cxgb4_main.c 143.3 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66
#include <linux/uaccess.h>
67
#include <linux/crash_dump.h>
68 69

#include "cxgb4.h"
70
#include "cxgb4_filter.h"
71
#include "t4_regs.h"
72
#include "t4_values.h"
73 74
#include "t4_msg.h"
#include "t4fw_api.h"
75
#include "t4fw_version.h"
76
#include "cxgb4_dcb.h"
77
#include "cxgb4_debugfs.h"
78
#include "clip_tbl.h"
79
#include "l2t.h"
80
#include "sched.h"
81
#include "cxgb4_tc_u32.h"
82

83 84
char cxgb4_driver_name[] = KBUILD_MODNAME;

85 86 87
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
88
#define DRV_VERSION "2.0.0-ko"
89
const char cxgb4_driver_version[] = DRV_VERSION;
90
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 92 93 94 95

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

96 97 98
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99
	static const struct pci_device_id cxgb4_pci_tbl[] = {
100
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
101

102 103 104 105 106 107 108 109 110 111 112 113 114
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
115

116
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
117
#define FW5_FNAME "cxgb4/t5fw.bin"
118
#define FW6_FNAME "cxgb4/t6fw.bin"
119
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
120
#define FW5_CFNAME "cxgb4/t5-config.txt"
121
#define FW6_CFNAME "cxgb4/t6-config.txt"
122 123 124 125
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
126 127 128 129 130 131

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
133
MODULE_FIRMWARE(FW5_FNAME);
134
MODULE_FIRMWARE(FW6_FNAME);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

164 165 166 167 168 169 170 171 172 173 174
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

175 176
static struct dentry *cxgb4_debugfs_root;

177 178
LIST_HEAD(adapter_list);
DEFINE_MUTEX(uld_mutex);
179 180 181 182 183 184 185 186

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

187
		const char *s;
188 189 190
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
191 192
		case 100:
			s = "100Mbps";
193
			break;
194
		case 1000:
195
			s = "1Gbps";
196
			break;
197 198 199 200 201
		case 10000:
			s = "10Gbps";
			break;
		case 25000:
			s = "25Gbps";
202
			break;
203
		case 40000:
204 205
			s = "40Gbps";
			break;
206 207 208
		case 100000:
			s = "100Gbps";
			break;
209 210 211 212
		default:
			pr_info("%s: unsupported speed: %d\n",
				dev->name, p->link_cfg.speed);
			return;
213 214 215 216 217 218 219
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

236 237 238 239
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 241 242 243 244 245
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
246
		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 248
					    &name, &value,
					    -FW_CMD_MAX_TIMEOUT);
249 250 251 252 253

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
254 255
		else
			txq->dcb_prio = value;
256 257 258
	}
}

259
static int cxgb4_dcb_enabled(const struct net_device *dev)
260 261 262 263 264 265 266 267 268
{
	struct port_info *pi = netdev_priv(dev);

	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
}
A
Arnd Bergmann 已提交
269
#endif /* CONFIG_CHELSIO_T4_DCB */
270

271 272 273 274 275 276 277 278
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
279 280
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
281 282 283 284
			if (cxgb4_dcb_enabled(dev)) {
				cxgb4_dcb_state_init(dev);
				dcb_tx_queue_prio_enable(dev, false);
			}
285
#endif /* CONFIG_CHELSIO_T4_DCB */
286
			netif_carrier_off(dev);
287
		}
288 289 290 291 292 293 294 295

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
296
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 298 299 300 301 302 303
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
304
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
305
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 307 308 309 310 311 312 313 314 315 316
	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
		netdev_info(dev, "%s: unsupported port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
		netdev_info(dev, "%s: unknown port module inserted\n",
			    dev->name);
	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
		netdev_info(dev, "%s: transceiver module error\n", dev->name);
	else
		netdev_info(dev, "%s: unknown module type %d inserted\n",
			    dev->name, pi->mod_type);
317 318
}

319 320 321 322
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

323
/*
324
 * usecs to sleep while draining the dbfifo
325
 */
326 327 328 329 330 331
static int dbfifo_drain_delay = 1000;
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

static inline int cxgb4_set_addr_hash(struct port_info *pi)
332
{
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	struct adapter *adap = pi->adapter;
	u64 vec = 0;
	bool ucast = false;
	struct hash_mac_addr *entry;

	/* Calculate the hash vector for the updated list and program it */
	list_for_each_entry(entry, &adap->mac_hlist, list) {
		ucast |= is_unicast_ether_addr(entry->addr);
		vec |= (1ULL << hash_mac_addr(entry->addr));
	}
	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
				vec, false);
}

static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
352 353
	u64 mhash = 0;
	u64 uhash = 0;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	bool free = false;
	bool ucast = is_unicast_ether_addr(mac_addr);
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *new_entry;

	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
				NULL, ucast ? &uhash : &mhash, false);
	if (ret < 0)
		goto out;
	/* if hash != 0, then add the addr to hash addr list
	 * so on the end we will calculate the hash for the
	 * list and program it
	 */
	if (uhash || mhash) {
		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
		if (!new_entry)
			return -ENOMEM;
		ether_addr_copy(new_entry->addr, mac_addr);
		list_add_tail(&new_entry->list, &adap->mac_hlist);
		ret = cxgb4_set_addr_hash(pi);
374
	}
375 376 377
out:
	return ret < 0 ? ret : 0;
}
378

379 380 381 382 383 384 385
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
{
	struct port_info *pi = netdev_priv(netdev);
	struct adapter *adap = pi->adapter;
	int ret;
	const u8 *maclist[1] = {mac_addr};
	struct hash_mac_addr *entry, *tmp;
386

387 388 389 390 391 392 393 394
	/* If the MAC address to be removed is in the hash addr
	 * list, delete it from the list and update hash vector
	 */
	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
		if (ether_addr_equal(entry->addr, mac_addr)) {
			list_del(&entry->list);
			kfree(entry);
			return cxgb4_set_addr_hash(pi);
395 396 397
		}
	}

398 399
	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
	return ret < 0 ? -EINVAL : 0;
400 401 402 403 404 405 406 407 408
}

/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	struct port_info *pi = netdev_priv(dev);
409
	struct adapter *adapter = pi->adapter;
410

411 412
	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 414 415 416 417

	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
			     (dev->flags & IFF_PROMISC) ? 1 : 0,
			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
			     sleep_ok);
418 419 420 421 422 423 424 425 426 427 428 429
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
430
	unsigned int mb = pi->adapter->pf;
431 432 433 434 435

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
436
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438
	if (ret == 0) {
439
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
440
				    pi->xact_addr_filt, dev->dev_addr, true,
441
				    true);
442 443 444 445 446 447
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
448
		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449
				    &pi->link_cfg);
450 451
	if (ret == 0) {
		local_bh_disable();
452 453
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
454 455
		local_bh_enable();
	}
456

457 458 459
	return ret;
}

460 461 462 463
#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
464
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465
	struct net_device *dev = adap->port[adap->chan_map[port]];
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
481
/* Response queue handler for the FW event queue.
482 483 484 485 486 487 488
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

504 505
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
506
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507
		struct sge_txq *txq;
508

509
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510
		txq->restarts++;
511
		if (txq->q_type == CXGB4_TXQ_ETH) {
512 513 514 515 516
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
517
			struct sge_uld_txq *oq;
518

519
			oq = container_of(txq, struct sge_uld_txq, q);
520 521 522 523 524
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

525 526
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
527
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528
		unsigned int action =
529
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530 531 532

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_GET_PORT_INFO) {
533
			int port = FW_PORT_CMD_PORTID_G(
534
					be32_to_cpu(pcmd->op_to_portid));
535 536
			struct net_device *dev =
				q->adap->port[q->adap->chan_map[port]];
537
			int state_input = ((pcmd->u.info.dcbxdis_pkd &
538
					    FW_PORT_CMD_DCBXDIS_F)
539 540 541 542 543 544 545 546 547 548 549 550 551
					   ? CXGB4_DCB_INPUT_FW_DISABLED
					   : CXGB4_DCB_INPUT_FW_ENABLED);

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
552 553 554 555
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
556 557 558 559
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
560 561 562
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
563
out:
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
584
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585

586
	if (v & PFSW_F) {
587
		adap->swintr = 1;
588
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589
	}
590 591
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
592 593 594 595 596 597 598 599
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
600
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601 602

	/* non-data interrupts */
603
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604 605

	/* FW events */
606 607
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
608 609 610 611 612 613

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

614
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 616 617 618 619 620 621 622
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
623
	int err, ethqidx;
624
	int msi_index = 2;
625 626 627 628 629 630 631

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
632 633 634
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
635 636 637
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
638
		msi_index++;
639 640 641 642 643
	}
	return 0;

unwind:
	while (--ethqidx >= 0)
644 645
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
646 647 648 649 650 651
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
652
	int i, msi_index = 2;
653 654 655 656
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
657
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 659
}

660
/**
661
 *	cxgb4_write_rss - write the RSS table for a given port
662 663 664 665 666
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
667
 *	Should never be called before setting up sge eth rx queues
668
 */
669
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 671 672
{
	u16 *rss;
	int i, err;
673 674
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
675

676
	rxq = &adapter->sge.ethrxq[pi->first_qset];
677 678 679 680 681 682
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
683
		rss[i] = rxq[*queues].rspq.abs_id;
684

685
	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686
				  pi->rss_size, rss, pi->rss_size);
687 688 689 690 691 692 693 694 695 696 697 698 699
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
700 701 702 703
	kfree(rss);
	return err;
}

704 705 706 707
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
708
 *	Sets up RSS for each port.
709 710 711
 */
static int setup_rss(struct adapter *adap)
{
712
	int i, j, err;
713 714 715 716

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

717 718 719 720
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

721
		err = cxgb4_write_rss(pi, pi->rss);
722 723 724 725 726 727
		if (err)
			return err;
	}
	return 0;
}

728 729 730 731 732 733 734 735 736
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

737 738 739 740 741 742 743
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

