cxgb4_main.c 145.0 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66
#include <linux/uaccess.h>
67
#include <linux/crash_dump.h>
68 69

#include "cxgb4.h"
70
#include "cxgb4_filter.h"
71
#include "t4_regs.h"
72
#include "t4_values.h"
73 74
#include "t4_msg.h"
#include "t4fw_api.h"
75
#include "t4fw_version.h"
76
#include "cxgb4_dcb.h"
77
#include "cxgb4_debugfs.h"
78
#include "clip_tbl.h"
79
#include "l2t.h"
80
#include "smt.h"
81
#include "sched.h"
82
#include "cxgb4_tc_u32.h"
83
#include "cxgb4_tc_flower.h"
84
#include "cxgb4_ptp.h"
85
#include "cxgb4_cudbg.h"
86

87 88
char cxgb4_driver_name[] = KBUILD_MODNAME;

89 90 91
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
92
#define DRV_VERSION "2.0.0-ko"
93
const char cxgb4_driver_version[] = DRV_VERSION;
94
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
95 96 97 98 99

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

100 101 102
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
103
	static const struct pci_device_id cxgb4_pci_tbl[] = {
104
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
105

106 107 108 109 110 111 112 113 114 115 116 117 118
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
119

120
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
121
#define FW5_FNAME "cxgb4/t5fw.bin"
122
#define FW6_FNAME "cxgb4/t6fw.bin"
123
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
124
#define FW5_CFNAME "cxgb4/t5-config.txt"
125
#define FW6_CFNAME "cxgb4/t6-config.txt"
126 127 128 129
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
130 131 132 133 134 135

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
136
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
137
MODULE_FIRMWARE(FW5_FNAME);
138
MODULE_FIRMWARE(FW6_FNAME);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

168 169 170 171 172 173 174 175 176 177 178
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

179 180
static struct dentry *cxgb4_debugfs_root;

181 182
LIST_HEAD(adapter_list);
DEFINE_MUTEX(uld_mutex);
183 184 185 186 187 188 189 190

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

191
		const char *s;
192 193 194
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
195 196
		case 100:
			s = "100Mbps";
197
			break;
198
		case 1000:
199
			s = "1Gbps";
200
			break;
201 202 203 204 205
		case 10000:
			s = "10Gbps";
			break;
		case 25000:
			s = "25Gbps";
206
			break;
207
		case 40000:
208 209
			s = "40Gbps";
			break;
210 211 212
		case 100000:
			s = "100Gbps";
			break;
213 214 215 216
		default:
			pr_info("%s: unsupported speed: %d\n",
				dev->name, p->link_cfg.speed);
			return;
217 218 219 220 221 222 223
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

240 241 242 243
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
244 245 246 247 248 249
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
250
		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
251 252
					    &name, &value,
					    -FW_CMD_MAX_TIMEOUT);
253 254 255 256 257

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
258 259
		else
			txq->dcb_prio = value;
260 261 262
	}
}

263
static int cxgb4_dcb_enabled(const struct net_device *dev)
264 265 266 267 268 269 270 271 272
{
	struct port_info *pi = netdev_priv(dev);

	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
}
A
Arnd Bergmann 已提交
273
#endif /* CONFIG_CHELSIO_T4_DCB */
274

275 276 277 278 279 280 281 282
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
283 284
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
285
			if (cxgb4_dcb_enabled(dev)) {
286
				cxgb4_dcb_reset(dev);
287 288
				dcb_tx_queue_prio_enable(dev, false);
			}
289
#endif /* CONFIG_CHELSIO_T4_DCB */
290
			netif_carrier_off(dev);
291
		}
292 293 294 295 296 297 298 299

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
300
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
301 302 303 304 305 306 307
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
308
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
309
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
310 311 312 313 314 315 316 317 318 319 320
	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
		netdev_info(dev, "%s: unsupported port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
		netdev_info(dev, "%s: unknown port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
		netdev_info(dev, "%s: transceiver module error\n", dev->name);
	else
		netdev_info(dev, "%s: unknown module type %d inserted\n",
			    dev->name, pi->mod_type);
321 322
}

323 324 325 326
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

327
/*
328
 * usecs to sleep while draining the dbfifo
329
 */
330 331 332 333 334 335
static int dbfifo_drain_delay = 1000;
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

static inline int cxgb4_set_addr_hash(struct port_info *pi)
336
{
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	struct adapter *adap = pi->adapter;
	u64 vec = 0;
	bool ucast = false;
	struct hash_mac_addr *entry;

	/* Calculate the hash vector for the updated list and program it */
	list_for_each_entry(entry, &adap->mac_hlist, list) {
		ucast |= is_unicast_ether_addr(entry->addr);
		vec |= (1ULL << hash_mac_addr(entry->addr));
	}
	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
				vec, false);
}

static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
356 357
	u64 mhash = 0;
	u64 uhash = 0;
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	bool free = false;
	bool ucast = is_unicast_ether_addr(mac_addr);
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *new_entry;

	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
				NULL, ucast ? &uhash : &mhash, false);
	if (ret < 0)
		goto out;
	/* if hash != 0, then add the addr to hash addr list
	 * so on the end we will calculate the hash for the
	 * list and program it
	 */
	if (uhash || mhash) {
		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
		if (!new_entry)
			return -ENOMEM;
		ether_addr_copy(new_entry->addr, mac_addr);
		list_add_tail(&new_entry->list, &adap->mac_hlist);
		ret = cxgb4_set_addr_hash(pi);
378
	}
379 380 381
out:
	return ret < 0 ? ret : 0;
}
382

383 384 385 386 387 388 389
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *entry, *tmp;
390

391 392 393 394 395 396 397 398
	/* If the MAC address to be removed is in the hash addr
	 * list, delete it from the list and update hash vector
	 */
	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
		if (ether_addr_equal(entry->addr, mac_addr)) {
			list_del(&entry->list);
			kfree(entry);
			return cxgb4_set_addr_hash(pi);
399 400 401
		}
	}

402 403
	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
	return ret < 0 ? -EINVAL : 0;
404 405 406 407 408 409 410 411 412
}

/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	struct port_info *pi = netdev_priv(dev);
413
	struct adapter *adapter = pi->adapter;
414

415 416
	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
417 418 419 420 421

	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
			     (dev->flags & IFF_PROMISC) ? 1 : 0,
			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
			     sleep_ok);
422 423 424 425 426 427 428 429 430 431 432 433
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
434
	unsigned int mb = pi->adapter->pf;
435 436 437 438 439

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
440
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
441
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
442
	if (ret == 0) {
443
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
444
				    pi->xact_addr_filt, dev->dev_addr, true,
445
				    true);
446 447 448 449 450 451
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
452
		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
453
				    &pi->link_cfg);
454 455
	if (ret == 0) {
		local_bh_disable();
456 457
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
458 459
		local_bh_enable();
	}
460

461 462 463
	return ret;
}

464 465 466 467
#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
468
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
469
	struct net_device *dev = adap->port[adap->chan_map[port]];
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
485
/* Response queue handler for the FW event queue.
486 487 488 489 490 491 492
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

508 509
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
510
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
511
		struct sge_txq *txq;
512

513
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
514
		txq->restarts++;
515
		if (txq->q_type == CXGB4_TXQ_ETH) {
516 517 518 519 520
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
521
			struct sge_uld_txq *oq;
522

523
			oq = container_of(txq, struct sge_uld_txq, q);
524 525 526 527 528
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

529 530
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
531
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
532
		unsigned int action =
533
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
534 535

		if (cmd == FW_PORT_CMD &&
536 537
		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
538
			int port = FW_PORT_CMD_PORTID_G(
539
					be32_to_cpu(pcmd->op_to_portid));
540 541 542 543 544 545 546 547 548 549 550 551
			struct net_device *dev;
			int dcbxdis, state_input;

			dev = q->adap->port[q->adap->chan_map[port]];
			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
				   ? !!(pcmd->u.info.dcbxdis_pkd &
					FW_PORT_CMD_DCBXDIS_F)
				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
					FW_PORT_CMD_DCBXDIS32_F));
			state_input = (dcbxdis
				       ? CXGB4_DCB_INPUT_FW_DISABLED
				       : CXGB4_DCB_INPUT_FW_ENABLED);
552 553 554 555 556 557 558 559 560 561 562

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
563 564 565 566
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
567 568 569 570
	} else if (opcode == CPL_SMT_WRITE_RPL) {
		const struct cpl_smt_write_rpl *p = (void *)rsp;

		do_smt_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
571 572 573 574
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
575 576 577
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
578
out:
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
599
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
600

601
	if (v & PFSW_F) {
602
		adap->swintr = 1;
603
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
604
	}
605 606
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
607 608 609 610 611 612 613 614
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
615
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
616 617

	/* non-data interrupts */
618
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
619 620

	/* FW events */
621 622
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
623 624 625 626 627 628

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

629
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
630 631 632 633 634 635 636 637
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
638
	int err, ethqidx;
639
	int msi_index = 2;
640 641 642 643 644 645 646

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
647 648 649
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
650 651 652
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
653
		msi_index++;
654 655 656 657 658
	}
	return 0;

unwind:
	while (--ethqidx >= 0)
659 660
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
661 662 663 664 665 666
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
667
	int i, msi_index = 2;
668 669 670 671
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
672
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
673 674
}

675
/**
676
 *	cxgb4_write_rss - write the RSS table for a given port
677 678 679 680 681
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
682
 *	Should never be called before setting up sge eth rx queues
683
 */
684
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
685 686 687
{
	u16 *rss;
	int i, err;
688 689
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
690

691
	rxq = &adapter->sge.ethrxq[pi->first_qset];
692 693 694 695 696 697
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
698
		rss[i] = rxq[*queues].rspq.abs_id;
699

700
	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
701
				  pi->rss_size, rss, pi->rss_size);
702 703 704 705 706 707 708 709 710 711 712 713 714
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
715 716 717 718
	kfree(rss);
	return err;
}

719 720 721 722
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
723
 *	Sets up RSS for each port.
724 725 726
 */
static int setup_rss(struct adapter *adap)
{
727
	int i, j, err;
728 729 730 731

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

732 733 734 735
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

736
		err = cxgb4_write_rss(pi, pi->rss);
737 738 739 740 741 742
		if (err)
			return err;
	}
	return 0;
}

743 744 745 746 747 748 749 750 751
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

752 753 754 755 756 757 758
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

759
	for (i = 0; i < adap->sge.ingr_sz; i++) {
760 761
		struct sge_rspq *q = adap->sge.ingr_map[i];

