params.vpd.pn);
4418 4419
}

B
Bill Pemberton 已提交
4420
static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4421
{
4422
	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4423 4424
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

	t4_free_mem(adapter->l2t);
	t4_free_mem(adapter->tids.tid_tab);
4438 4439 4440 4441
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4442 4443 4444
	disable_msi(adapter);

	for_each_port(adapter, i)
4445 4446
		if (adapter->port[i]) {
			kfree(adap2pinfo(adapter, i)->rss);
4447
			free_netdev(adapter->port[i]);
4448
		}
4449
	if (adapter->flags & FW_OK)
4450
		t4_fw_bye(adapter, adapter->fn);
4451 4452
}

4453
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4454
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4455
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4456
#define SEGMENT_SIZE 128
4457

4458
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4459
{
4460
	int func, i, err, s_qpp, qpp, num_seg;
4461
	struct port_info *pi;
4462
	bool highdma = false;
4463
	struct adapter *adapter = NULL;
4464
	void __iomem *regs;
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4481 4482 4483 4484 4485 4486 4487
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4488 4489 4490 4491
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4492
	/* We control everything through one PF */
4493
	func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4494 4495 4496 4497 4498 4499 4500
	if (func != ent->driver_data) {
		iounmap(regs);
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4501
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4502
		highdma = true;
4503 4504 4505 4506
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4507
			goto out_unmap_bar0;
4508 4509 4510 4511 4512
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4513
			goto out_unmap_bar0;
4514 4515 4516 4517
		}
	}

	pci_enable_pcie_error_reporting(pdev);
4518
	enable_pcie_relaxed_ordering(pdev);
4519 4520 4521 4522 4523 4524
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4525
		goto out_unmap_bar0;
4526 4527
	}

4528 4529 4530 4531 4532 4533
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4534 4535 4536
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4537
	adapter->regs = regs;
4538 4539
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4540
	adapter->mbox = func;
4541
	adapter->fn = func;
4542 4543 4544 4545 4546
	adapter->msg_enable = dflt_msg_enable;
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
4547
	spin_lock_init(&adapter->win0_lock);
4548 4549

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4550 4551
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4552 4553 4554

	err = t4_prep_adapter(adapter);
	if (err)
4555 4556
		goto out_free_adapter;

4557

4558
	if (!is_t4(adapter->params.chip)) {
4559 4560 4561 4562 4563
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
			adapter->fn);
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
4575
			goto out_free_adapter;
4576 4577 4578 4579 4580 4581
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
4582
			goto out_free_adapter;
4583 4584 4585
		}
	}

4586
	setup_memwin(adapter);
4587
	err = adap_init0(adapter);
4588
	setup_memwin_rdma(adapter);
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	if (err)
		goto out_unmap_bar;

	for_each_port(adapter, i) {
		struct net_device *netdev;

		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

4611 4612 4613
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4614
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4615 4616 4617
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
4618 4619
		netdev->vlan_features = netdev->features & VLAN_FEAT;

4620 4621
		netdev->priv_flags |= IFF_UNICAST_FLT;

4622
		netdev->netdev_ops = &cxgb4_netdev_ops;
4623 4624 4625 4626
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
4627
		cxgb4_set_ethtool_ops(netdev);
4628 4629 4630 4631 4632
	}

	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
4633
		err = t4_port_init(adapter, func, func, 0);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		if (err)
			goto out_free_dev;
	}

	/*
	 * Configure queues and allocate tables now, they can be needed as
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

	adapter->l2t = t4_init_l2t();
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
#if IS_ENABLED(CONFIG_IPV6)
	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
					  adapter->clipt_end);
	if (!adapter->clipt) {
		/* We tolerate a lack of clip_table, giving up
		 * some functionality
		 */
		dev_warn(&pdev->dev,
			 "could not allocate Clip table, continuing\n");
		adapter->params.offload = 0;
	}
#endif
4663 4664 4665 4666 4667 4668
	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
	}