744
	for (i = 0; i < adap->sge.ingr_sz; i++) {
745 746
		struct sge_rspq *q = adap->sge.ingr_map[i];

747
		if (q && q->handler)
748 749 750 751
			napi_disable(&q->napi);
	}
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

767 768 769 770 771 772 773
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

774
	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 776 777 778
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
779
		if (q->handler)
780
			napi_enable(&q->napi);
781

782
		/* 0-increment GTS to start the timer and enable interrupts */
783 784 785
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
786 787 788
	}
}

789

790
static int setup_fw_sge_queues(struct adapter *adap)
791 792
{
	struct sge *s = &adap->sge;
793
	int err = 0;
794

795 796
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
797 798

	if (adap->flags & USING_MSIX)
799
		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800 801
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802
				       NULL, NULL, NULL, -1);
803 804
		if (err)
			return err;
805
		adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 807 808
	}

	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809
			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	if (err)
		t4_free_sge_resources(adap);
	return err;
}

/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, i, j;
	struct sge *s = &adap->sge;
G
Ganesh Goudar 已提交
827
	struct sge_uld_rxq_info *rxq_info = NULL;
828
	unsigned int cmplqid = 0;
829

G
Ganesh Goudar 已提交
830 831 832
	if (is_uld(adap))
		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];

833 834 835 836 837 838 839
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
840 841
			if (adap->msi_idx > 0)
				adap->msi_idx++;
842
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
843
					       adap->msi_idx, &q->fl,
844
					       t4_ethrx_handler,
845
					       NULL,
846 847
					       t4_get_tp_ch_map(adap,
								pi->tx_chan));
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	for_each_port(adap, i) {
863
		/* Note that cmplqid below is 0 if we don't
864 865
		 * have RDMA queues, and that's the right value.
		 */
866 867 868
		if (rxq_info)
			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;

869
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
870
					    s->fw_evtq.cntxt_id, cmplqid);
871 872 873 874
		if (err)
			goto freeout;
	}

875
	t4_write_reg(adap, is_t4(adap->params.chip) ?
876 877 878 879
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
880
	return 0;
881 882 883
freeout:
	t4_free_sge_resources(adap);
	return err;
884 885
}

886 887 888 889 890 891 892 893 894 895 896
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
897
	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
898 899 900 901 902 903 904 905 906 907 908
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
909 910 911 912
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
965
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
966 967 968 969 970 971 972
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
973 974
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
975
{
976 977
	struct adapter *adap = q->adap;

978 979 980 981 982 983 984 985 986 987
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
988 989 990 991
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
992 993
			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
					    &v, &new_idx);
994 995 996 997 998 999 1000
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1001
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1002 1003 1004
	return 0;
}

1005
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1006
{
1007
	const struct port_info *pi = netdev_priv(dev);
1008
	netdev_features_t changed = dev->features ^ features;
1009 1010
	int err;

1011
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1012
		return 0;
1013

1014
	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1015
			    -1, -1, -1,
1016
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1017
	if (unlikely(err))
1018
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1019
	return err;
D
Dimitris Michailidis 已提交
1020 1021
}

B
Bill Pemberton 已提交
1022
static int setup_debugfs(struct adapter *adap)
1023 1024 1025 1026
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1027 1028 1029
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1048
		atid = (p - t->atid_tab) + t->atid_base;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1063
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
1088
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1089 1090 1091 1092 1093 1094
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1095 1096 1097 1098
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
1099
		if (family == PF_INET6) {
1100
			t->stids_in_use += 2;
1101 1102 1103 1104
			t->v6_stids_in_use += 2;
		} else {
			t->stids_in_use++;
		}
1105 1106 1107 1108 1109 1110
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1130 1131
		stid -= t->nstids;
		stid += t->sftid_base;
1132
		t->sftids_in_use++;
1133 1134 1135 1136 1137 1138 1139
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1140 1141 1142
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1143 1144 1145 1146 1147 1148 1149 1150
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1151 1152 1153 1154
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
1155
		bitmap_release_region(t->stid_bmap, stid, 1);
1156
	t->stid_tab[stid].data = NULL;
1157
	if (stid < t->nstids) {
1158
		if (family == PF_INET6) {
1159
			t->stids_in_use -= 2;
1160 1161 1162 1163
			t->v6_stids_in_use -= 2;
		} else {
			t->stids_in_use--;
		}
1164 1165 1166
	} else {
		t->sftids_in_use--;
	}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1181
	req = __skb_put(skb, sizeof(*req));
1182 1183 1184 1185 1186 1187 1188 1189
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1190 1191
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1202
		queue_work(adap->workq, &adap->tid_release_task);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
1243 1244
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
		      unsigned short family)
1245 1246 1247 1248
{
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

1249 1250 1251 1252
	WARN_ON(tid >= t->ntids);

	if (t->tid_tab[tid]) {
		t->tid_tab[tid] = NULL;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		atomic_dec(&t->conns_in_use);
		if (t->hash_base && (tid >= t->hash_base)) {
			if (family == AF_INET6)
				atomic_sub(2, &t->hash_tids_in_use);
			else
				atomic_dec(&t->hash_tids_in_use);
		} else {
			if (family == AF_INET6)
				atomic_sub(2, &t->tids_in_use);
			else
				atomic_dec(&t->tids_in_use);
		}
1265 1266
	}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
1281
	struct adapter *adap = container_of(t, struct adapter, tids);
1282 1283 1284 1285 1286
	unsigned int max_ftids = t->nftids + t->nsftids;
	unsigned int natids = t->natids;
	unsigned int stid_bmap_size;
	unsigned int ftid_bmap_size;
	size_t size;
1287

1288
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1289
	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
V
Vipul Pandya 已提交
1290 1291
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1292
	       t->nstids * sizeof(*t->stid_tab) +
1293
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1294
	       stid_bmap_size * sizeof(long) +
1295 1296
	       max_ftids * sizeof(*t->ftid_tab) +
	       ftid_bmap_size * sizeof(long);
V
Vipul Pandya 已提交
1297

1298
	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1299 1300 1301 1302 1303
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1304
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1305
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1306
	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1307 1308
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);
1309
	spin_lock_init(&t->ftid_lock);
1310 1311

	t->stids_in_use = 0;
1312
	t->v6_stids_in_use = 0;
1313
	t->sftids_in_use = 0;
1314 1315 1316
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);
1317
	atomic_set(&t->conns_in_use, 0);
1318
	atomic_set(&t->hash_tids_in_use, 0);
1319 1320 1321 1322 1323 1324 1325

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335
	if (is_offload(adap)) {
		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
		/* Reserve stid 0 for T4/T5 adapters */
		if (!t->stid_base &&
		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
			__set_bit(0, t->stid_bmap);
	}

	bitmap_zero(t->ftid_bmap, t->nftids);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1351 1352
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1353 1354 1355 1356 1357
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1358
	int ret;
1359 1360 1361 1362 1363 1364

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1365
	req = __skb_put(skb, sizeof(*req));
1366 1367 1368 1369 1370 1371
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1372
	chan = rxq_to_chan(&adap->sge, queue);
1373
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1374 1375
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1376 1377
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1378 1379 1380
}
EXPORT_SYMBOL(cxgb4_create_server);

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
1406
	req = __skb_put(skb, sizeof(*req));
1407 1408 1409 1410 1411 1412 1413 1414 1415
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1416
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1417 1418
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

1438
	req = __skb_put(skb, sizeof(*req));
1439 1440
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1441 1442
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1443 1444 1445 1446 1447
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/**
 *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
 *	@chip: chip type
 *	@viid: VI id of the given port
 *
 *	Return the SMT index for this VI.
 */
unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
{
	/* In T4/T5, SMT contains 256 SMAC entries organized in
	 * 128 rows of 2 entries each.
	 * In T6, SMT contains 256 SMAC entries in 256 rows.
	 * TODO: The below code needs to be updated when we add support
	 * for 256 VFs.
	 */
	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
		return ((viid & 0x7f) << 1);
	else
		return (viid & 0x7f);
}
EXPORT_SYMBOL(cxgb4_tp_smt_idx);

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1576 1577 1578
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1579
	u32 v1, v2, lp_count, hp_count;
1580

1581 1582
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1583
	if (is_t4(adap->params.chip)) {
1584 1585
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1586
	} else {
1587 1588
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1589 1590
	}
	return lpfifo ? lp_count : hp_count;
1591 1592 1593
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
	t4_tp_get_tcp_stats(adap, v4, v6);
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1634 1635 1636 1637
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
1638 1639 1640
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

1641 1642 1643 1644
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);

1645
	return t4_sge_ctxt_flush(adap, adap->mbox);
1646 1647 1648 1649 1650
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
1651
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1652 1653 1654
	__be64 indices;
	int ret;

1655 1656 1657 1658 1659
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
1660
	if (!ret) {
1661 1662
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
1680
		u32 val;
1681 1682 1683 1684 1685

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
1686 1687 1688 1689 1690

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1691
		wmb();
1692 1693
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
1694 1695 1696 1697 1698 1699
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

1700 1701 1702 1703
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
1704
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
1718 1719 1720 1721 1722 1723
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
1739
		} else if (is_t5(adap->params.chip)) {
1740 1741
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1742 1743 1744 1745 1746 1747 1748 1749
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
1750 1751 1752
		} else {
			/* T4/T6 only has a single memory channel */
			goto err;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

1768 1769 1770 1771 1772 1773
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
1774 1775
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1776 1777 1778 1779 1780

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

1781 1782 1783
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
1784
			 int user,
1785 1786 1787
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
1788
	return t4_bar2_sge_qregs(netdev2adap(dev),
1789 1790 1791 1792
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
1793
				 user,
1794 1795 1796 1797 1798
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

1799 1800 1801 1802 1803 1804 1805
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

1806
	if (is_vlan_dev(netdev))
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