762
		if (q && q->handler)
763 764 765 766
			napi_disable(&q->napi);
	}
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

782 783 784 785 786 787 788
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

789
	for (i = 0; i < adap->sge.ingr_sz; i++) {
790 791 792 793
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
794
		if (q->handler)
795
			napi_enable(&q->napi);
796

797
		/* 0-increment GTS to start the timer and enable interrupts */
798 799 800
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
801 802 803
	}
}

804

805
static int setup_fw_sge_queues(struct adapter *adap)
806 807
{
	struct sge *s = &adap->sge;
808
	int err = 0;
809

810 811
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
812 813

	if (adap->flags & USING_MSIX)
814
		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
815 816
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
817
				       NULL, NULL, NULL, -1);
818 819
		if (err)
			return err;
820
		adap->msi_idx = -((int)s->intrq.abs_id + 1);
821 822 823
	}

	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
824
			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	if (err)
		t4_free_sge_resources(adap);
	return err;
}

/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, i, j;
	struct sge *s = &adap->sge;
G
Ganesh Goudar 已提交
842
	struct sge_uld_rxq_info *rxq_info = NULL;
843
	unsigned int cmplqid = 0;
844

G
Ganesh Goudar 已提交
845 846 847
	if (is_uld(adap))
		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];

848 849 850 851 852 853 854
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
855 856
			if (adap->msi_idx > 0)
				adap->msi_idx++;
857
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
858
					       adap->msi_idx, &q->fl,
859
					       t4_ethrx_handler,
860
					       NULL,
861 862
					       t4_get_tp_ch_map(adap,
								pi->tx_chan));
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	for_each_port(adap, i) {
878
		/* Note that cmplqid below is 0 if we don't
879 880
		 * have RDMA queues, and that's the right value.
		 */
881 882 883
		if (rxq_info)
			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;

884
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
885
					    s->fw_evtq.cntxt_id, cmplqid);
886 887 888 889
		if (err)
			goto freeout;
	}

890 891 892 893 894 895 896 897
	if (!is_t4(adap->params.chip)) {
		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
					   netdev_get_tx_queue(adap->port[0], 0)
					   , s->fw_evtq.cntxt_id);
		if (err)
			goto freeout;
	}

898
	t4_write_reg(adap, is_t4(adap->params.chip) ?
899 900 901 902
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
903
	return 0;
904 905 906
freeout:
	t4_free_sge_resources(adap);
	return err;
907 908
}

909 910 911 912 913 914 915 916 917 918 919
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
920
	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
921 922 923 924 925 926 927 928 929 930 931
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
932 933 934 935
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
988
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
989 990 991 992 993 994 995
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
996 997
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
998
{
999 1000
	struct adapter *adap = q->adap;

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
1011 1012 1013 1014
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1015 1016
			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
					    &v, &new_idx);
1017 1018 1019 1020 1021 1022 1023
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1024
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1025 1026 1027
	return 0;
}

1028
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1029
{
1030
	const struct port_info *pi = netdev_priv(dev);
1031
	netdev_features_t changed = dev->features ^ features;
1032 1033
	int err;

1034
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1035
		return 0;
1036

1037
	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1038
			    -1, -1, -1,
1039
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1040
	if (unlikely(err))
1041
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1042
	return err;
D
Dimitris Michailidis 已提交
1043 1044
}

B
Bill Pemberton 已提交
1045
static int setup_debugfs(struct adapter *adap)
1046 1047 1048 1049
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1050 1051 1052
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1071
		atid = (p - t->atid_tab) + t->atid_base;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1086
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
1111
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1112 1113 1114 1115 1116 1117
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1118 1119 1120 1121
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
1122
		if (family == PF_INET6) {
1123
			t->stids_in_use += 2;
1124 1125 1126 1127
			t->v6_stids_in_use += 2;
		} else {
			t->stids_in_use++;
		}
1128 1129 1130 1131 1132 1133
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1153 1154
		stid -= t->nstids;
		stid += t->sftid_base;
1155
		t->sftids_in_use++;
1156 1157 1158 1159 1160 1161 1162
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1163 1164 1165
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1166 1167 1168 1169 1170 1171 1172 1173
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1174 1175 1176 1177
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
1178
		bitmap_release_region(t->stid_bmap, stid, 1);
1179
	t->stid_tab[stid].data = NULL;
1180
	if (stid < t->nstids) {
1181
		if (family == PF_INET6) {
1182
			t->stids_in_use -= 2;
1183 1184 1185 1186
			t->v6_stids_in_use -= 2;
		} else {
			t->stids_in_use--;
		}
1187 1188 1189
	} else {
		t->sftids_in_use--;
	}
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1204
	req = __skb_put(skb, sizeof(*req));
1205 1206 1207 1208 1209 1210 1211 1212
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1213 1214
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1225
		queue_work(adap->workq, &adap->tid_release_task);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
1266 1267
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
		      unsigned short family)
1268 1269 1270 1271
{
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

1272 1273 1274 1275
	WARN_ON(tid >= t->ntids);

	if (t->tid_tab[tid]) {
		t->tid_tab[tid] = NULL;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		atomic_dec(&t->conns_in_use);
		if (t->hash_base && (tid >= t->hash_base)) {
			if (family == AF_INET6)
				atomic_sub(2, &t->hash_tids_in_use);
			else
				atomic_dec(&t->hash_tids_in_use);
		} else {
			if (family == AF_INET6)
				atomic_sub(2, &t->tids_in_use);
			else
				atomic_dec(&t->tids_in_use);
		}
1288 1289
	}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
1304
	struct adapter *adap = container_of(t, struct adapter, tids);
1305 1306 1307 1308 1309
	unsigned int max_ftids = t->nftids + t->nsftids;
	unsigned int natids = t->natids;
	unsigned int stid_bmap_size;
	unsigned int ftid_bmap_size;
	size_t size;
1310

1311
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1312
	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
V
Vipul Pandya 已提交
1313 1314
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1315
	       t->nstids * sizeof(*t->stid_tab) +
1316
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1317
	       stid_bmap_size * sizeof(long) +
1318 1319
	       max_ftids * sizeof(*t->ftid_tab) +
	       ftid_bmap_size * sizeof(long);
V
Vipul Pandya 已提交
1320

1321
	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1322 1323 1324 1325 1326
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1327
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1328
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1329
	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1330 1331
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);
1332
	spin_lock_init(&t->ftid_lock);
1333 1334

	t->stids_in_use = 0;
1335
	t->v6_stids_in_use = 0;
1336
	t->sftids_in_use = 0;
1337 1338 1339
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);
1340
	atomic_set(&t->conns_in_use, 0);
1341
	atomic_set(&t->hash_tids_in_use, 0);
1342 1343 1344 1345 1346 1347 1348

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (is_offload(adap)) {
		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
		/* Reserve stid 0 for T4/T5 adapters */
		if (!t->stid_base &&
		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
			__set_bit(0, t->stid_bmap);
	}

	bitmap_zero(t->ftid_bmap, t->nftids);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1374 1375
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1376 1377 1378 1379 1380
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1381
	int ret;
1382 1383 1384 1385 1386 1387

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1388
	req = __skb_put(skb, sizeof(*req));
1389 1390 1391 1392 1393 1394
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1395
	chan = rxq_to_chan(&adap->sge, queue);
1396
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1397 1398
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1399 1400
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1401 1402 1403
}
EXPORT_SYMBOL(cxgb4_create_server);

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1429
	req = __skb_put(skb, sizeof(*req));
1430 1431 1432 1433 1434 1435 1436 1437 1438
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1439
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1440 1441
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

1461
	req = __skb_put(skb, sizeof(*req));
1462 1463
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1464 1465
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1466 1467 1468 1469 1470
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
 *	@chip: chip type
 *	@viid: VI id of the given port
 *
 *	Return the SMT index for this VI.
 */
unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
{
	/* In T4/T5, SMT contains 256 SMAC entries organized in
	 * 128 rows of 2 entries each.
	 * In T6, SMT contains 256 SMAC entries in 256 rows.
	 * TODO: The below code needs to be updated when we add support
	 * for 256 VFs.
	 */
	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
		return ((viid & 0x7f) << 1);
	else
		return (viid & 0x7f);
}
EXPORT_SYMBOL(cxgb4_tp_smt_idx);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1599 1600 1601
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1602
	u32 v1, v2, lp_count, hp_count;
1603

1604 1605
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1606
	if (is_t4(adap->params.chip)) {
1607 1608
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1609
	} else {
1610 1611
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1612 1613
	}
	return lpfifo ? lp_count : hp_count;
1614 1615 1616
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
1647
	t4_tp_get_tcp_stats(adap, v4, v6, false);
1648 1649 1650 1651 1652 1653 1654 1655 1656
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1657 1658 1659 1660
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
1661 1662 1663
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

1664 1665 1666 1667
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);

1668
	return t4_sge_ctxt_flush(adap, adap->mbox);
1669 1670 1671 1672 1673
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
1674
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1675 1676 1677
	__be64 indices;
	int ret;

1678 1679 1680 1681 1682
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
1683
	if (!ret) {
1684 1685
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
1703
		u32 val;
1704 1705 1706 1707 1708

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
1709 1710 1711 1712 1713

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1714
		wmb();
1715 1716
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
1717 1718 1719 1720 1721 1722
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

1723 1724 1725 1726
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
1727
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
1741 1742 1743 1744 1745 1746
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
1762
		} else if (is_t5(adap->params.chip)) {
1763 1764
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1765 1766 1767 1768 1769 1770 1771 1772
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
1773 1774 1775
		} else {
			/* T4/T6 only has a single memory channel */
			goto err;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

1791 1792 1793 1794 1795 1796
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
1797 1798
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1799 1800 1801 1802 1803

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

1804 1805 1806
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
1807
			 int user,
1808 1809 1810
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
1811
	return t4_bar2_sge_qregs(netdev2adap(dev),
1812 1813 1814 1815
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
1816
				 user,
1817 1818 1819 1820 1821
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

1822 1823 1824 1825 1826 1827 1828
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

1829
	if (is_vlan_dev(netdev))
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

1855 1856
static void drain_db_fifo(struct adapter *adap, int usecs)
{
1857
	u32 v1, v2, lp_count, hp_count;
1858 1859

	do {
1860 1861
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1862
		if (is_t4(adap->params.chip)) {
1863 1864
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
1865
		} else {
1866 1867
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
1868 1869 1870 1871
		}

		if (lp_count == 0 && hp_count == 0)
			break;
1872 1873 1874 1875 1876 1877 1878
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
1879 1880 1881
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
1882
	q->db_disabled = 1;
1883
	spin_unlock_irqrestore(&q->db_lock, flags);
1884 1885
}