4669 4670 4671 4672 4673 4674
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
	else if (msi > 0 && pci_enable_msi(pdev) == 0)
		adapter->flags |= USING_MSI;

4675 4676 4677 4678
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

4679 4680 4681 4682 4683 4684 4685
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
4686 4687 4688 4689
		pi = adap2pinfo(adapter, i);
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

4690 4691
		err = register_netdev(adapter->port[i]);
		if (err)
4692 4693 4694
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
4695
	}
4696
	if (i == 0) {
4697 4698 4699
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
4700 4701 4702
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
4703
	}
4704 4705 4706 4707 4708 4709 4710

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
4711 4712 4713
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

4714 4715 4716
	if (is_offload(adapter))
		attach_ulds(adapter);

4717
sriov:
4718
#ifdef CONFIG_PCI_IOV
4719
	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4720 4721 4722 4723 4724 4725 4726 4727
		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
			dev_info(&pdev->dev,
				 "instantiated %u virtual functions\n",
				 num_vf[func]);
#endif
	return 0;

 out_free_dev:
4728
	free_some_resources(adapter);
4729
 out_unmap_bar:
4730
	if (!is_t4(adapter->params.chip))
4731
		iounmap(adapter->bar2);
4732
 out_free_adapter:
4733 4734 4735
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

4736
	kfree(adapter);
4737 4738
 out_unmap_bar0:
	iounmap(regs);
4739 4740 4741 4742 4743 4744 4745 4746
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
4747
static void remove_one(struct pci_dev *pdev)
4748 4749 4750
{
	struct adapter *adapter = pci_get_drvdata(pdev);

4751
#ifdef CONFIG_PCI_IOV
4752 4753
	pci_disable_sriov(pdev);

4754 4755
#endif

4756 4757 4758
	if (adapter) {
		int i;

4759 4760 4761 4762 4763
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

4764 4765 4766
		if (is_offload(adapter))
			detach_ulds(adapter);

4767 4768
		disable_interrupts(adapter);

4769
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
4770
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4771 4772
				unregister_netdev(adapter->port[i]);

4773
		debugfs_remove_recursive(adapter->debugfs_root);
4774

V
Vipul Pandya 已提交
4775 4776 4777 4778 4779
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
		if (adapter->tids.ftid_tab) {
			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4780 4781
			for (i = 0; i < (adapter->tids.nftids +
					adapter->tids.nsftids); i++, f++)
V
Vipul Pandya 已提交
4782 4783 4784 4785
				if (f->valid)
					clear_filter(adapter, f);
		}

4786 4787
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
4788

4789
		free_some_resources(adapter);
4790 4791 4792
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
4793
		iounmap(adapter->regs);
4794
		if (!is_t4(adapter->params.chip))
4795
			iounmap(adapter->bar2);
4796
		pci_disable_pcie_error_reporting(pdev);
4797 4798 4799 4800
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
4801
		pci_release_regions(pdev);
4802
		synchronize_rcu();
4803
		kfree(adapter);
4804
	} else
4805 4806 4807 4808 4809 4810 4811
		pci_release_regions(pdev);
}

static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
4812
	.remove   = remove_one,
4813
	.shutdown = remove_one,
D
Dimitris Michailidis 已提交
4814
	.err_handler = &cxgb4_eeh,
4815 4816 4817 4818 4819 4820 4821 4822 4823
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
4824
		pr_warn("could not create debugfs entry, continuing\n");
4825 4826

	ret = pci_register_driver(&cxgb4_driver);
4827
	if (ret < 0)
4828
		debugfs_remove(cxgb4_debugfs_root);
4829

4830
#if IS_ENABLED(CONFIG_IPV6)
4831 4832 4833 4834
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
4835
#endif
4836

4837 4838 4839 4840 4841
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
4842
#if IS_ENABLED(CONFIG_IPV6)
4843
	if (inet6addr_registered) {
4844 4845 4846
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
4847
#endif
4848 4849 4850 4851 4852 4853
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);