1832 1833
static void drain_db_fifo(struct adapter *adap, int usecs)
{
1834
	u32 v1, v2, lp_count, hp_count;
1835 1836

	do {
1837 1838
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1839
		if (is_t4(adap->params.chip)) {
1840 1841
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
1842
		} else {
1843 1844
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
1845 1846 1847 1848
		}

		if (lp_count == 0 && hp_count == 0)
			break;
1849 1850 1851 1852 1853 1854 1855
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
1856 1857 1858
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
1859
	q->db_disabled = 1;
1860
	spin_unlock_irqrestore(&q->db_lock, flags);
1861 1862
}

1863
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1864 1865
{
	spin_lock_irq(&q->db_lock);
1866 1867 1868 1869 1870
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
1871 1872
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1873 1874
		q->db_pidx_inc = 0;
	}
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				disable_txq_db(&txq->q);
			}
		}
	}
1897 1898 1899 1900 1901 1902 1903 1904 1905
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
1906
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];

		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				enable_txq_db(adap, &txq->q);
			}
		}
	}
1919
	for_each_port(adap, i)
1920 1921 1922 1923 1924
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
1925 1926 1927 1928
	enum cxgb4_uld type = CXGB4_ULD_RDMA;

	if (adap->uld && adap->uld[type].handle)
		adap->uld[type].control(adap->uld[type].handle, cmd);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1940 1941 1942 1943 1944 1945 1946
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
	else
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1947 1948 1949 1950 1951 1952 1953
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

1954
	spin_lock_irq(&q->db_lock);
1955 1956 1957 1958 1959
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
1960
		u32 val;
1961 1962 1963 1964 1965

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
1966 1967 1968 1969 1970

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
1971
		wmb();
1972 1973
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
1974 1975 1976
	}
out:
	q->db_disabled = 0;
1977 1978
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
1979 1980 1981
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
1982

1983 1984 1985 1986 1987 1988
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	if (is_offload(adap)) {
		struct sge_uld_txq_info *txq_info =
			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
		if (txq_info) {
			for_each_ofldtxq(&adap->sge, i) {
				struct sge_uld_txq *txq = &txq_info->uldtxq[i];

				sync_txq_pidx(adap, &txq->q);
			}
		}
	}
2000 2001 2002 2003
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2004 2005 2006 2007
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2008
	adap = container_of(work, struct adapter, db_drop_task);
2009

2010
	if (is_t4(adap->params.chip)) {
2011
		drain_db_fifo(adap, dbfifo_drain_delay);
2012
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2013
		drain_db_fifo(adap, dbfifo_drain_delay);
2014
		recover_all_queues(adap);
2015
		drain_db_fifo(adap, dbfifo_drain_delay);
2016
		enable_dbs(adap);
2017
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2018
	} else if (is_t5(adap->params.chip)) {
2019 2020 2021
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2022 2023 2024
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2025

2026
		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2027
					0, &bar2_qoffset, &bar2_qid);
2028 2029 2030 2031
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2032
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2033
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2034 2035 2036 2037 2038

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2039 2040
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2041 2042 2043 2044
}

void t4_db_full(struct adapter *adap)
{
2045
	if (is_t4(adap->params.chip)) {
2046 2047
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2048 2049
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2050
		queue_work(adap->workq, &adap->db_full_task);
2051
	}
2052 2053 2054 2055
}

void t4_db_dropped(struct adapter *adap)
{
2056 2057 2058 2059
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2060
	queue_work(adap->workq, &adap->db_drop_task);
2061 2062
}

2063 2064
void t4_register_netevent_notifier(void)
{
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2078 2079 2080 2081 2082
		if (adap->uld && adap->uld[i].handle) {
			adap->uld[i].state_change(adap->uld[i].handle,
					     CXGB4_STATE_DETACH);
			adap->uld[i].handle = NULL;
		}
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
2096 2097 2098
		if (adap->uld && adap->uld[i].handle)
			adap->uld[i].state_change(adap->uld[i].handle,
						  new_state);
2099 2100 2101
	mutex_unlock(&uld_mutex);
}

2102
#if IS_ENABLED(CONFIG_IPV6)
2103 2104
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2105
{
2106 2107 2108 2109
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2110
	struct adapter *adap;
2111
#endif
2112
	if (is_vlan_dev(event_dev))
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2133

2134 2135
	if (event_dev)
		parent = event_dev->dev.parent;
2136

2137
	if (parent && parent->driver == &cxgb4_driver.driver) {
2138 2139
		switch (event) {
		case NETDEV_UP:
2140
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2141 2142
			break;
		case NETDEV_DOWN:
2143
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2144 2145 2146 2147 2148
			break;
		default:
			break;
		}
	}
2149
	return NOTIFY_OK;
2150 2151
}

2152
static bool inet6addr_registered;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2170
			ret = cxgb4_update_root_dev_clip(dev);
2171 2172 2173 2174 2175 2176

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2177
#endif /* IS_ENABLED(CONFIG_IPV6) */
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2191
	int err;
2192

2193
	mutex_lock(&uld_mutex);
2194 2195
	err = setup_sge_queues(adap);
	if (err)
2196
		goto rel_lock;
2197 2198 2199
	err = setup_rss(adap);
	if (err)
		goto freeq;
2200 2201

	if (adap->flags & USING_MSIX) {
2202
		name_msix_vecs(adap);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;
		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2215
				  adap->port[0]->name, adap);
2216 2217 2218
		if (err)
			goto irq_err;
	}
2219

2220 2221 2222
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2223
	adap->flags |= FULL_INIT_DONE;
2224 2225
	mutex_unlock(&uld_mutex);

2226
	notify_ulds(adap, CXGB4_STATE_UP);
2227
#if IS_ENABLED(CONFIG_IPV6)
2228
	update_clip(adap);
2229
#endif
2230 2231
	/* Initialize hash mac addr list*/
	INIT_LIST_HEAD(&adap->mac_hlist);
2232
	return err;
2233

2234 2235
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2236 2237
 freeq:
	t4_free_sge_resources(adap);
2238 2239 2240
 rel_lock:
	mutex_unlock(&uld_mutex);
	return err;
2241 2242 2243 2244 2245
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2246 2247
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2248
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2249
	adapter->tid_release_head = NULL;
2250

2251 2252 2253
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2265 2266
	netif_carrier_off(dev);

2267 2268 2269 2270 2271
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2272

2273 2274 2275 2276 2277 2278 2279
	/* It's possible that the basic port information could have
	 * changed since we first read it.
	 */
	err = t4_update_port_info(pi);
	if (err < 0)
		return err;

2280 2281 2282 2283
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2284 2285 2286 2287 2288 2289 2290 2291 2292
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2293
	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2294 2295
}

2296
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2297 2298
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2299 2300 2301 2302 2303 2304 2305 2306 2307
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2308
	/* Adjust stid to correct filter index */
2309
	stid -= adap->tids.sftid_base;
2310 2311
	stid += adap->tids.nftids;

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2330
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2331 2332 2333 2334
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2335
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2336 2337 2338 2339
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2340

2341
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2342 2343 2344 2345
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2346 2347 2348 2349 2350 2351
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

2352 2353 2354 2355
	/* Save the actual tid. We need this to get the corresponding
	 * filter entry structure in filter_rpl.
	 */
	f->tid = stid + adap->tids.ftid_base;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2373 2374

	/* Adjust stid to correct filter index */
2375
	stid -= adap->tids.sftid_base;
2376 2377
	stid += adap->tids.nftids;

2378 2379 2380 2381
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

2382
	return delete_filter(adap, stid);
2383 2384 2385
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2386 2387
static void cxgb_get_stats(struct net_device *dev,
			   struct rtnl_link_stats64 *ns)
2388 2389 2390 2391 2392
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2393 2394 2395 2396
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2397
	spin_lock(&adapter->stats_lock);
2398 2399
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
2400
		return;
2401
	}
2402 2403
	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
				 &p->stats_base);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
2418
	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2438
	unsigned int mbox;
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2461
		mbox = pi->adapter->pf;
2462
		if (cmd == SIOCGMIIREG)
2463
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2464 2465
					 data->reg_num, &data->val_out);
		else
2466
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2467 2468
					 data->reg_num, data->val_in);
		break;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	case SIOCGHWTSTAMP:
		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
	case SIOCSHWTSTAMP:
		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
				   sizeof(pi->tstamp_config)))
			return -EFAULT;

		switch (pi->tstamp_config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			pi->rxtstamp = false;
			break;
		case HWTSTAMP_FILTER_ALL:
			pi->rxtstamp = true;
			break;
		default:
			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
			return -ERANGE;
		}

		return copy_to_user(req->ifr_data, &pi->tstamp_config,
				    sizeof(pi->tstamp_config)) ?
			-EFAULT : 0;
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

2510
	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2511
			    -1, -1, -1, true);
2512 2513 2514 2515 2516
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

2517
#ifdef CONFIG_PCI_IOV
2518 2519 2520 2521 2522 2523 2524 2525 2526
static int dummy_open(struct net_device *dev)
{
	/* Turn carrier off since we don't have to transmit anything on this
	 * interface.
	 */
	netif_carrier_off(dev);
	return 0;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/* Fill MAC address that will be assigned by the FW */
static void fill_vf_station_mac_addr(struct adapter *adap)
{
	unsigned int i;
	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
	int err;
	u8 *na;
	u16 a, b;

	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
	if (!err) {
		na = adap->params.vpd.na;
		for (i = 0; i < ETH_ALEN; i++)
			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
				      hex2val(na[2 * i + 1]));
		a = (hw_addr[0] << 8) | hw_addr[1];
		b = (hw_addr[1] << 8) | hw_addr[2];
		a ^= b;
		a |= 0x0200;    /* locally assigned Ethernet MAC address */
		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
		macaddr[0] = a >> 8;
		macaddr[1] = a & 0xff;

		for (i = 2; i < 5; i++)
			macaddr[i] = hw_addr[i + 1];

		for (i = 0; i < adap->num_vfs; i++) {
			macaddr[5] = adap->pf * 16 + i;
			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
		}
	}
}