1886
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1887 1888
{
	spin_lock_irq(&q->db_lock);
1889 1890 1891 1892 1893
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
1894 1895
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1896 1897
		q->db_pidx_inc = 0;
	}
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				disable_txq_db(&txq->q);
			}
		}
	}
1920 1921 1922 1923 1924 1925 1926 1927 1928
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
1929
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				enable_txq_db(adap, &txq->q);
			}
		}
	}
1942
	for_each_port(adap, i)
1943 1944 1945 1946 1947
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
1948 1949 1950 1951
	enum cxgb4_uld type = CXGB4_ULD_RDMA;

	if (adap->uld && adap->uld[type].handle)
		adap->uld[type].control(adap->uld[type].handle, cmd);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1963 1964 1965 1966 1967 1968 1969
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
	else
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1970 1971 1972 1973 1974 1975 1976
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

1977
	spin_lock_irq(&q->db_lock);
1978 1979 1980 1981 1982
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
1983
		u32 val;
1984 1985 1986 1987 1988

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
1989 1990 1991 1992 1993

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1994
		wmb();
1995 1996
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
1997 1998 1999
	}
out:
	q->db_disabled = 0;
2000 2001
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
2002 2003 2004
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
2005

2006 2007 2008 2009 2010 2011
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				sync_txq_pidx(adap, &txq->q);
			}
		}
	}
2023 2024 2025 2026
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2027 2028 2029 2030
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2031
	adap = container_of(work, struct adapter, db_drop_task);
2032

2033
	if (is_t4(adap->params.chip)) {
2034
		drain_db_fifo(adap, dbfifo_drain_delay);
2035
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2036
		drain_db_fifo(adap, dbfifo_drain_delay);
2037
		recover_all_queues(adap);
2038
		drain_db_fifo(adap, dbfifo_drain_delay);
2039
		enable_dbs(adap);
2040
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2041
	} else if (is_t5(adap->params.chip)) {
2042 2043 2044
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2045 2046 2047
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2048

2049
		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2050
					0, &bar2_qoffset, &bar2_qid);
2051 2052 2053 2054
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2055
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2056
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2057 2058 2059 2060 2061

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2062 2063
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2064 2065 2066 2067
}

void t4_db_full(struct adapter *adap)
{
2068
	if (is_t4(adap->params.chip)) {
2069 2070
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2071 2072
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2073
		queue_work(adap->workq, &adap->db_full_task);
2074
	}
2075 2076 2077 2078
}

void t4_db_dropped(struct adapter *adap)
{
2079 2080 2081 2082
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2083
	queue_work(adap->workq, &adap->db_drop_task);
2084 2085
}

2086 2087
void t4_register_netevent_notifier(void)
{
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
2100

2101
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2102
		if (adap->uld && adap->uld[i].handle)
2103 2104
			adap->uld[i].state_change(adap->uld[i].handle,
					     CXGB4_STATE_DETACH);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2119 2120 2121
		if (adap->uld && adap->uld[i].handle)
			adap->uld[i].state_change(adap->uld[i].handle,
						  new_state);
2122 2123 2124
	mutex_unlock(&uld_mutex);
}

2125
#if IS_ENABLED(CONFIG_IPV6)
2126 2127
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2128
{
2129 2130 2131 2132
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2133
	struct adapter *adap;
2134
#endif
2135
	if (is_vlan_dev(event_dev))
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2156

2157 2158
	if (event_dev)
		parent = event_dev->dev.parent;
2159

2160
	if (parent && parent->driver == &cxgb4_driver.driver) {
2161 2162
		switch (event) {
		case NETDEV_UP:
2163
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2164 2165
			break;
		case NETDEV_DOWN:
2166
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2167 2168 2169 2170 2171
			break;
		default:
			break;
		}
	}
2172
	return NOTIFY_OK;
2173 2174
}

2175
static bool inet6addr_registered;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2193
			ret = cxgb4_update_root_dev_clip(dev);
2194 2195 2196 2197 2198 2199

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2200
#endif /* IS_ENABLED(CONFIG_IPV6) */
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2214
	int err;
2215

2216
	mutex_lock(&uld_mutex);
2217 2218
	err = setup_sge_queues(adap);
	if (err)
2219
		goto rel_lock;
2220 2221 2222
	err = setup_rss(adap);
	if (err)
		goto freeq;
2223 2224

	if (adap->flags & USING_MSIX) {
2225
		name_msix_vecs(adap);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;
		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2238
				  adap->port[0]->name, adap);
2239 2240 2241
		if (err)
			goto irq_err;
	}
2242

2243 2244 2245
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2246
	adap->flags |= FULL_INIT_DONE;
2247 2248
	mutex_unlock(&uld_mutex);

2249
	notify_ulds(adap, CXGB4_STATE_UP);
2250
#if IS_ENABLED(CONFIG_IPV6)
2251
	update_clip(adap);
2252
#endif
2253 2254
	/* Initialize hash mac addr list*/
	INIT_LIST_HEAD(&adap->mac_hlist);
2255
	return err;
2256

2257 2258
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2259 2260
 freeq:
	t4_free_sge_resources(adap);
2261 2262 2263
 rel_lock:
	mutex_unlock(&uld_mutex);
	return err;
2264 2265 2266 2267 2268
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2269 2270
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2271
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2272
	adapter->tid_release_head = NULL;
2273

2274 2275 2276
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2288 2289
	netif_carrier_off(dev);

2290 2291 2292 2293 2294
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2295

2296 2297 2298 2299 2300 2301 2302
	/* It's possible that the basic port information could have
	 * changed since we first read it.
	 */
	err = t4_update_port_info(pi);
	if (err < 0)
		return err;

2303 2304 2305 2306
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2307 2308 2309 2310 2311 2312
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;
2313
	int ret;
2314 2315 2316

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2317 2318 2319 2320 2321 2322
	ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
#ifdef CONFIG_CHELSIO_T4_DCB
	cxgb4_dcb_reset(dev);
	dcb_tx_queue_prio_enable(dev, false);
#endif
	return ret;
2323 2324
}

2325
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2326 2327
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2328 2329 2330 2331 2332 2333 2334 2335 2336
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2337
	/* Adjust stid to correct filter index */
2338
	stid -= adap->tids.sftid_base;
2339 2340
	stid += adap->tids.nftids;

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2359
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2360 2361 2362 2363
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2364
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2365 2366 2367 2368
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2369

2370
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2371 2372 2373 2374
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2375 2376 2377 2378 2379 2380
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

2381 2382 2383 2384
	/* Save the actual tid. We need this to get the corresponding
	 * filter entry structure in filter_rpl.
	 */
	f->tid = stid + adap->tids.ftid_base;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2402 2403

	/* Adjust stid to correct filter index */
2404
	stid -= adap->tids.sftid_base;
2405 2406
	stid += adap->tids.nftids;

2407 2408 2409 2410
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

2411
	return delete_filter(adap, stid);
2412 2413 2414
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2415 2416
static void cxgb_get_stats(struct net_device *dev,
			   struct rtnl_link_stats64 *ns)
2417 2418 2419 2420 2421
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2422 2423 2424 2425
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2426
	spin_lock(&adapter->stats_lock);
2427 2428
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
2429
		return;
2430
	}
2431 2432
	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
				 &p->stats_base);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
2447
	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2467
	unsigned int mbox;
2468 2469
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
2470
	struct adapter *adapter = pi->adapter;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2491
		mbox = pi->adapter->pf;
2492
		if (cmd == SIOCGMIIREG)
2493
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2494 2495
					 data->reg_num, &data->val_out);
		else
2496
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2497 2498
					 data->reg_num, data->val_in);
		break;
2499 2500 2501 2502 2503 2504 2505 2506 2507
	case SIOCGHWTSTAMP:
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
	case SIOCSHWTSTAMP:
		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
				   sizeof(pi->tstamp_config)))
			return -EFAULT;

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (!is_t4(adapter->params.chip)) {
			switch (pi->tstamp_config.tx_type) {
			case HWTSTAMP_TX_OFF:
			case HWTSTAMP_TX_ON:
				break;
			default:
				return -ERANGE;
			}

			switch (pi->tstamp_config.rx_filter) {
			case HWTSTAMP_FILTER_NONE:
				pi->rxtstamp = false;
				break;
			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
				cxgb4_ptprx_timestamping(pi, pi->port_id,
							 PTP_TS_L4);
				break;
			case HWTSTAMP_FILTER_PTP_V2_EVENT:
				cxgb4_ptprx_timestamping(pi, pi->port_id,
							 PTP_TS_L2_L4);
				break;
			case HWTSTAMP_FILTER_ALL:
			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
				pi->rxtstamp = true;
				break;
			default:
				pi->tstamp_config.rx_filter =
					HWTSTAMP_FILTER_NONE;
				return -ERANGE;
			}

			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
			    (pi->tstamp_config.rx_filter ==
				HWTSTAMP_FILTER_NONE)) {
				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
					pi->ptp_enable = false;
			}

			if (pi->tstamp_config.rx_filter !=
				HWTSTAMP_FILTER_NONE) {
				if (cxgb4_ptp_redirect_rx_packet(adapter,
								 pi) >= 0)
					pi->ptp_enable = true;
			}
		} else {
			/* For T4 Adapters */
			switch (pi->tstamp_config.rx_filter) {
			case HWTSTAMP_FILTER_NONE:
2560 2561
			pi->rxtstamp = false;
			break;
2562
			case HWTSTAMP_FILTER_ALL:
2563 2564
			pi->rxtstamp = true;
			break;
2565 2566 2567
			default:
			pi->tstamp_config.rx_filter =
			HWTSTAMP_FILTER_NONE;
2568
			return -ERANGE;
2569
			}
2570 2571 2572 2573
		}
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

2591
	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2592
			    -1, -1, -1, true);
2593 2594 2595 2596 2597
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

2598
#ifdef CONFIG_PCI_IOV
2599 2600 2601 2602 2603 2604 2605 2606 2607
static int dummy_open(struct net_device *dev)
{
	/* Turn carrier off since we don't have to transmit anything on this
	 * interface.
	 */
	netif_carrier_off(dev);
	return 0;
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/* Fill MAC address that will be assigned by the FW */
static void fill_vf_station_mac_addr(struct adapter *adap)
{
	unsigned int i;
	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
	int err;
	u8 *na;
	u16 a, b;