2560 2561 2562 2563
static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
2564
	int ret;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	/* verify MAC addr is valid */
	if (!is_valid_ether_addr(mac)) {
		dev_err(pi->adapter->pdev_dev,
			"Invalid Ethernet address %pM for VF %d\n",
			mac, vf);
		return -EINVAL;
	}

	dev_info(pi->adapter->pdev_dev,
		 "Setting MAC %pM on VF %d\n", mac, vf);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
	if (!ret)
		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
	return ret;
}

static int cxgb_get_vf_config(struct net_device *dev,
			      int vf, struct ifla_vf_info *ivi)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (vf >= adap->num_vfs)
		return -EINVAL;
	ivi->vf = vf;
2591 2592
	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
	ivi->min_tx_rate = 0;
2593 2594
	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
	return 0;
2595
}
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

static int cxgb_get_phys_port_id(struct net_device *dev,
				 struct netdev_phys_item_id *ppid)
{
	struct port_info *pi = netdev_priv(dev);
	unsigned int phy_port_id;

	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
	ppid->id_len = sizeof(phy_port_id);
	memcpy(ppid->id, &phy_port_id, ppid->id_len);
	return 0;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
			    int max_tx_rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct fw_port_cmd port_cmd, port_rpl;
	u32 link_status, speed = 0;
	u32 fw_pfvf, fw_class;
	int class_id = vf;
	int link_ok, ret;
	u16 pktsize;

	if (vf >= adap->num_vfs)
		return -EINVAL;

	if (min_tx_rate) {
		dev_err(adap->pdev_dev,
			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
			min_tx_rate, vf);
		return -EINVAL;
	}
	/* Retrieve link details for VF port */
	memset(&port_cmd, 0, sizeof(port_cmd));
	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					    FW_CMD_REQUEST_F |
					    FW_CMD_READ_F |
					    FW_PORT_CMD_PORTID_V(pi->port_id));
	port_cmd.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
			    FW_LEN16(port_cmd));
	ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
			 &port_rpl);
	if (ret != FW_SUCCESS) {
		dev_err(adap->pdev_dev,
			"Failed to get link status for VF %d\n", vf);
		return -EINVAL;
	}
	link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
	link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0;
	if (!link_ok) {
		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
		return -EINVAL;
	}
	/* Determine link speed */
	if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
		speed = 100;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
		speed = 1000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
		speed = 10000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
		speed = 25000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
		speed = 40000;
	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
		speed = 100000;

	if (max_tx_rate > speed) {
		dev_err(adap->pdev_dev,
			"Max tx rate %d for VF %d can't be > link-speed %u",
			max_tx_rate, vf, speed);
		return -EINVAL;
	}
	pktsize = be16_to_cpu(port_rpl.u.info.mtu);
	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
	pktsize = pktsize - sizeof(struct ethhdr) - 4;
	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
	/* configure Traffic Class for rate-limiting */
	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
			      SCHED_CLASS_LEVEL_CL_RL,
			      SCHED_CLASS_MODE_CLASS,
			      SCHED_CLASS_RATEUNIT_BITS,
			      SCHED_CLASS_RATEMODE_ABS,
			      pi->port_id, class_id, 0,
			      max_tx_rate * 1000, 0, pktsize);
	if (ret) {
		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
			ret);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev,
		 "Class %d with MSS %u configured with rate %u\n",
		 class_id, pktsize, max_tx_rate);

	/* bind VF to configured Traffic Class */
	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
	fw_class = class_id;
	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
			    &fw_class);
	if (ret) {
		dev_err(adap->pdev_dev,
			"Err %d in binding VF %d to Traffic Class %d\n",
			ret, vf, class_id);
		return -EINVAL;
	}
	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
		 adap->pf, vf, class_id);
	adap->vfinfo[vf].tx_rate = max_tx_rate;
	return 0;
}

2712 2713
#endif

2714 2715 2716 2717 2718 2719 2720
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2721
		return -EADDRNOTAVAIL;
2722

2723
	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2724
			    pi->xact_addr_filt, addr->sa_data, true, true);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sched_class *e;
	struct ch_sched_params p;
	struct ch_sched_queue qe;
	u32 req_rate;
	int err = 0;

	if (!can_sched(dev))
		return -ENOTSUPP;

	if (index < 0 || index > pi->nqsets - 1)
		return -EINVAL;

	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to rate limit on queue %d. Link Down?\n",
			index);
		return -EINVAL;
	}

	/* Convert from Mbps to Kbps */
	req_rate = rate << 10;

	/* Max rate is 10 Gbps */
	if (req_rate >= SCHED_MAX_RATE_KBPS) {
		dev_err(adap->pdev_dev,
			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
			rate, SCHED_MAX_RATE_KBPS);
		return -ERANGE;
	}

	/* First unbind the queue from any existing class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = SCHED_CLS_NONE;

	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err) {
		dev_err(adap->pdev_dev,
			"Unbinding Queue %d on port %d fail. Err: %d\n",
			index, pi->port_id, err);
		return err;
	}

	/* Queue already unbound */
	if (!req_rate)
		return 0;

	/* Fetch any available unused or matching scheduling class */
	memset(&p, 0, sizeof(p));
	p.type = SCHED_CLASS_TYPE_PACKET;
	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
	p.u.params.channel  = pi->tx_chan;
	p.u.params.class    = SCHED_CLS_NONE;
	p.u.params.minrate  = 0;
	p.u.params.maxrate  = req_rate;
	p.u.params.weight   = 0;
	p.u.params.pktsize  = dev->mtu;

	e = cxgb4_sched_class_alloc(dev, &p);
	if (!e)
		return -ENOMEM;

	/* Bind the queue to a scheduling class */
	memset(&qe, 0, sizeof(qe));
	qe.queue = index;
	qe.class = e->idx;

	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
	if (err)
		dev_err(adap->pdev_dev,
			"Queue rate limiting failed. Err: %d\n", err);
	return err;
}

2831 2832
static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
			 __be16 proto, struct tc_to_netdev *tc)
2833 2834 2835 2836
{
	struct port_info *pi = netdev2pinfo(dev);
	struct adapter *adap = netdev2adap(dev);

2837 2838 2839
	if (chain_index)
		return -EOPNOTSUPP;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	if (!(adap->flags & FULL_INIT_DONE)) {
		dev_err(adap->pdev_dev,
			"Failed to setup tc on port %d. Link Down?\n",
			pi->port_id);
		return -EINVAL;
	}

	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
	    tc->type == TC_SETUP_CLSU32) {
		switch (tc->cls_u32->command) {
		case TC_CLSU32_NEW_KNODE:
		case TC_CLSU32_REPLACE_KNODE:
			return cxgb4_config_knode(dev, proto, tc->cls_u32);
		case TC_CLSU32_DELETE_KNODE:
			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
		default:
			return -EOPNOTSUPP;
		}
	}

	return -EOPNOTSUPP;
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static netdev_features_t cxgb_fix_features(struct net_device *dev,
					   netdev_features_t features)
{
	/* Disable GRO, if RX_CSUM is disabled */
	if (!(features & NETIF_F_RXCSUM))
		features &= ~NETIF_F_GRO;

	return features;
}

2873 2874 2875 2876
static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
2877
	.ndo_select_queue     =	cxgb_select_queue,
2878
	.ndo_get_stats64      = cxgb_get_stats,
2879 2880
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
2881
	.ndo_set_features     = cxgb_set_features,
2882 2883 2884 2885 2886 2887
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
2888 2889 2890 2891
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
2892
	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2893
	.ndo_setup_tc         = cxgb_setup_tc,
2894
	.ndo_fix_features     = cxgb_fix_features,
2895 2896
};

2897
#ifdef CONFIG_PCI_IOV
2898 2899
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
	.ndo_open             = dummy_open,
2900
	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2901
	.ndo_get_vf_config    = cxgb_get_vf_config,
2902
	.ndo_set_vf_rate      = cxgb_set_vf_rate,
2903
	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2904
};
2905
#endif
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = netdev2adap(dev);

	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
	strlcpy(info->version, cxgb4_driver_version,
		sizeof(info->version));
	strlcpy(info->bus_info, pci_name(adapter->pdev),
		sizeof(info->bus_info));
}

static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
	.get_drvinfo       = get_drvinfo,
};

2922 2923
void t4_fatal_err(struct adapter *adap)
{
2924 2925
	int port;

2926 2927 2928
	if (pci_channel_offline(adap->pdev))
		return;

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/* Disable the SGE since ULDs are going to free resources that
	 * could be exposed to the adapter.  RDMA MWs for example...
	 */
	t4_shutdown_adapter(adap);
	for_each_port(adap, port) {
		struct net_device *dev = adap->port[port];

		/* If we get here in very early initialization the network
		 * devices may not have been set up yet.
		 */
		if (!dev)
			continue;

		netif_tx_stop_all_queues(dev);
		netif_carrier_off(dev);
	}
2945 2946 2947 2948 2949
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
2950
	u32 nic_win_base = t4_get_util_window(adap);
2951

2952
	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2953 2954 2955 2956
}

static void setup_memwin_rdma(struct adapter *adap)
{
2957
	if (adap->vres.ocq.size) {
2958 2959
		u32 start;
		unsigned int sz_kb;
2960

2961 2962 2963
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2964 2965
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
2966 2967
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2968
		t4_write_reg(adap,
2969
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2970 2971
			     adap->vres.ocq.start);
		t4_read_reg(adap,
2972
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2973
	}
2974 2975
}

2976 2977 2978 2979 2980 2981 2982
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
2983 2984
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2985
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2986
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2987 2988 2989
	if (ret < 0)
		return ret;

2990 2991
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2992
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2993 2994 2995
	if (ret < 0)
		return ret;

2996
	ret = t4_config_glbl_rss(adap, adap->pf,
2997
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2998 2999
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3000 3001 3002
	if (ret < 0)
		return ret;

3003
	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3004 3005
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3006 3007 3008 3009 3010 3011
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3012
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3013
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3014 3015 3016
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3017