	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
	if (!err) {
		na = adap->params.vpd.na;
		for (i = 0; i < ETH_ALEN; i++)
			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
				      hex2val(na[2 * i + 1]));
		a = (hw_addr[0] << 8) | hw_addr[1];
		b = (hw_addr[1] << 8) | hw_addr[2];
		a ^= b;
		a |= 0x0200;    /* locally assigned Ethernet MAC address */
		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
		macaddr[0] = a >> 8;
		macaddr[1] = a & 0xff;

		for (i = 2; i < 5; i++)
			macaddr[i] = hw_addr[i + 1];

		for (i = 0; i < adap->num_vfs; i++) {
			macaddr[5] = adap->pf * 16 + i;
			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
		}
	}
}

2641 2642 2643 2644
static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2645
	int ret;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

	/* verify MAC addr is valid */
	if (!is_valid_ether_addr(mac)) {
		dev_err(pi->adapter->pdev_dev,
			"Invalid Ethernet address %pM for VF %d\n",
			mac, vf);
		return -EINVAL;
	}

	dev_info(pi->adapter->pdev_dev,
		 "Setting MAC %pM on VF %d\n", mac, vf);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
	if (!ret)
		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
	return ret;
}

static int cxgb_get_vf_config(struct net_device *dev,
			      int vf, struct ifla_vf_info *ivi)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (vf >= adap->num_vfs)
		return -EINVAL;
	ivi->vf = vf;
2672 2673
	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
	ivi->min_tx_rate = 0;
2674 2675
	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
	return 0;
2676
}
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

static int cxgb_get_phys_port_id(struct net_device *dev,
				 struct netdev_phys_item_id *ppid)
{
	struct port_info *pi = netdev_priv(dev);
	unsigned int phy_port_id;

	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
	ppid->id_len = sizeof(phy_port_id);
	memcpy(ppid->id, &phy_port_id, ppid->id_len);
	return 0;
}

2690 2691 2692 2693 2694
static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
			    int max_tx_rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2695
	unsigned int link_ok, speed, mtu;
2696 2697
	u32 fw_pfvf, fw_class;
	int class_id = vf;
2698
	int ret;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	u16 pktsize;

	if (vf >= adap->num_vfs)
		return -EINVAL;

	if (min_tx_rate) {
		dev_err(adap->pdev_dev,
			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
			min_tx_rate, vf);
		return -EINVAL;
	}
2710 2711

	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2712 2713
	if (ret != FW_SUCCESS) {
		dev_err(adap->pdev_dev,
2714
			"Failed to get link information for VF %d\n", vf);
2715 2716
		return -EINVAL;
	}
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (!link_ok) {
		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
		return -EINVAL;
	}

	if (max_tx_rate > speed) {
		dev_err(adap->pdev_dev,
			"Max tx rate %d for VF %d can't be > link-speed %u",
			max_tx_rate, vf, speed);
		return -EINVAL;
	}
2729 2730

	pktsize = mtu;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
	pktsize = pktsize - sizeof(struct ethhdr) - 4;
	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
	/* configure Traffic Class for rate-limiting */
	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
			      SCHED_CLASS_LEVEL_CL_RL,
			      SCHED_CLASS_MODE_CLASS,
			      SCHED_CLASS_RATEUNIT_BITS,
			      SCHED_CLASS_RATEMODE_ABS,
2741
			      pi->tx_chan, class_id, 0,
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
			      max_tx_rate * 1000, 0, pktsize);
	if (ret) {
		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
			ret);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev,
		 "Class %d with MSS %u configured with rate %u\n",
		 class_id, pktsize, max_tx_rate);

	/* bind VF to configured Traffic Class */
	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
	fw_class = class_id;
	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
			    &fw_class);
	if (ret) {
		dev_err(adap->pdev_dev,
			"Err %d in binding VF %d to Traffic Class %d\n",
			ret, vf, class_id);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
		 adap->pf, vf, class_id);
	adap->vfinfo[vf].tx_rate = max_tx_rate;
	return 0;
}

2770 2771
#endif

2772 2773 2774 2775 2776 2777 2778
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2779
		return -EADDRNOTAVAIL;
2780

2781
	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2782
			    pi->xact_addr_filt, addr->sa_data, true, true);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sched_class *e;
	struct ch_sched_params p;
	struct ch_sched_queue qe;
	u32 req_rate;
	int err = 0;

	if (!can_sched(dev))
		return -ENOTSUPP;

	if (index < 0 || index > pi->nqsets - 1)
		return -EINVAL;

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to rate limit on queue %d. Link Down?\n",
			index);
		return -EINVAL;
	}

	/* Convert from Mbps to Kbps */
	req_rate = rate << 10;

	/* Max rate is 10 Gbps */
	if (req_rate >= SCHED_MAX_RATE_KBPS) {
		dev_err(adap->pdev_dev,
			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
			rate, SCHED_MAX_RATE_KBPS);
		return -ERANGE;
	}

	/* First unbind the queue from any existing class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = SCHED_CLS_NONE;

	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err) {
		dev_err(adap->pdev_dev,
			"Unbinding Queue %d on port %d fail. Err: %d\n",
			index, pi->port_id, err);
		return err;
	}

	/* Queue already unbound */
	if (!req_rate)
		return 0;

	/* Fetch any available unused or matching scheduling class */
	memset(&p, 0, sizeof(p));
	p.type = SCHED_CLASS_TYPE_PACKET;
	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
	p.u.params.channel  = pi->tx_chan;
	p.u.params.class    = SCHED_CLS_NONE;
	p.u.params.minrate  = 0;
	p.u.params.maxrate  = req_rate;
	p.u.params.weight   = 0;
	p.u.params.pktsize  = dev->mtu;

	e = cxgb4_sched_class_alloc(dev, &p);
	if (!e)
		return -ENOMEM;

	/* Bind the queue to a scheduling class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = e->idx;

	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err)
		dev_err(adap->pdev_dev,
			"Queue rate limiting failed. Err: %d\n", err);
	return err;
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
static int cxgb_setup_tc_flower(struct net_device *dev,
				struct tc_cls_flower_offload *cls_flower)
{
	if (!is_classid_clsact_ingress(cls_flower->common.classid) ||
	    cls_flower->common.chain_index)
		return -EOPNOTSUPP;

	switch (cls_flower->command) {
	case TC_CLSFLOWER_REPLACE:
		return cxgb4_tc_flower_replace(dev, cls_flower);
	case TC_CLSFLOWER_DESTROY:
		return cxgb4_tc_flower_destroy(dev, cls_flower);
	case TC_CLSFLOWER_STATS:
		return cxgb4_tc_flower_stats(dev, cls_flower);
	default:
		return -EOPNOTSUPP;
	}
}

2908 2909 2910
static int cxgb_setup_tc_cls_u32(struct net_device *dev,
				 struct tc_cls_u32_offload *cls_u32)
{
2911
	if (!is_classid_clsact_ingress(cls_u32->common.classid) ||
2912
	    cls_u32->common.chain_index)
2913 2914 2915 2916 2917
		return -EOPNOTSUPP;

	switch (cls_u32->command) {
	case TC_CLSU32_NEW_KNODE:
	case TC_CLSU32_REPLACE_KNODE:
2918
		return cxgb4_config_knode(dev, cls_u32);
2919
	case TC_CLSU32_DELETE_KNODE:
2920
		return cxgb4_delete_knode(dev, cls_u32);
2921 2922 2923 2924 2925
	default:
		return -EOPNOTSUPP;
	}
}

2926
static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2927
			 void *type_data)
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
{
	struct port_info *pi = netdev2pinfo(dev);
	struct adapter *adap = netdev2adap(dev);

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to setup tc on port %d. Link Down?\n",
			pi->port_id);
		return -EINVAL;
	}

2939 2940
	switch (type) {
	case TC_SETUP_CLSU32:
2941
		return cxgb_setup_tc_cls_u32(dev, type_data);
2942 2943
	case TC_SETUP_CLSFLOWER:
		return cxgb_setup_tc_flower(dev, type_data);
2944 2945
	default:
		return -EOPNOTSUPP;
2946 2947 2948
	}
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static netdev_features_t cxgb_fix_features(struct net_device *dev,
					   netdev_features_t features)
{
	/* Disable GRO, if RX_CSUM is disabled */
	if (!(features & NETIF_F_RXCSUM))
		features &= ~NETIF_F_GRO;

	return features;
}

2959 2960 2961 2962
static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
2963
	.ndo_select_queue     =	cxgb_select_queue,
2964
	.ndo_get_stats64      = cxgb_get_stats,
2965 2966
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
2967
	.ndo_set_features     = cxgb_set_features,
2968 2969 2970 2971 2972 2973
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
2974 2975 2976 2977
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
2978
	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2979
	.ndo_setup_tc         = cxgb_setup_tc,
2980
	.ndo_fix_features     = cxgb_fix_features,
2981 2982
};

2983
#ifdef CONFIG_PCI_IOV
2984 2985
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
	.ndo_open             = dummy_open,
2986
	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2987
	.ndo_get_vf_config    = cxgb_get_vf_config,
2988
	.ndo_set_vf_rate      = cxgb_set_vf_rate,
2989
	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2990
};
2991
#endif
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = netdev2adap(dev);

	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
	strlcpy(info->version, cxgb4_driver_version,
		sizeof(info->version));
	strlcpy(info->bus_info, pci_name(adapter->pdev),
		sizeof(info->bus_info));
}

static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
	.get_drvinfo       = get_drvinfo,
};

3008 3009
void t4_fatal_err(struct adapter *adap)
{
3010 3011
	int port;

3012 3013 3014
	if (pci_channel_offline(adap->pdev))
		return;

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	/* Disable the SGE since ULDs are going to free resources that
	 * could be exposed to the adapter.  RDMA MWs for example...
	 */
	t4_shutdown_adapter(adap);
	for_each_port(adap, port) {
		struct net_device *dev = adap->port[port];

		/* If we get here in very early initialization the network
		 * devices may not have been set up yet.
		 */
		if (!dev)
			continue;

		netif_tx_stop_all_queues(dev);
		netif_carrier_off(dev);
	}
3031 3032 3033 3034 3035
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
3036
	u32 nic_win_base = t4_get_util_window(adap);
3037

3038
	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3039 3040 3041 3042
}

static void setup_memwin_rdma(struct adapter *adap)
{
3043
	if (adap->vres.ocq.size) {
3044 3045
		u32 start;
		unsigned int sz_kb;
3046

3047 3048 3049
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3050 3051
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
3052 3053
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3054
		t4_write_reg(adap,
3055
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3056 3057
			     adap->vres.ocq.start);
		t4_read_reg(adap,
3058
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3059
	}
3060 3061
}