3018 3019
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3020 3021
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3022 3023 3024

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3025
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3026
			  &v, 1, TP_TX_SCHED_HDR_A);
3027
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3028
			  &v, 1, TP_TX_SCHED_FIFO_A);
3029
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3030
			  &v, 1, TP_TX_SCHED_PCMD_A);
3031 3032 3033

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3044 3045
	}

3046
	/* get basic stuff going */
3047
	return t4_early_init(adap, adap->pf);
3048 3049
}

3050 3051 3052 3053 3054
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3089 3090 3091
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3092 3093 3094 3095 3096

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3097 3098
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3099 3100 3101 3102

	return 0;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
 * unto themselves and they contain their own firmware to perform their
 * tasks ...
 */
static int phy_aq1202_version(const u8 *phy_fw_data,
			      size_t phy_fw_size)
{
	int offset;

	/* At offset 0x8 you're looking for the primary image's
	 * starting offset which is 3 Bytes wide
	 *
	 * At offset 0xa of the primary image, you look for the offset
	 * of the DRAM segment which is 3 Bytes wide.
	 *
	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
	 * wide
	 */
	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
	#define le24(__p) (le16(__p) | ((__p)[2] << 16))

	offset = le24(phy_fw_data + 0x8) << 12;
	offset = le24(phy_fw_data + offset + 0xa);
	return be16(phy_fw_data + offset + 0x27e);

	#undef be16
	#undef le16
	#undef le24
}

static struct info_10gbt_phy_fw {
	unsigned int phy_fw_id;		/* PCI Device ID */
	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
	int phy_flash;			/* Has FLASH for PHY Firmware */
} phy_info_array[] = {
	{
		PHY_AQ1202_DEVICEID,
		PHY_AQ1202_FIRMWARE,
		phy_aq1202_version,
		1,
	},
	{
		PHY_BCM84834_DEVICEID,
		PHY_BCM84834_FIRMWARE,
		NULL,
		0,
	},
	{ 0, NULL, NULL },
};

static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
		if (phy_info_array[i].phy_fw_id == devid)
			return &phy_info_array[i];
	}
	return NULL;
}

/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
 * we return a negative error number.  If we transfer new firmware we return 1
 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
 */
static int adap_init0_phy(struct adapter *adap)
{
	const struct firmware *phyf;
	int ret;
	struct info_10gbt_phy_fw *phy_info;

	/* Use the device ID to determine which PHY file to flash.
	 */
	phy_info = find_phy_info(adap->pdev->device);
	if (!phy_info) {
		dev_warn(adap->pdev_dev,
			 "No PHY Firmware file found for this PHY\n");
		return -EOPNOTSUPP;
	}

	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
	 * use that. The adapter firmware provides us with a memory buffer
	 * where we can load a PHY firmware file from the host if we want to
	 * override the PHY firmware File in flash.
	 */
	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
				      adap->pdev_dev);
	if (ret < 0) {
		/* For adapters without FLASH attached to PHY for their
		 * firmware, it's obviously a fatal error if we can't get the
		 * firmware to the adapter.  For adapters with PHY firmware
		 * FLASH storage, it's worth a warning if we can't find the
		 * PHY Firmware but we'll neuter the error ...
		 */
		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
			"/lib/firmware/%s, error %d\n",
			phy_info->phy_fw_file, -ret);
		if (phy_info->phy_flash) {
			int cur_phy_fw_ver = 0;

			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
			ret = 0;
		}

		return ret;
	}

	/* Load PHY Firmware onto adapter.
	 */
	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
			     phy_info->phy_fw_version,
			     (u8 *)phyf->data, phyf->size);
	if (ret < 0)
		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
			-ret);
	else if (ret > 0) {
		int new_phy_fw_ver = 0;

		if (phy_info->phy_fw_version)
			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
								  phyf->size);
		dev_info(adap->pdev_dev, "Successfully transferred PHY "
			 "Firmware /lib/firmware/%s, version %#x\n",
			 phy_info->phy_fw_file, new_phy_fw_ver);
	}

	release_firmware(phyf);

	return ret;
}

3239 3240 3241 3242 3243 3244 3245 3246 3247
/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3248 3249
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3250
	char *fw_config_file, fw_config_file_path[256];
3251
	char *config_name = NULL;
3252 3253 3254 3255 3256 3257

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3258
				  PIORSTMODE_F | PIORST_F);
3259 3260 3261 3262
		if (ret < 0)
			goto bye;
	}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/* If this is a 10Gb/s-BT adapter make sure the chip-external
	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
	 * to be performed after any global adapter RESET above since some
	 * PHYs only have local RAM copies of the PHY firmware.
	 */
	if (is_10gbt_device(adapter->pdev->device)) {
		ret = adap_init0_phy(adapter);
		if (ret < 0)
			goto bye;
	}
3273 3274 3275 3276 3277
	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3278
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3279
	case CHELSIO_T4:
3280
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3281 3282 3283 3284
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
3285 3286 3287
	case CHELSIO_T6:
		fw_config_file = FW6_CFNAME;
		break;
S
Santosh Rastapur 已提交
3288 3289 3290 3291 3292 3293 3294 3295
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3296
	if (ret < 0) {
3297
		config_name = "On FLASH";
3298 3299 3300 3301 3302
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3303 3304 3305 3306
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3307 3308 3309
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3310 3311
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3312
			ret = t4_query_params(adapter, adapter->mbox,
3313
					      adapter->pf, 0, 1, params, val);
3314 3315
			if (ret == 0) {
				/*
3316
				 * For t4_memory_rw() below addresses and
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3329 3330
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3331

3332 3333 3334
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3345 3346 3347 3348
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3349
				}
3350
				spin_unlock(&adapter->win0_lock);
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3367 3368 3369
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3370
	caps_cmd.cfvalid_to_len16 =
3371 3372 3373
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3374 3375 3376
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3387 3388 3389
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3390 3391 3392 3393 3394 3395 3396
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3412 3413 3414
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3415
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3437 3438
	/* Emit Firmware Configuration File information and return
	 * successfully.
3439 3440
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3441 3442
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3443 3444 3445 3446 3447 3448 3449 3450
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3451 3452 3453
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3454 3455 3456
	return ret;
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	}, {
		.chip = CHELSIO_T6,
		.fs_name = FW6_CFNAME,
		.fw_mod_name = FW6_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T6,
			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
			.intfver_nic = FW_INTFVER(T6, NIC),
			.intfver_vnic = FW_INTFVER(T6, VNIC),
			.intfver_ofld = FW_INTFVER(T6, OFLD),
			.intfver_ri = FW_INTFVER(T6, RI),
			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
			.intfver_fcoe = FW_INTFVER(T6, FCOE),
		},
3500
	}
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3515 3516 3517 3518 3519 3520 3521 3522 3523
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3524
	struct fw_caps_config_cmd caps_cmd;
3525
	int reset = 1;
3526

3527 3528 3529 3530 3531 3532 3533
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3534
	/* Contact FW, advertising Master capability */
3535 3536
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3537 3538 3539 3540 3541
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3542 3543
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3544

3545 3546 3547 3548 3549 3550 3551
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3552
	t4_get_fw_version(adap, &adap->params.fw_vers);
3553
	t4_get_bs_version(adap, &adap->params.bs_vers);
3554
	t4_get_tp_version(adap, &adap->params.tp_vers);
3555 3556
	t4_get_exprom_version(adap, &adap->params.er_vers);

3557 3558
	ret = t4_check_fw_version(adap);
	/* If firmware is too old (not supported by driver) force an update. */
3559
	if (ret)
3560
		state = DEV_STATE_UNINIT;
3561
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3577
		}
3578 3579 3580 3581

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
3582
		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3601
		release_firmware(fw);
3602
		kvfree(card_fw);
3603

3604
		if (ret < 0)
3605
			goto bye;
3606
	}
3607

3608 3609 3610 3611 3612 3613 3614
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
3615
	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3616 3617 3618
	if (ret < 0)
		goto bye;

3619
	/*
3620 3621 3622
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3623 3624
	 */
	v =
3625 3626
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3627
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3628 3629 3630
	if (ret < 0)
		goto bye;

3631 3632 3633
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3634 3635
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3636 3637 3638 3639 3640 3641 3642 3643
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3644 3645 3646

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3647
		 */
3648 3649
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3650
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3651
				      params, val);
3652

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3671 3672
		}
		if (ret < 0) {
3673 3674
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3675 3676 3677 3678
			goto bye;
		}
	}

3679 3680 3681
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3682
	 */
3683 3684 3685
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3686

3687 3688 3689
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3690 3691 3692 3693
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3694 3695
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3696

3697
#define FW_PARAM_PFVF(param) \
3698 3699 3700 3701
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3702

3703
	params[0] = FW_PARAM_PFVF(EQ_START);
3704 3705 3706 3707
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3708
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3709
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3710 3711
	if (ret < 0)
		goto bye;
3712 3713 3714
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3715 3716
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3717
	adap->sge.ingr_start = val[5];
3718

3719 3720 3721 3722 3723 3724 3725 3726
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3727
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
3748
	 * ie starving_fl, txq_maperr and blocked_fl.
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3764 3765 3766 3767 3768 3769 3770 3771 3772
#ifdef CONFIG_DEBUG_FS
	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.blocked_fl) {
		ret = -ENOMEM;
		goto bye;
	}
#endif

3773 3774
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
3775
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3776 3777 3778 3779 3780
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3781 3782 3783 3784 3785 3786
	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
	 * Classes supported by the hardware/firmware so we hard code it here
	 * for now.
	 */
	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;

3787 3788 3789
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3790
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3791 3792 3793 3794 3795 3796 3797 3798 3799
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3800 3801 3802 3803 3804 3805 3806
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
3807
	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3819
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3820 3821 3822 3823
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3824 3825 3826 3827 3828 3829
	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
			      1, params, val);
	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);