3062 3063 3064 3065 3066 3067 3068
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
3069 3070
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3071
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3072
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3073 3074 3075
	if (ret < 0)
		return ret;

3076 3077
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3078
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3079 3080 3081
	if (ret < 0)
		return ret;

3082
	ret = t4_config_glbl_rss(adap, adap->pf,
3083
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3084 3085
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3086 3087 3088
	if (ret < 0)
		return ret;

3089
	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3090 3091
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3092 3093 3094 3095 3096 3097
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3098
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3099
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3100 3101 3102
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3103

3104 3105
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3106 3107
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3108 3109 3110

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3111
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3112
			  &v, 1, TP_TX_SCHED_HDR_A);
3113
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3114
			  &v, 1, TP_TX_SCHED_FIFO_A);
3115
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3116
			  &v, 1, TP_TX_SCHED_PCMD_A);
3117 3118 3119

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3130 3131
	}

3132
	/* get basic stuff going */
3133
	return t4_early_init(adap, adap->pf);
3134 3135
}

3136 3137 3138 3139 3140
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3175 3176 3177
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3178 3179 3180 3181 3182

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3183 3184
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3185 3186 3187 3188

	return 0;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
 * unto themselves and they contain their own firmware to perform their
 * tasks ...
 */
static int phy_aq1202_version(const u8 *phy_fw_data,
			      size_t phy_fw_size)
{
	int offset;

	/* At offset 0x8 you're looking for the primary image's
	 * starting offset which is 3 Bytes wide
	 *
	 * At offset 0xa of the primary image, you look for the offset
	 * of the DRAM segment which is 3 Bytes wide.
	 *
	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
	 * wide
	 */
	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
	#define le24(__p) (le16(__p) | ((__p)[2] << 16))

	offset = le24(phy_fw_data + 0x8) << 12;
	offset = le24(phy_fw_data + offset + 0xa);
	return be16(phy_fw_data + offset + 0x27e);

	#undef be16
	#undef le16
	#undef le24
}

static struct info_10gbt_phy_fw {
	unsigned int phy_fw_id;		/* PCI Device ID */
	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
	int phy_flash;			/* Has FLASH for PHY Firmware */
} phy_info_array[] = {
	{
		PHY_AQ1202_DEVICEID,
		PHY_AQ1202_FIRMWARE,
		phy_aq1202_version,
		1,
	},
	{
		PHY_BCM84834_DEVICEID,
		PHY_BCM84834_FIRMWARE,
		NULL,
		0,
	},
	{ 0, NULL, NULL },
};

static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
		if (phy_info_array[i].phy_fw_id == devid)
			return &phy_info_array[i];
	}
	return NULL;
}

/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
 * we return a negative error number.  If we transfer new firmware we return 1
 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
 */
static int adap_init0_phy(struct adapter *adap)
{
	const struct firmware *phyf;
	int ret;
	struct info_10gbt_phy_fw *phy_info;

	/* Use the device ID to determine which PHY file to flash.
	 */
	phy_info = find_phy_info(adap->pdev->device);
	if (!phy_info) {
		dev_warn(adap->pdev_dev,
			 "No PHY Firmware file found for this PHY\n");
		return -EOPNOTSUPP;
	}

	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
	 * use that. The adapter firmware provides us with a memory buffer
	 * where we can load a PHY firmware file from the host if we want to
	 * override the PHY firmware File in flash.
	 */
	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
				      adap->pdev_dev);
	if (ret < 0) {
		/* For adapters without FLASH attached to PHY for their
		 * firmware, it's obviously a fatal error if we can't get the
		 * firmware to the adapter.  For adapters with PHY firmware
		 * FLASH storage, it's worth a warning if we can't find the
		 * PHY Firmware but we'll neuter the error ...
		 */
		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
			"/lib/firmware/%s, error %d\n",
			phy_info->phy_fw_file, -ret);
		if (phy_info->phy_flash) {
			int cur_phy_fw_ver = 0;

			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
			ret = 0;
		}

		return ret;
	}

	/* Load PHY Firmware onto adapter.
	 */
	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
			     phy_info->phy_fw_version,
			     (u8 *)phyf->data, phyf->size);
	if (ret < 0)
		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
			-ret);
	else if (ret > 0) {
		int new_phy_fw_ver = 0;

		if (phy_info->phy_fw_version)
			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
								  phyf->size);
		dev_info(adap->pdev_dev, "Successfully transferred PHY "
			 "Firmware /lib/firmware/%s, version %#x\n",
			 phy_info->phy_fw_file, new_phy_fw_ver);
	}

	release_firmware(phyf);

	return ret;
}

3325 3326 3327 3328 3329 3330 3331 3332 3333
/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3334 3335
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3336
	char *fw_config_file, fw_config_file_path[256];
3337
	char *config_name = NULL;
3338 3339 3340 3341 3342 3343

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3344
				  PIORSTMODE_F | PIORST_F);
3345 3346 3347 3348
		if (ret < 0)
			goto bye;
	}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	/* If this is a 10Gb/s-BT adapter make sure the chip-external
	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
	 * to be performed after any global adapter RESET above since some
	 * PHYs only have local RAM copies of the PHY firmware.
	 */
	if (is_10gbt_device(adapter->pdev->device)) {
		ret = adap_init0_phy(adapter);
		if (ret < 0)
			goto bye;
	}
3359 3360 3361 3362 3363
	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3364
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3365
	case CHELSIO_T4:
3366
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3367 3368 3369 3370
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
3371 3372 3373
	case CHELSIO_T6:
		fw_config_file = FW6_CFNAME;
		break;
S
Santosh Rastapur 已提交
3374 3375 3376 3377 3378 3379 3380 3381
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3382
	if (ret < 0) {
3383
		config_name = "On FLASH";
3384 3385 3386 3387 3388
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3389 3390 3391 3392
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3393 3394 3395
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3396 3397
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3398
			ret = t4_query_params(adapter, adapter->mbox,
3399
					      adapter->pf, 0, 1, params, val);
3400 3401
			if (ret == 0) {
				/*
3402
				 * For t4_memory_rw() below addresses and
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3415 3416
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3417

3418 3419 3420
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3431 3432 3433 3434
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3435
				}
3436
				spin_unlock(&adapter->win0_lock);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3453 3454 3455
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3456
	caps_cmd.cfvalid_to_len16 =
3457 3458 3459
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3460 3461 3462
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3473 3474 3475
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3476 3477 3478 3479 3480 3481 3482
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3498 3499 3500
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3501
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3523 3524
	/* Emit Firmware Configuration File information and return
	 * successfully.
3525 3526
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3527 3528
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3529 3530 3531 3532 3533 3534 3535 3536
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3537 3538 3539
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3540 3541 3542
	return ret;
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	}, {
		.chip = CHELSIO_T6,
		.fs_name = FW6_CFNAME,
		.fw_mod_name = FW6_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T6,
			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
			.intfver_nic = FW_INTFVER(T6, NIC),
			.intfver_vnic = FW_INTFVER(T6, VNIC),
			.intfver_ofld = FW_INTFVER(T6, OFLD),
			.intfver_ri = FW_INTFVER(T6, RI),
			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
			.intfver_fcoe = FW_INTFVER(T6, FCOE),
		},
3586
	}
3587

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3601 3602 3603 3604 3605 3606 3607 3608 3609
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3610
	struct fw_caps_config_cmd caps_cmd;
3611
	int reset = 1;
3612

3613 3614 3615 3616 3617 3618 3619
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3620
	/* Contact FW, advertising Master capability */
3621 3622
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3623 3624 3625 3626 3627
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3628 3629
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3630

3631 3632 3633 3634 3635 3636 3637
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3638

3639
	t4_get_version_info(adap);
3640 3641
	ret = t4_check_fw_version(adap);
	/* If firmware is too old (not supported by driver) force an update. */
3642
	if (ret)
3643
		state = DEV_STATE_UNINIT;
3644
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3660
		}
3661 3662 3663 3664

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
3665
		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3684
		release_firmware(fw);
3685
		kvfree(card_fw);
3686

3687
		if (ret < 0)
3688
			goto bye;
3689
	}
3690

3691 3692 3693 3694 3695 3696 3697
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
3698
	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3699 3700 3701
	if (ret < 0)
		goto bye;

3702
	/*
3703 3704 3705
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3706 3707
	 */
	v =
3708 3709
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3710
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3711 3712 3713
	if (ret < 0)
		goto bye;

3714 3715 3716
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3717 3718
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3719 3720 3721 3722 3723 3724 3725 3726
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3727 3728 3729

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3730
		 */
3731 3732
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3733
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3734
				      params, val);
3735

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3754 3755
		}
		if (ret < 0) {
3756 3757
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3758 3759 3760 3761
			goto bye;
		}
	}

3762 3763 3764
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3765
	 */
3766 3767 3768
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3769

3770 3771 3772
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3773 3774 3775 3776
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3777 3778
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3779

3780
#define FW_PARAM_PFVF(param) \
3781 3782 3783 3784
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3785

3786
	params[0] = FW_PARAM_PFVF(EQ_START);
3787 3788 3789 3790
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3791
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3792
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3793 3794
	if (ret < 0)
		goto bye;
3795 3796 3797
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3798 3799
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3800
	adap->sge.ingr_start = val[5];
3801

3802 3803 3804 3805 3806 3807 3808 3809
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3810
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
3831
	 * ie starving_fl, txq_maperr and blocked_fl.
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3847 3848 3849 3850 3851 3852 3853 3854 3855
#ifdef CONFIG_DEBUG_FS
	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.blocked_fl) {
		ret = -ENOMEM;
		goto bye;
	}
#endif

3856 3857
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
3858
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3859 3860 3861 3862 3863
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3864 3865 3866 3867 3868 3869
	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
	 * Classes supported by the hardware/firmware so we hard code it here
	 * for now.
	 */
	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;

3870 3871 3872
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3873
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3874 3875 3876 3877 3878 3879 3880 3881 3882
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3883 3884 3885 3886 3887 3888 3889
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
3890
	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3902
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3903 3904 3905 3906
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3907 3908 3909 3910 3911 3912
	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
			      1, params, val);
	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	/* See if FW supports FW_FILTER2 work request */
	if (is_t4(adap->params.chip)) {
		adap->params.filter2_wr_support = 0;
	} else {
		params[0] = FW_PARAM_DEV(FILTER2_WR);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
				      1, params, val);
		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
	}

3923 3924 3925 3926 3927
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3928 3929
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3930
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3931 3932 3933 3934 3935
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3936
	if (caps_cmd.ofldcaps) {
3937 3938 3939 3940 3941 3942 3943
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3944
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3945
				      params, val);
3946 3947 3948 3949 3950 3951
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3952
		/*
3953
		 * Setup server filter region. Divide the available filter
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
3969 3970 3971
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
3972