3830 3831 3832 3833 3834
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3835 3836
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3837
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3838 3839 3840 3841 3842
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3843
	if (caps_cmd.ofldcaps) {
3844 3845 3846 3847 3848 3849 3850
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3851
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3852
				      params, val);
3853 3854 3855 3856 3857 3858
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3859
		/*
3860
		 * Setup server filter region. Divide the available filter
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
3876 3877 3878
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
3879

3880
		adap->params.offload = 1;
3881
		adap->num_ofld_uld += 1;
3882
	}
3883
	if (caps_cmd.rdmacaps) {
3884 3885 3886 3887 3888 3889
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3890
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3891
				      params, val);
3892 3893 3894 3895 3896 3897 3898 3899
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3900 3901 3902 3903 3904

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3905 3906
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
3907
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3908
				      val);
3909 3910 3911 3912 3913 3914
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
3915 3916
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
3917 3918 3919

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3920
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3921
				      val);
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
3934
		adap->num_ofld_uld += 2;
3935
	}
3936
	if (caps_cmd.iscsicaps) {
3937 3938
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
3939
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3940
				      params, val);
3941 3942 3943 3944
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
3945 3946
		/* LIO target and cxgb4i initiaitor */
		adap->num_ofld_uld += 2;
3947
	}
3948 3949
	if (caps_cmd.cryptocaps) {
		/* Should query params here...TODO */
H
Harsh Jain 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958
		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
				      params, val);
		if (ret < 0) {
			if (ret != -EINVAL)
				goto bye;
		} else {
			adap->vres.ncrypto_fc = val[0];
		}
3959 3960 3961
		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
		adap->num_uld += 1;
	}
3962 3963 3964
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

3965 3966 3967 3968
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
3969
	 */
3970
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
3996

3997 3998 3999
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
4000
	t4_init_sge_params(adap);
4001
	adap->flags |= FW_OK;
4002
	t4_init_tp_params(adap);
4003 4004 4005
	return 0;

	/*
4006 4007 4008
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
4009
	 */
4010
bye:
4011 4012 4013 4014
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
4015 4016 4017
#ifdef CONFIG_DEBUG_FS
	kfree(adap->sge.blocked_fl);
#endif
4018 4019
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4020 4021 4022
	return ret;
}

D
Dimitris Michailidis 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4037
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4038 4039
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4040 4041 4042 4043
		if (dev) {
			netif_device_detach(dev);
			netif_carrier_off(dev);
		}
D
Dimitris Michailidis 已提交
4044
	}
4045
	spin_unlock(&adap->stats_lock);
4046
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4047 4048 4049
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4050 4051 4052 4053
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4070 4071 4072 4073 4074 4075 4076
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4077 4078 4079 4080 4081 4082 4083
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4084
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4085
		return PCI_ERS_RESULT_DISCONNECT;
4086
	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4087 4088 4089 4090 4091 4092 4093 4094
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4095
		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4096
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4097 4098 4099 4100 4101 4102 4103 4104
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4105
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
4122 4123 4124 4125 4126 4127
		if (dev) {
			if (netif_running(dev)) {
				link_start(dev);
				cxgb_set_rxmode(dev);
			}
			netif_device_attach(dev);
D
Dimitris Michailidis 已提交
4128 4129 4130 4131 4132
		}
	}
	rtnl_unlock();
}

4133
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4134 4135 4136 4137 4138
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4139 4140 4141
/* Return true if the Link Configuration supports "High Speeds" (those greater
 * than 1Gb/s).
 */
4142
static inline bool is_x_10g_port(const struct link_config *lc)
4143
{
4144 4145 4146 4147 4148 4149
	unsigned int speeds, high_speeds;

	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);

	return high_speeds != 0;
4150 4151 4152 4153 4154 4155 4156
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4157
static void cfg_queues(struct adapter *adap)
4158 4159
{
	struct sge *s = &adap->sge;
4160
	int i = 0, n10g = 0, qidx = 0;
4161 4162 4163
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4164

4165 4166
	/* Reduce memory usage in kdump environment, disable all offload.
	 */
4167
	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4168
		adap->params.offload = 0;
4169 4170 4171
		adap->params.crypto = 0;
	}

4172
	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4183

4184 4185 4186 4187
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4188
		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4189 4190 4191
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4192 4193 4194 4195 4196 4197
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4198 4199
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4200

4201 4202 4203
	if (is_kdump_kernel())
		q10g = 1;

4204 4205 4206 4207
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4208
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4209 4210
		qidx += pi->nqsets;
	}
4211
#endif /* !CONFIG_CHELSIO_T4_DCB */
4212 4213 4214 4215

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

4216
	if (is_uld(adap)) {
4217 4218 4219 4220 4221 4222
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
4223
			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4224 4225 4226 4227
			s->ofldqsets = roundup(i, adap->params.nports);
		} else {
			s->ofldqsets = adap->params.nports;
		}
4228 4229 4230 4231 4232
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4233
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4234 4235 4236 4237 4238 4239 4240 4241 4242
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

4243
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4244
	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4245 4246 4247 4248 4249 4250
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4251
static void reduce_ethqs(struct adapter *adap, int n)
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

4275 4276 4277
static int get_msix_info(struct adapter *adap)
{
	struct uld_msix_info *msix_info;
4278 4279 4280 4281 4282 4283 4284 4285 4286
	unsigned int max_ingq = 0;

	if (is_offload(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
	if (is_pci_uld(adap))
		max_ingq += MAX_OFLD_QSETS * adap->num_uld;

	if (!max_ingq)
		goto out;
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299

	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
	if (!msix_info)
		return -ENOMEM;

	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
						 sizeof(long), GFP_KERNEL);
	if (!adap->msix_bmap_ulds.msix_bmap) {
		kfree(msix_info);
		return -ENOMEM;
	}
	spin_lock_init(&adap->msix_bmap_ulds.lock);
	adap->msix_info_ulds = msix_info;
4300
out:
4301 4302 4303 4304 4305
	return 0;
}

static void free_msix_info(struct adapter *adap)
{
4306
	if (!(adap->num_uld && adap->num_ofld_uld))
4307 4308 4309 4310 4311 4312
		return;

	kfree(adap->msix_info_ulds);
	kfree(adap->msix_bmap_ulds.msix_bmap);
}

4313 4314 4315
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4316
static int enable_msix(struct adapter *adap)
4317
{
4318 4319
	int ofld_need = 0, uld_need = 0;
	int i, j, want, need, allocated;
4320 4321
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4322
	struct msix_entry *entries;
4323
	int max_ingq = MAX_INGQ;
4324

4325 4326 4327 4328
	if (is_pci_uld(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
	if (is_offload(adap))
		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4329
	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4330 4331 4332
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4333

4334
	/* map for msix */
4335 4336
	if (get_msix_info(adap)) {
		adap->params.offload = 0;
4337
		adap->params.crypto = 0;
4338
	}
4339 4340

	for (i = 0; i < max_ingq + 1; ++i)
4341 4342 4343 4344
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4345 4346
		want += adap->num_ofld_uld * s->ofldqsets;
		ofld_need = adap->num_ofld_uld * nchan;
4347
	}
4348
	if (is_pci_uld(adap)) {
4349 4350
		want += adap->num_uld * s->ofldqsets;
		uld_need = adap->num_uld * nchan;
4351
	}
4352 4353 4354 4355
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
4356
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4357
#else
4358
	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4359
#endif
4360 4361 4362 4363 4364 4365 4366
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4367

4368
	/* Distribute available vectors to the various queue groups.
4369 4370 4371
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4372
	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4373 4374 4375 4376 4377
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
4378
	if (is_uld(adap)) {
4379 4380 4381
		if (allocated < want)
			s->nqs_per_uld = nchan;
		else
4382
			s->nqs_per_uld = s->ofldqsets;
4383 4384
	}

4385
	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4386
		adap->msix_info[i].vec = entries[i].vector;
4387 4388
	if (is_uld(adap)) {
		for (j = 0 ; i < allocated; ++i, j++) {
4389
			adap->msix_info_ulds[j].vec = entries[i].vector;
4390 4391
			adap->msix_info_ulds[j].idx = i;
		}
4392 4393
		adap->msix_bmap_ulds.mapsize = j;
	}
4394
	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4395 4396
		 "nic %d per uld %d\n",
		 allocated, s->max_ethqsets, s->nqs_per_uld);
4397

4398
	kfree(entries);
4399
	return 0;
4400 4401 4402 4403
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4404
static int init_rss(struct adapter *adap)
4405
{
4406 4407 4408 4409 4410 4411
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
					enum pci_bus_speed *speed,
					enum pcie_link_width *width)
{
	u32 lnkcap1, lnkcap2;
	int err1, err2;

#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */

	*speed = PCI_SPEED_UNKNOWN;
	*width = PCIE_LNK_WIDTH_UNKNOWN;

	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
					  &lnkcap1);
	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
					  &lnkcap2);
	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
			*speed = PCIE_SPEED_8_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
			*speed = PCIE_SPEED_5_0GT;
		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
			*speed = PCIE_SPEED_2_5GT;
	}
	if (!err1) {
		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
		if (!lnkcap2) { /* pre-r3.0 */
			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
				*speed = PCIE_SPEED_5_0GT;
			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
				*speed = PCIE_SPEED_2_5GT;
		}
	}

	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
		return err1 ? err1 : err2 ? err2 : -EINVAL;
	return 0;
}

static void cxgb4_check_pcie_caps(struct adapter *adap)
{
	enum pcie_link_width width, width_cap;
	enum pci_bus_speed speed, speed_cap;

#define PCIE_SPEED_STR(speed) \
	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
	 "Unknown")

	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCIe device BW capabilities\n");
		return;
	}

	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
		dev_warn(adap->pdev_dev,
			 "Unable to determine PCI Express bandwidth.\n");
		return;
	}

	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
		 width, width_cap);
	if (speed < speed_cap || width < width_cap)
		dev_info(adap->pdev_dev,
			 "A slot with more lanes and/or higher speed is "
			 "suggested for optimal performance.\n");
}

4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/* Dump basic information about the adapter */
static void print_adapter_info(struct adapter *adapter)
{
	/* Device information */
	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
		 adapter->params.vpd.id,
		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
		 adapter->params.vpd.sn, adapter->params.vpd.pn);

	/* Firmware Version */
	if (!adapter->params.fw_vers)
		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
	else
		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));

	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
	 * Firmware, so dev_info() is more appropriate here.)
	 */
	if (!adapter->params.bs_vers)
		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
	else
		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));

	/* TP Microcode Version */
	if (!adapter->params.tp_vers)
		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
	else
		dev_info(adapter->pdev_dev,
			 "TP Microcode version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));

	/* Expansion ROM version */
	if (!adapter->params.er_vers)
		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
	else
		dev_info(adapter->pdev_dev,
			 "Expansion ROM version: %u.%u.%u.%u\n",
			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));

	/* Software/Hardware configuration */
	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
		 is_offload(adapter) ? "R" : "",
		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
		  (adapter->flags & USING_MSI) ? "MSI" : ""),
		 is_offload(adapter) ? "Offload" : "non-Offload");
}

B
Bill Pemberton 已提交
4558
static void print_port_info(const struct net_device *dev)
4559 4560
{
	char buf[80];
4561
	char *bufp = buf;
4562
	const char *spd = "";
4563 4564
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4565 4566 4567 4568 4569

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4570 4571
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4572

4573
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4574
		bufp += sprintf(bufp, "100M/");
4575
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4576
		bufp += sprintf(bufp, "1G/");
4577 4578
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
		bufp += sprintf(bufp, "10G/");
4579 4580
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
		bufp += sprintf(bufp, "25G/");
4581 4582
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
		bufp += sprintf(bufp, "40G/");
4583 4584
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
		bufp += sprintf(bufp, "100G/");
4585 4586
	if (bufp != buf)
		--bufp;
4587
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4588

4589 4590
	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
		    dev->name, adap->params.vpd.id, adap->name, buf);
4591 4592
}

B
Bill Pemberton 已提交
4593
static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4594
{
4595
	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4596 4597
}

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

4609
	kvfree(adapter->l2t);
4610
	t4_cleanup_sched(adapter);
4611
	kvfree(adapter->tids.tid_tab);
4612
	cxgb4_cleanup_tc_u32(adapter);
4613 4614 4615 4616
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4617 4618 4619
#ifdef CONFIG_DEBUG_FS
	kfree(adapter->sge.blocked_fl);
#endif
4620 4621 4622
	disable_msi(adapter);

	for_each_port(adapter, i)
4623
		if (adapter->port[i]) {
4624 4625 4626 4627 4628
			struct port_info *pi = adap2pinfo(adapter, i);

			if (pi->viid != 0)
				t4_free_vi(adapter, adapter->mbox, adapter->pf,
					   0, pi->viid);
4629
			kfree(adap2pinfo(adapter, i)->rss);
4630
			free_netdev(adapter->port[i]);
4631
		}
4632
	if (adapter->flags & FW_OK)
4633
		t4_fw_bye(adapter, adapter->pf);
4634 4635
}

4636
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4637
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4638
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4639
#define SEGMENT_SIZE 128
4640

4641 4642 4643 4644 4645 4646
static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
{
	u16 device_id;

	/* Retrieve adapter's device ID */
	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4647 4648

	switch (device_id >> 12) {
4649
	case CHELSIO_T4:
4650
		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4651
	case CHELSIO_T5:
4652
		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4653
	case CHELSIO_T6:
4654
		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4655 4656 4657 4658
	default:
		dev_err(&pdev->dev, "Device %d is not supported\n",
			device_id);
	}
4659
	return -EINVAL;
4660 4661
}

4662
#ifdef CONFIG_PCI_IOV
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
static void dummy_setup(struct net_device *dev)
{
	dev->type = ARPHRD_NONE;
	dev->mtu = 0;
	dev->hard_header_len = 0;
	dev->addr_len = 0;
	dev->tx_queue_len = 0;
	dev->flags |= IFF_NOARP;
	dev->priv_flags |= IFF_NO_QUEUE;

	/* Initialize the device structure. */
	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4676
	dev->needs_free_netdev = true;
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
}

static int config_mgmt_dev(struct pci_dev *pdev)
{
	struct adapter *adap = pci_get_drvdata(pdev);
	struct net_device *netdev;
	struct port_info *pi;
	char name[IFNAMSIZ];
	int err;

	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4688 4689
	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
			      dummy_setup);
4690 4691 4692 4693 4694
	if (!netdev)
		return -ENOMEM;

	pi = netdev_priv(netdev);
	pi->adapter = adap;
4695
	pi->port_id = adap->pf % adap->params.nports;
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	SET_NETDEV_DEV(netdev, &pdev->dev);

	adap->port[0] = netdev;

	err = register_netdev(adap->port[0]);
	if (err) {
		pr_info("Unable to register VF mgmt netdev %s\n", name);
		free_netdev(adap->port[0]);
		adap->port[0] = NULL;
		return err;
	}
	return 0;
}

4710 4711
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
{
4712
	struct adapter *adap = pci_get_drvdata(pdev);
4713 4714 4715 4716
	int err = 0;
	int current_vfs = pci_num_vf(pdev);
	u32 pcie_fw;

4717
	pcie_fw = readl(adap->regs + PCIE_FW_A);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	/* Check if cxgb4 is the MASTER and fw is initialized */
	if (!(pcie_fw & PCIE_FW_INIT_F) ||
	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
		dev_warn(&pdev->dev,
			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
		return -EOPNOTSUPP;
	}

	/* If any of the VF's is already assigned to Guest OS, then
	 * SRIOV for the same cannot be modified
	 */
	if (current_vfs && pci_vfs_assigned(pdev)) {
		dev_err(&pdev->dev,
			"Cannot modify SR-IOV while VFs are assigned\n");
		num_vfs = current_vfs;
		return num_vfs;
	}

	/* Disable SRIOV when zero is passed.
	 * One needs to disable SRIOV before modifying it, else
	 * stack throws the below warning:
	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
	 */
	if (!num_vfs) {
		pci_disable_sriov(pdev);
4744
		if (adap->port[0]) {
4745
			unregister_netdev(adap->port[0]);
4746 4747
			adap->port[0] = NULL;
		}
4748 4749 4750 4751
		/* free VF resources */
		kfree(adap->vfinfo);
		adap->vfinfo = NULL;
		adap->num_vfs = 0;
4752 4753 4754 4755 4756 4757 4758
		return num_vfs;
	}

	if (num_vfs != current_vfs) {
		err = pci_enable_sriov(pdev, num_vfs);
		if (err)
			return err;
4759

4760
		adap->num_vfs = num_vfs;
4761 4762 4763
		err = config_mgmt_dev(pdev);
		if (err)
			return err;
4764
	}
4765 4766 4767 4768 4769

	adap->vfinfo = kcalloc(adap->num_vfs,
			       sizeof(struct vf_info), GFP_KERNEL);
	if (adap->vfinfo)
		fill_vf_station_mac_addr(adap);
4770 4771 4772 4773
	return num_vfs;
}
#endif

4774
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4775
{
4776
	int func, i, err, s_qpp, qpp, num_seg;
4777
	struct port_info *pi;
4778
	bool highdma = false;
4779
	struct adapter *adapter = NULL;
4780
	struct net_device *netdev;
4781
	void __iomem *regs;
4782 4783
	u32 whoami, pl_rev;
	enum chip_type chip;
4784
	static int adap_idx = 1;
A
Arnd Bergmann 已提交
4785
#ifdef CONFIG_PCI_IOV
4786
	u32 v, port_vec;
A
Arnd Bergmann 已提交
4787
#endif
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4804 4805 4806 4807 4808 4809 4810
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4811 4812 4813 4814
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4815
	/* We control everything through one PF */
4816 4817 4818 4819 4820
	whoami = readl(regs + PL_WHOAMI_A);
	pl_rev = REV_G(readl(regs + PL_REV_A));
	chip = get_chip_type(pdev, pl_rev);
	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4821
	if (func != ent->driver_data) {
4822
#ifndef CONFIG_PCI_IOV
4823
		iounmap(regs);
4824
#endif
4825 4826 4827 4828 4829
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4830
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4831
		highdma = true;
4832 4833 4834 4835
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4836
			goto out_unmap_bar0;
4837 4838 4839 4840 4841
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4842
			goto out_unmap_bar0;
4843 4844 4845 4846
		}
	}

	pci_enable_pcie_error_reporting(pdev);
4847
	enable_pcie_relaxed_ordering(pdev);
4848 4849 4850 4851 4852 4853
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4854
		goto out_unmap_bar0;
4855
	}
4856
	adap_idx++;
4857

4858 4859 4860 4861 4862 4863
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
		goto out_free_adapter;
	}
	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;

4874 4875 4876
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4877
	adapter->regs = regs;
4878 4879
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4880
	adapter->name = pci_name(pdev);
4881
	adapter->mbox = func;
4882
	adapter->pf = func;
4883
	adapter->msg_enable = DFLT_MSG_ENABLE;
4884 4885 4886 4887
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
4888
	spin_lock_init(&adapter->win0_lock);
4889 4890 4891
	spin_lock_init(&adapter->mbox_lock);

	INIT_LIST_HEAD(&adapter->mlist.list);
4892 4893

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4894 4895
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4896 4897 4898

	err = t4_prep_adapter(adapter);
	if (err)
4899 4900
		goto out_free_adapter;

4901

4902
	if (!is_t4(adapter->params.chip)) {
4903 4904
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4905
			adapter->pf);
4906 4907
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
4919
			goto out_free_adapter;
4920 4921 4922 4923 4924 4925
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
4926
			goto out_free_adapter;
4927 4928 4929
		}
	}

4930
	setup_memwin(adapter);
4931
	err = adap_init0(adapter);
4932 4933 4934
#ifdef CONFIG_DEBUG_FS
	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
4935
	setup_memwin_rdma(adapter);
4936 4937 4938
	if (err)
		goto out_unmap_bar;