3973
		adap->params.offload = 1;
3974
		adap->num_ofld_uld += 1;
3975
	}
3976
	if (caps_cmd.rdmacaps) {
3977 3978 3979 3980 3981 3982
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3983
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3984
				      params, val);
3985 3986 3987 3988 3989 3990 3991 3992
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3993 3994 3995 3996 3997

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3998 3999
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
4000
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4001
				      val);
4002 4003 4004 4005 4006 4007
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
4008 4009
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
4010 4011 4012

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4013
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4014
				      val);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
4027
		adap->num_ofld_uld += 2;
4028
	}
4029
	if (caps_cmd.iscsicaps) {
4030 4031
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
4032
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4033
				      params, val);
4034 4035 4036 4037
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
4038 4039
		/* LIO target and cxgb4i initiaitor */
		adap->num_ofld_uld += 2;
4040
	}
4041 4042
	if (caps_cmd.cryptocaps) {
		/* Should query params here...TODO */
H
Harsh Jain 已提交
4043 4044 4045 4046 4047 4048 4049 4050 4051
		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
				      params, val);
		if (ret < 0) {
			if (ret != -EINVAL)
				goto bye;
		} else {
			adap->vres.ncrypto_fc = val[0];
		}
4052 4053 4054
		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
		adap->num_uld += 1;
	}
4055 4056 4057
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

4058 4059 4060 4061
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
4062
	 */
4063
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
4089

4090 4091 4092
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
4093
	t4_init_sge_params(adap);
4094
	adap->flags |= FW_OK;
4095
	t4_init_tp_params(adap, true);
4096 4097 4098
	return 0;

	/*
4099 4100 4101
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
4102
	 */
4103
bye:
4104 4105 4106 4107
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
4108 4109 4110
#ifdef CONFIG_DEBUG_FS
	kfree(adap->sge.blocked_fl);
#endif
4111 4112
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4113 4114 4115
	return ret;
}

D
Dimitris Michailidis 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4130
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4131 4132
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4133 4134 4135 4136
		if (dev) {
			netif_device_detach(dev);
			netif_carrier_off(dev);
		}
D
Dimitris Michailidis 已提交
4137
	}
4138
	spin_unlock(&adap->stats_lock);
4139
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4140 4141 4142
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4143 4144 4145 4146
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4163 4164 4165 4166 4167 4168 4169
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4170 4171 4172 4173 4174 4175 4176
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4177
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4178
		return PCI_ERS_RESULT_DISCONNECT;
4179
	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4180 4181 4182 4183 4184 4185 4186 4187
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4188
		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4189
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4190 4191 4192 4193 4194 4195 4196 4197
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4198
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4215 4216 4217 4218 4219 4220
		if (dev) {
			if (netif_running(dev)) {
				link_start(dev);
				cxgb_set_rxmode(dev);
			}
			netif_device_attach(dev);
D
Dimitris Michailidis 已提交
4221 4222 4223 4224 4225
		}
	}
	rtnl_unlock();
}

4226
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4227 4228 4229 4230 4231
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4232 4233 4234
/* Return true if the Link Configuration supports "High Speeds" (those greater
 * than 1Gb/s).
 */
4235
static inline bool is_x_10g_port(const struct link_config *lc)
4236
{
4237 4238
	unsigned int speeds, high_speeds;

4239 4240 4241
	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
	high_speeds = speeds &
			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4242 4243

	return high_speeds != 0;
4244 4245 4246 4247 4248 4249 4250
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4251
static void cfg_queues(struct adapter *adap)
4252 4253
{
	struct sge *s = &adap->sge;
4254
	int i = 0, n10g = 0, qidx = 0;
4255 4256 4257
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4258

4259 4260
	/* Reduce memory usage in kdump environment, disable all offload.
	 */
4261
	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4262
		adap->params.offload = 0;
4263 4264 4265
		adap->params.crypto = 0;
	}

4266
	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4277

4278 4279 4280 4281
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4282
		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4283 4284 4285
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4286 4287 4288 4289 4290 4291
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4292 4293
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4294

4295 4296 4297
	if (is_kdump_kernel())
		q10g = 1;

4298 4299 4300 4301
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4302
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4303 4304
		qidx += pi->nqsets;
	}
4305
#endif /* !CONFIG_CHELSIO_T4_DCB */
4306 4307 4308 4309

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

4310
	if (is_uld(adap)) {
4311 4312 4313 4314 4315 4316
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
4317
			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4318 4319 4320 4321
			s->ofldqsets = roundup(i, adap->params.nports);
		} else {
			s->ofldqsets = adap->params.nports;
		}
4322 4323 4324 4325 4326
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4327
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4328 4329 4330 4331 4332 4333 4334 4335 4336
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

4337 4338 4339
	if (!is_t4(adap->params.chip))
		s->ptptxq.q.size = 8;

4340
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4341
	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4342 4343 4344 4345 4346 4347
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4348
static void reduce_ethqs(struct adapter *adap, int n)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

4372 4373 4374
static int get_msix_info(struct adapter *adap)
{
	struct uld_msix_info *msix_info;
4375 4376 4377 4378 4379 4380 4381 4382 4383
	unsigned int max_ingq = 0;

	if (is_offload(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
	if (is_pci_uld(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_uld;

	if (!max_ingq)
		goto out;
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
	if (!msix_info)
		return -ENOMEM;

	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
						 sizeof(long), GFP_KERNEL);
	if (!adap->msix_bmap_ulds.msix_bmap) {
		kfree(msix_info);
		return -ENOMEM;
	}
	spin_lock_init(&adap->msix_bmap_ulds.lock);
	adap->msix_info_ulds = msix_info;
4397
out:
4398 4399 4400 4401 4402
	return 0;
}

static void free_msix_info(struct adapter *adap)
{
4403
	if (!(adap->num_uld && adap->num_ofld_uld))
4404 4405 4406 4407 4408 4409
		return;

	kfree(adap->msix_info_ulds);
	kfree(adap->msix_bmap_ulds.msix_bmap);
}

4410 4411 4412
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4413
static int enable_msix(struct adapter *adap)
4414
{
4415 4416
	int ofld_need = 0, uld_need = 0;
	int i, j, want, need, allocated;
4417 4418
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4419
	struct msix_entry *entries;
4420
	int max_ingq = MAX_INGQ;
4421

4422 4423 4424 4425
	if (is_pci_uld(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
	if (is_offload(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4426
	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4427 4428 4429
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4430

4431
	/* map for msix */
4432 4433
	if (get_msix_info(adap)) {
		adap->params.offload = 0;
4434
		adap->params.crypto = 0;
4435
	}
4436 4437

	for (i = 0; i < max_ingq + 1; ++i)
4438 4439 4440 4441
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4442 4443
		want += adap->num_ofld_uld * s->ofldqsets;
		ofld_need = adap->num_ofld_uld * nchan;
4444
	}
4445
	if (is_pci_uld(adap)) {
4446 4447
		want += adap->num_uld * s->ofldqsets;
		uld_need = adap->num_uld * nchan;
4448
	}
4449 4450 4451 4452
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
4453
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4454
#else
4455
	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4456
#endif
4457 4458 4459 4460 4461 4462 4463
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4464

4465
	/* Distribute available vectors to the various queue groups.
4466 4467 4468
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4469
	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4470 4471 4472 4473 4474
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
4475
	if (is_uld(adap)) {
4476 4477 4478
		if (allocated < want)
			s->nqs_per_uld = nchan;
		else
4479
			s->nqs_per_uld = s->ofldqsets;
4480 4481
	}

4482
	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4483
		adap->msix_info[i].vec = entries[i].vector;
4484 4485
	if (is_uld(adap)) {
		for (j = 0 ; i < allocated; ++i, j++) {
4486
			adap->msix_info_ulds[j].vec = entries[i].vector;
4487 4488
			adap->msix_info_ulds[j].idx = i;
		}
4489 4490
		adap->msix_bmap_ulds.mapsize = j;
	}
4491
	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4492 4493
		 "nic %d per uld %d\n",
		 allocated, s->max_ethqsets, s->nqs_per_uld);
4494

4495
	kfree(entries);
4496
	return 0;
4497 4498 4499 4500
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4501
static int init_rss(struct adapter *adap)
4502
{
4503 4504 4505 4506 4507 4508
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
					enum pci_bus_speed *speed,
					enum pcie_link_width *width)
{
	u32 lnkcap1, lnkcap2;
	int err1, err2;

#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */

	*speed = PCI_SPEED_UNKNOWN;
	*width = PCIE_LNK_WIDTH_UNKNOWN;

	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
					  &lnkcap1);
	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
					  &lnkcap2);
	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
			*speed = PCIE_SPEED_8_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
			*speed = PCIE_SPEED_5_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
			*speed = PCIE_SPEED_2_5GT;
	}
	if (!err1) {
		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
		if (!lnkcap2) { /* pre-r3.0 */
			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
				*speed = PCIE_SPEED_5_0GT;
			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
				*speed = PCIE_SPEED_2_5GT;
		}
	}

	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
		return err1 ? err1 : err2 ? err2 : -EINVAL;
	return 0;
}

static void cxgb4_check_pcie_caps(struct adapter *adap)
{
	enum pcie_link_width width, width_cap;
	enum pci_bus_speed speed, speed_cap;

#define PCIE_SPEED_STR(speed) \
	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
	 "Unknown")

	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCIe device BW capabilities\n");
		return;
	}

	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCI Express bandwidth.\n");
		return;
	}

	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
		 width, width_cap);
	if (speed < speed_cap || width < width_cap)
		dev_info(adap->pdev_dev,
			 "A slot with more lanes and/or higher speed is "
			 "suggested for optimal performance.\n");
}

4593 4594 4595
/* Dump basic information about the adapter */
static void print_adapter_info(struct adapter *adapter)
{
4596 4597
	/* Hardware/Firmware/etc. Version/Revision IDs */
	t4_dump_version_info(adapter);
4598 4599 4600 4601 4602 4603 4604 4605 4606

	/* Software/Hardware configuration */
	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
		 is_offload(adapter) ? "R" : "",
		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
		  (adapter->flags & USING_MSI) ? "MSI" : ""),
		 is_offload(adapter) ? "Offload" : "non-Offload");
}

B
Bill Pemberton 已提交
4607
static void print_port_info(const struct net_device *dev)
4608 4609
{
	char buf[80];
4610
	char *bufp = buf;
4611
	const char *spd = "";
4612 4613
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4614 4615 4616 4617 4618

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4619 4620
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4621

4622
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4623
		bufp += sprintf(bufp, "100M/");
4624
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4625
		bufp += sprintf(bufp, "1G/");
4626
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4627
		bufp += sprintf(bufp, "10G/");
4628
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4629
		bufp += sprintf(bufp, "25G/");
4630
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4631
		bufp += sprintf(bufp, "40G/");
4632 4633 4634
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
		bufp += sprintf(bufp, "50G/");
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4635
		bufp += sprintf(bufp, "100G/");
4636 4637 4638 4639
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
		bufp += sprintf(bufp, "200G/");
	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
		bufp += sprintf(bufp, "400G/");
4640 4641
	if (bufp != buf)
		--bufp;
4642
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4643

4644 4645
	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
		    dev->name, adap->params.vpd.id, adap->name, buf);
4646 4647
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

4659
	kvfree(adapter->smt);
4660
	kvfree(adapter->l2t);
4661
	t4_cleanup_sched(adapter);
4662
	kvfree(adapter->tids.tid_tab);
4663
	cxgb4_cleanup_tc_flower(adapter);
4664
	cxgb4_cleanup_tc_u32(adapter);
4665 4666 4667 4668
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4669 4670 4671
#ifdef CONFIG_DEBUG_FS
	kfree(adapter->sge.blocked_fl);
#endif
4672 4673 4674
	disable_msi(adapter);

	for_each_port(adapter, i)
4675
		if (adapter->port[i]) {
4676 4677 4678 4679 4680
			struct port_info *pi = adap2pinfo(adapter, i);

			if (pi->viid != 0)
				t4_free_vi(adapter, adapter->mbox, adapter->pf,
					   0, pi->viid);
4681
			kfree(adap2pinfo(adapter, i)->rss);
4682
			free_netdev(adapter->port[i]);
4683
		}
4684
	if (adapter->flags & FW_OK)
4685
		t4_fw_bye(adapter, adapter->pf);
4686 4687
}

4688
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4689
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4690
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4691
#define SEGMENT_SIZE 128
4692

4693 4694 4695 4696 4697 4698
static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
{
	u16 device_id;

	/* Retrieve adapter's device ID */
	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4699 4700

	switch (device_id >> 12) {
4701
	case CHELSIO_T4:
4702
		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4703
	case CHELSIO_T5:
4704
		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4705
	case CHELSIO_T6:
4706
		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4707 4708 4709 4710
	default:
		dev_err(&pdev->dev, "Device %d is not supported\n",
			device_id);
	}
4711
	return -EINVAL;
4712 4713
}

4714
#ifdef CONFIG_PCI_IOV
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
static void dummy_setup(struct net_device *dev)
{
	dev->type = ARPHRD_NONE;
	dev->mtu = 0;
	dev->hard_header_len = 0;
	dev->addr_len = 0;
	dev->tx_queue_len = 0;
	dev->flags |= IFF_NOARP;
	dev->priv_flags |= IFF_NO_QUEUE;

	/* Initialize the device structure. */
	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4728
	dev->needs_free_netdev = true;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
}

static int config_mgmt_dev(struct pci_dev *pdev)
{
	struct adapter *adap = pci_get_drvdata(pdev);
	struct net_device *netdev;
	struct port_info *pi;
	char name[IFNAMSIZ];
	int err;

	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4740 4741
	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
			      dummy_setup);
4742 4743 4744 4745 4746
	if (!netdev)
		return -ENOMEM;

	pi = netdev_priv(netdev);
	pi->adapter = adap;
4747
	pi->tx_chan = adap->pf % adap->params.nports;
4748 4749 4750
	SET_NETDEV_DEV(netdev, &pdev->dev);

	adap->port[0] = netdev;
4751
	pi->port_id = 0;
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

	err = register_netdev(adap->port[0]);
	if (err) {
		pr_info("Unable to register VF mgmt netdev %s\n", name);
		free_netdev(adap->port[0]);
		adap->port[0] = NULL;
		return err;
	}
	return 0;
}

4763 4764
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
{
4765
	struct adapter *adap = pci_get_drvdata(pdev);
4766 4767 4768 4769
	int err = 0;
	int current_vfs = pci_num_vf(pdev);
	u32 pcie_fw;

4770
	pcie_fw = readl(adap->regs + PCIE_FW_A);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
	/* Check if cxgb4 is the MASTER and fw is initialized */
	if (!(pcie_fw & PCIE_FW_INIT_F) ||
	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
		dev_warn(&pdev->dev,
			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
		return -EOPNOTSUPP;
	}

	/* If any of the VF's is already assigned to Guest OS, then
	 * SRIOV for the same cannot be modified
	 */
	if (current_vfs && pci_vfs_assigned(pdev)) {
		dev_err(&pdev->dev,
			"Cannot modify SR-IOV while VFs are assigned\n");
		num_vfs = current_vfs;
		return num_vfs;
	}

	/* Disable SRIOV when zero is passed.
	 * One needs to disable SRIOV before modifying it, else
	 * stack throws the below warning:
	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
	 */
	if (!num_vfs) {
		pci_disable_sriov(pdev);
4797
		if (adap->port[0]) {
4798
			unregister_netdev(adap->port[0]);
4799 4800
			adap->port[0] = NULL;
		}
4801 4802 4803 4804
		/* free VF resources */
		kfree(adap->vfinfo);
		adap->vfinfo = NULL;
		adap->num_vfs = 0;
4805 4806 4807 4808 4809 4810 4811
		return num_vfs;
	}

	if (num_vfs != current_vfs) {
		err = pci_enable_sriov(pdev, num_vfs);
		if (err)
			return err;
4812

4813
		adap->num_vfs = num_vfs;
4814 4815 4816
		err = config_mgmt_dev(pdev);
		if (err)
			return err;
4817
	}
4818 4819 4820 4821 4822

	adap->vfinfo = kcalloc(adap->num_vfs,
			       sizeof(struct vf_info), GFP_KERNEL);
	if (adap->vfinfo)
		fill_vf_station_mac_addr(adap);
4823 4824 4825 4826
	return num_vfs;
}
#endif

4827
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4828
{
4829
	int func, i, err, s_qpp, qpp, num_seg;
4830
	struct port_info *pi;
4831
	bool highdma = false;
4832
	struct adapter *adapter = NULL;
4833
	struct net_device *netdev;
4834
	void __iomem *regs;
4835 4836
	u32 whoami, pl_rev;
	enum chip_type chip;
4837
	static int adap_idx = 1;
A
Arnd Bergmann 已提交
4838
#ifdef CONFIG_PCI_IOV
4839
	u32 v, port_vec;
A
Arnd Bergmann 已提交
4840
#endif
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4857 4858 4859 4860 4861 4862 4863
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4864 4865 4866 4867
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4868
	/* We control everything through one PF */
4869 4870 4871 4872 4873
	whoami = readl(regs + PL_WHOAMI_A);
	pl_rev = REV_G(readl(regs + PL_REV_A));
	chip = get_chip_type(pdev, pl_rev);
	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4874
	if (func != ent->driver_data) {
4875
#ifndef CONFIG_PCI_IOV
4876
		iounmap(regs);
4877
#endif
4878 4879 4880 4881 4882
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4883
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4884
		highdma = true;
4885 4886 4887 4888
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4889
			goto out_unmap_bar0;
4890 4891 4892 4893 4894
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4895
			goto out_unmap_bar0;
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
		}
	}

	pci_enable_pcie_error_reporting(pdev);
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4906
		goto out_unmap_bar0;
4907
	}
4908
	adap_idx++;
4909

4910 4911 4912 4913 4914 4915
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
		goto out_free_adapter;
	}
	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;

4926 4927 4928
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4929
	adapter->regs = regs;
4930 4931
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4932
	adapter->name = pci_name(pdev);
4933
	adapter->mbox = func;
4934
	adapter->pf = func;
4935
	adapter->msg_enable = DFLT_MSG_ENABLE;
4936 4937
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
	 * Ingress Packet Data to Free List Buffers in order to allow for
	 * chipset performance optimizations between the Root Complex and
	 * Memory Controllers.  (Messages to the associated Ingress Queue
	 * notifying new Packet Placement in the Free Lists Buffers will be
	 * send without the Relaxed Ordering Attribute thus guaranteeing that
	 * all preceding PCIe Transaction Layer Packets will be processed
	 * first.)  But some Root Complexes have various issues with Upstream
	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
	 * The PCIe devices which under the Root Complexes will be cleared the
	 * Relaxed Ordering bit in the configuration space, So we check our
	 * PCIe configuration space to see if it's flagged with advice against
	 * using Relaxed Ordering.
	 */
	if (!pcie_relaxed_ordering_enabled(pdev))
		adapter->flags |= ROOT_NO_RELAXED_ORDERING;

4955 4956
	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
4957
	spin_lock_init(&adapter->win0_lock);
4958 4959 4960
	spin_lock_init(&adapter->mbox_lock);

	INIT_LIST_HEAD(&adapter->mlist.list);
4961 4962

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4963 4964
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4965 4966 4967

	err = t4_prep_adapter(adapter);
	if (err)
4968 4969
		goto out_free_adapter;

4970

4971
	if (!is_t4(adapter->params.chip)) {
4972 4973
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4974
			adapter->pf);
4975 4976
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
4988
			goto out_free_adapter;
4989 4990 4991 4992 4993 4994
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
4995
			goto out_free_adapter;
4996 4997 4998
		}
	}

4999
	setup_memwin(adapter);
5000
	err = adap_init0(adapter);
5001 5002 5003
#ifdef CONFIG_DEBUG_FS
	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
5004
	setup_memwin_rdma(adapter);
5005 5006 5007
	if (err)
		goto out_unmap_bar;

5008 5009
	/* configure SGE_STAT_CFG_A to read WC stats */
	if (!is_t4(adapter->params.chip))
5010 5011 5012
		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
			      T6_STATMODE_V(0)));
5013

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	for_each_port(adapter, i) {
		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

5031 5032 5033
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5034 5035
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
			NETIF_F_HW_TC;
5036 5037 5038
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
5039 5040
		netdev->vlan_features = netdev->features & VLAN_FEAT;

5041 5042
		netdev->priv_flags |= IFF_UNICAST_FLT;

5043
		/* MTU range: 81 - 9600 */
5044
		netdev->min_mtu = 81;              /* accommodate SACK */
5045 5046
		netdev->max_mtu = MAX_MTU;

5047
		netdev->netdev_ops = &cxgb4_netdev_ops;
5048 5049 5050 5051
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
5052
		cxgb4_set_ethtool_ops(netdev);
5053 5054
	}

5055 5056
	cxgb4_init_ethtool_dump(adapter);

5057 5058 5059
	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
5060
		err = t4_port_init(adapter, func, func, 0);
5061 5062
		if (err)
			goto out_free_dev;
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	} else if (adapter->params.nports == 1) {
		/* If we don't have a connection to the firmware -- possibly
		 * because of an error -- grab the raw VPD parameters so we
		 * can set the proper MAC Address on the debug network
		 * interface that we've created.
		 */
		u8 hw_addr[ETH_ALEN];
		u8 *na = adapter->params.vpd.na;

		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
		if (!err) {
			for (i = 0; i < ETH_ALEN; i++)
				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
					      hex2val(na[2 * i + 1]));
			t4_set_hw_addr(adapter, 0, hw_addr);
		}
5079 5080
	}

5081
	/* Configure queues and allocate tables now, they can be needed as
5082 5083 5084 5085
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

5086 5087 5088 5089 5090 5091
	adapter->smt = t4_init_smt();
	if (!adapter->smt) {
		/* We tolerate a lack of SMT, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
	}

5092
	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5093 5094 5095 5096 5097 5098
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

5099
#if IS_ENABLED(CONFIG_IPV6)
5100 5101 5102 5103
	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
		/* CLIP functionality is not present in hardware,
		 * hence disable all offload features
5104 5105
		 */
		dev_warn(&pdev->dev,
5106
			 "CLIP not enabled in hardware, continuing\n");
5107
		adapter->params.offload = 0;
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	} else {
		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
						  adapter->clipt_end);
		if (!adapter->clipt) {
			/* We tolerate a lack of clip_table, giving up
			 * some functionality
			 */
			dev_warn(&pdev->dev,
				 "could not allocate Clip table, continuing\n");
			adapter->params.offload = 0;
		}
5119 5120
	}
#endif
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130

	for_each_port(adapter, i) {
		pi = adap2pinfo(adapter, i);
		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
		if (!pi->sched_tbl)
			dev_warn(&pdev->dev,
				 "could not activate scheduling on port %d\n",
				 i);
	}

5131
	if (tid_init(&adapter->tids) < 0) {
5132 5133 5134
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
5135
	} else {
5136
		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5137 5138 5139
		if (!adapter->tc_u32)
			dev_warn(&pdev->dev,
				 "could not offload tc u32, continuing\n");
5140 5141

		cxgb4_init_tc_flower(adapter);
5142 5143
	}

5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	if (is_offload(adapter)) {
		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
			u32 hash_base, hash_reg;

			if (chip <= CHELSIO_T5) {
				hash_reg = LE_DB_TID_HASHBASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base / 4;
			} else {
				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base;
			}
		}
	}

5160 5161 5162
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
5163
	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5164
		adapter->flags |= USING_MSI;
5165 5166 5167
		if (msi > 1)
			free_msix_info(adapter);
	}
5168

5169 5170 5171
	/* check for PCI Express bandwidth capabiltites */
	cxgb4_check_pcie_caps(adapter);

5172 5173 5174 5175
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

5176 5177 5178 5179 5180 5181 5182
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
5183
		pi = adap2pinfo(adapter, i);
5184
		adapter->port[i]->dev_port = pi->lport;
5185 5186 5187
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

5188 5189
		netif_carrier_off(adapter->port[i]);

5190 5191
		err = register_netdev(adapter->port[i]);
		if (err)
5192 5193 5194
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
5195
	}
5196
	if (i == 0) {
5197 5198 5199
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
5200 5201 5202
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
5203
	}
5204 5205 5206 5207 5208 5209 5210

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
5211 5212 5213
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

5214 5215 5216 5217 5218
	if (is_uld(adapter)) {
		mutex_lock(&uld_mutex);
		list_add_tail(&adapter->list_node, &adapter_list);
		mutex_unlock(&uld_mutex);
	}
5219

5220 5221 5222
	if (!is_t4(adapter->params.chip))
		cxgb4_ptp_init(adapter);

5223
	print_adapter_info(adapter);
5224
	setup_fw_sge_queues(adapter);
5225
	return 0;
5226

5227
sriov:
5228
#ifdef CONFIG_PCI_IOV
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
		goto free_pci_region;
	}

	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
	adapter->name = pci_name(pdev);
	adapter->mbox = func;
	adapter->pf = func;
	adapter->regs = regs;
5241
	adapter->adap_idx = adap_idx;
5242 5243 5244 5245 5246 5247
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
5248
		goto free_adapter;
5249
	}
5250 5251
	spin_lock_init(&adapter->mbox_lock);
	INIT_LIST_HEAD(&adapter->mlist.list);
5252 5253 5254 5255 5256 5257 5258

	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
			      &v, &port_vec);
	if (err < 0) {
		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5259
		goto free_mbox_log;
5260 5261 5262
	}

	adapter->params.nports = hweight32(port_vec);
5263 5264 5265
	pci_set_drvdata(pdev, adapter);
	return 0;

5266 5267
free_mbox_log:
	kfree(adapter->mbox_log);
5268 5269 5270 5271 5272 5273 5274 5275
 free_adapter:
	kfree(adapter);
 free_pci_region:
	iounmap(regs);
	pci_disable_sriov(pdev);
	pci_release_regions(pdev);
	return err;
#else
5276
	return 0;
5277
#endif
5278 5279

 out_free_dev:
5280
	free_some_resources(adapter);
5281 5282
	if (adapter->flags & USING_MSIX)
		free_msix_info(adapter);
5283 5284
	if (adapter->num_uld || adapter->num_ofld_uld)
		t4_uld_mem_free(adapter);
5285
 out_unmap_bar:
5286
	if (!is_t4(adapter->params.chip))
5287
		iounmap(adapter->bar2);
5288
 out_free_adapter:
5289 5290 5291
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

5292
	kfree(adapter->mbox_log);
5293
	kfree(adapter);
5294 5295
 out_unmap_bar0:
	iounmap(regs);
5296 5297 5298 5299 5300 5301 5302 5303
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
5304
static void remove_one(struct pci_dev *pdev)
5305 5306 5307
{
	struct adapter *adapter = pci_get_drvdata(pdev);

5308 5309 5310 5311
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}
5312

5313 5314
	adapter->flags |= SHUTTING_DOWN;

5315
	if (adapter->pf == 4) {
5316 5317
		int i;

5318 5319 5320 5321 5322
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

5323
		if (is_uld(adapter)) {
5324
			detach_ulds(adapter);
5325 5326
			t4_uld_clean_up(adapter);
		}
5327

5328 5329
		disable_interrupts(adapter);

5330
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
5331
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5332 5333
				unregister_netdev(adapter->port[i]);

5334
		debugfs_remove_recursive(adapter->debugfs_root);
5335

5336 5337 5338
		if (!is_t4(adapter->params.chip))
			cxgb4_ptp_stop(adapter);

V
Vipul Pandya 已提交
5339 5340 5341
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
5342
		clear_all_filters(adapter);
V
Vipul Pandya 已提交
5343

5344 5345
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
5346

5347 5348
		if (adapter->flags & USING_MSIX)
			free_msix_info(adapter);
5349 5350
		if (adapter->num_uld || adapter->num_ofld_uld)
			t4_uld_mem_free(adapter);
5351
		free_some_resources(adapter);
5352 5353 5354
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
5355
		iounmap(adapter->regs);
5356
		if (!is_t4(adapter->params.chip))
5357
			iounmap(adapter->bar2);
5358
		pci_disable_pcie_error_reporting(pdev);
5359 5360 5361 5362
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
5363
		pci_release_regions(pdev);
5364
		kfree(adapter->mbox_log);
5365
		synchronize_rcu();
5366
		kfree(adapter);
5367 5368 5369
	}
#ifdef CONFIG_PCI_IOV
	else {
5370
		if (adapter->port[0])
5371 5372
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
5373
		kfree(adapter->vfinfo);
5374
		kfree(adapter->mbox_log);
5375 5376
		kfree(adapter);
		pci_disable_sriov(pdev);
5377
		pci_release_regions(pdev);
5378 5379
	}
#endif
5380 5381
}

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
 * delivery.  This is essentially a stripped down version of the PCI remove()
 * function where we do the minimal amount of work necessary to shutdown any
 * further activity.
 */
static void shutdown_one(struct pci_dev *pdev)
{
	struct adapter *adapter = pci_get_drvdata(pdev);

	/* As with remove_one() above (see extended comment), we only want do
	 * do cleanup on PCI Devices which went all the way through init_one()
	 * ...
	 */
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}

5400 5401
	adapter->flags |= SHUTTING_DOWN;

5402 5403 5404 5405 5406 5407 5408
	if (adapter->pf == 4) {
		int i;

		for_each_port(adapter, i)
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
				cxgb_close(adapter->port[i]);

5409 5410 5411 5412 5413
		if (is_uld(adapter)) {
			detach_ulds(adapter);
			t4_uld_clean_up(adapter);
		}

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
		disable_interrupts(adapter);
		disable_msi(adapter);

		t4_sge_stop(adapter);
		if (adapter->flags & FW_OK)
			t4_fw_bye(adapter, adapter->mbox);
	}
#ifdef CONFIG_PCI_IOV
	else {
		if (adapter->port[0])
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
		kfree(adapter->vfinfo);
5427
		kfree(adapter->mbox_log);
5428 5429 5430 5431 5432 5433 5434
		kfree(adapter);
		pci_disable_sriov(pdev);
		pci_release_regions(pdev);
	}
#endif
}

5435 5436 5437 5438
static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
5439
	.remove   = remove_one,
5440
	.shutdown = shutdown_one,
5441 5442 5443
#ifdef CONFIG_PCI_IOV
	.sriov_configure = cxgb4_iov_configure,
#endif
D
Dimitris Michailidis 已提交
5444
	.err_handler = &cxgb4_eeh,
5445 5446 5447 5448 5449 5450 5451 5452 5453
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
5454
		pr_warn("could not create debugfs entry, continuing\n");
5455 5456

	ret = pci_register_driver(&cxgb4_driver);
5457
	if (ret < 0)
5458
		debugfs_remove(cxgb4_debugfs_root);
5459

5460
#if IS_ENABLED(CONFIG_IPV6)
5461 5462 5463 5464
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
5465
#endif
5466

5467 5468 5469 5470 5471
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
5472
#if IS_ENABLED(CONFIG_IPV6)
5473
	if (inet6addr_registered) {
5474 5475 5476
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
5477
#endif
5478 5479 5480 5481 5482 5483
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);