4939 4940
	/* configure SGE_STAT_CFG_A to read WC stats */
	if (!is_t4(adapter->params.chip))
4941 4942 4943
		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
			      T6_STATMODE_V(0)));
4944

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	for_each_port(adapter, i) {
		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

4962 4963 4964
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4965 4966
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
			NETIF_F_HW_TC;
4967 4968 4969
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
4970 4971
		netdev->vlan_features = netdev->features & VLAN_FEAT;

4972 4973
		netdev->priv_flags |= IFF_UNICAST_FLT;

4974 4975 4976 4977
		/* MTU range: 81 - 9600 */
		netdev->min_mtu = 81;
		netdev->max_mtu = MAX_MTU;

4978
		netdev->netdev_ops = &cxgb4_netdev_ops;
4979 4980 4981 4982
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
4983
		cxgb4_set_ethtool_ops(netdev);
4984 4985 4986 4987 4988
	}

	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
4989
		err = t4_port_init(adapter, func, func, 0);
4990 4991
		if (err)
			goto out_free_dev;
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	} else if (adapter->params.nports == 1) {
		/* If we don't have a connection to the firmware -- possibly
		 * because of an error -- grab the raw VPD parameters so we
		 * can set the proper MAC Address on the debug network
		 * interface that we've created.
		 */
		u8 hw_addr[ETH_ALEN];
		u8 *na = adapter->params.vpd.na;

		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
		if (!err) {
			for (i = 0; i < ETH_ALEN; i++)
				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
					      hex2val(na[2 * i + 1]));
			t4_set_hw_addr(adapter, 0, hw_addr);
		}
5008 5009
	}

5010
	/* Configure queues and allocate tables now, they can be needed as
5011 5012 5013 5014
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

5015
	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5016 5017 5018 5019 5020 5021
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

5022
#if IS_ENABLED(CONFIG_IPV6)
5023 5024 5025 5026
	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
		/* CLIP functionality is not present in hardware,
		 * hence disable all offload features
5027 5028
		 */
		dev_warn(&pdev->dev,
5029
			 "CLIP not enabled in hardware, continuing\n");
5030
		adapter->params.offload = 0;
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	} else {
		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
						  adapter->clipt_end);
		if (!adapter->clipt) {
			/* We tolerate a lack of clip_table, giving up
			 * some functionality
			 */
			dev_warn(&pdev->dev,
				 "could not allocate Clip table, continuing\n");
			adapter->params.offload = 0;
		}
5042 5043
	}
#endif
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

	for_each_port(adapter, i) {
		pi = adap2pinfo(adapter, i);
		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
		if (!pi->sched_tbl)
			dev_warn(&pdev->dev,
				 "could not activate scheduling on port %d\n",
				 i);
	}

5054
	if (tid_init(&adapter->tids) < 0) {
5055 5056 5057
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
5058
	} else {
5059
		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5060 5061 5062
		if (!adapter->tc_u32)
			dev_warn(&pdev->dev,
				 "could not offload tc u32, continuing\n");
5063 5064
	}

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	if (is_offload(adapter)) {
		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
			u32 hash_base, hash_reg;

			if (chip <= CHELSIO_T5) {
				hash_reg = LE_DB_TID_HASHBASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base / 4;
			} else {
				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
				hash_base = t4_read_reg(adapter, hash_reg);
				adapter->tids.hash_base = hash_base;
			}
		}
	}

5081 5082 5083
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
5084
	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5085
		adapter->flags |= USING_MSI;
5086 5087 5088
		if (msi > 1)
			free_msix_info(adapter);
	}
5089

5090 5091 5092
	/* check for PCI Express bandwidth capabiltites */
	cxgb4_check_pcie_caps(adapter);

5093 5094 5095 5096
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

5097 5098 5099 5100 5101 5102 5103
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
5104
		pi = adap2pinfo(adapter, i);
5105
		adapter->port[i]->dev_port = pi->lport;
5106 5107 5108
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

5109 5110
		netif_carrier_off(adapter->port[i]);

5111 5112
		err = register_netdev(adapter->port[i]);
		if (err)
5113 5114 5115
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
5116
	}
5117
	if (i == 0) {
5118 5119 5120
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
5121 5122 5123
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
5124
	}
5125 5126 5127 5128 5129 5130 5131

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
5132 5133 5134
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

5135 5136 5137 5138 5139
	if (is_uld(adapter)) {
		mutex_lock(&uld_mutex);
		list_add_tail(&adapter->list_node, &adapter_list);
		mutex_unlock(&uld_mutex);
	}
5140

5141
	print_adapter_info(adapter);
5142
	setup_fw_sge_queues(adapter);
5143
	return 0;
5144

5145
sriov:
5146
#ifdef CONFIG_PCI_IOV
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
		goto free_pci_region;
	}

	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
	adapter->name = pci_name(pdev);
	adapter->mbox = func;
	adapter->pf = func;
	adapter->regs = regs;
5159
	adapter->adap_idx = adap_idx;
5160 5161 5162 5163 5164 5165
	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
				    (sizeof(struct mbox_cmd) *
				     T4_OS_LOG_MBOX_CMDS),
				    GFP_KERNEL);
	if (!adapter->mbox_log) {
		err = -ENOMEM;
5166
		goto free_adapter;
5167
	}
5168 5169
	spin_lock_init(&adapter->mbox_lock);
	INIT_LIST_HEAD(&adapter->mlist.list);
5170 5171 5172 5173 5174 5175 5176

	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
			      &v, &port_vec);
	if (err < 0) {
		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5177
		goto free_mbox_log;
5178 5179 5180
	}

	adapter->params.nports = hweight32(port_vec);
5181 5182 5183
	pci_set_drvdata(pdev, adapter);
	return 0;

5184 5185
free_mbox_log:
	kfree(adapter->mbox_log);
5186 5187 5188 5189 5190 5191 5192 5193
 free_adapter:
	kfree(adapter);
 free_pci_region:
	iounmap(regs);
	pci_disable_sriov(pdev);
	pci_release_regions(pdev);
	return err;
#else
5194
	return 0;
5195
#endif
5196 5197

 out_free_dev:
5198
	free_some_resources(adapter);
5199 5200
	if (adapter->flags & USING_MSIX)
		free_msix_info(adapter);
5201 5202
	if (adapter->num_uld || adapter->num_ofld_uld)
		t4_uld_mem_free(adapter);
5203
 out_unmap_bar:
5204
	if (!is_t4(adapter->params.chip))
5205
		iounmap(adapter->bar2);
5206
 out_free_adapter:
5207 5208 5209
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

5210
	kfree(adapter->mbox_log);
5211
	kfree(adapter);
5212 5213
 out_unmap_bar0:
	iounmap(regs);
5214 5215 5216 5217 5218 5219 5220 5221
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
5222
static void remove_one(struct pci_dev *pdev)
5223 5224 5225
{
	struct adapter *adapter = pci_get_drvdata(pdev);

5226 5227 5228 5229
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}
5230

5231
	if (adapter->pf == 4) {
5232 5233
		int i;

5234 5235 5236 5237 5238
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

5239
		if (is_uld(adapter))
5240 5241
			detach_ulds(adapter);

5242 5243
		disable_interrupts(adapter);

5244
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
5245
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5246 5247
				unregister_netdev(adapter->port[i]);

5248
		debugfs_remove_recursive(adapter->debugfs_root);
5249

V
Vipul Pandya 已提交
5250 5251 5252
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
5253
		clear_all_filters(adapter);
V
Vipul Pandya 已提交
5254

5255 5256
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
5257

5258 5259
		if (adapter->flags & USING_MSIX)
			free_msix_info(adapter);
5260 5261
		if (adapter->num_uld || adapter->num_ofld_uld)
			t4_uld_mem_free(adapter);
5262
		free_some_resources(adapter);
5263 5264 5265
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
5266
		iounmap(adapter->regs);
5267
		if (!is_t4(adapter->params.chip))
5268
			iounmap(adapter->bar2);
5269
		pci_disable_pcie_error_reporting(pdev);
5270 5271 5272 5273
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
5274
		pci_release_regions(pdev);
5275
		kfree(adapter->mbox_log);
5276
		synchronize_rcu();
5277
		kfree(adapter);
5278 5279 5280
	}
#ifdef CONFIG_PCI_IOV
	else {
5281
		if (adapter->port[0])
5282 5283
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
5284
		kfree(adapter->vfinfo);
5285
		kfree(adapter->mbox_log);
5286 5287
		kfree(adapter);
		pci_disable_sriov(pdev);
5288
		pci_release_regions(pdev);
5289 5290
	}
#endif
5291 5292
}

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
 * delivery.  This is essentially a stripped down version of the PCI remove()
 * function where we do the minimal amount of work necessary to shutdown any
 * further activity.
 */
static void shutdown_one(struct pci_dev *pdev)
{
	struct adapter *adapter = pci_get_drvdata(pdev);

	/* As with remove_one() above (see extended comment), we only want do
	 * do cleanup on PCI Devices which went all the way through init_one()
	 * ...
	 */
	if (!adapter) {
		pci_release_regions(pdev);
		return;
	}

	if (adapter->pf == 4) {
		int i;

		for_each_port(adapter, i)
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
				cxgb_close(adapter->port[i]);

		t4_uld_clean_up(adapter);
		disable_interrupts(adapter);
		disable_msi(adapter);

		t4_sge_stop(adapter);
		if (adapter->flags & FW_OK)
			t4_fw_bye(adapter, adapter->mbox);
	}
#ifdef CONFIG_PCI_IOV
	else {
		if (adapter->port[0])
			unregister_netdev(adapter->port[0]);
		iounmap(adapter->regs);
		kfree(adapter->vfinfo);
5332
		kfree(adapter->mbox_log);
5333 5334 5335 5336 5337 5338 5339
		kfree(adapter);
		pci_disable_sriov(pdev);
		pci_release_regions(pdev);
	}
#endif
}

5340 5341 5342 5343
static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
5344
	.remove   = remove_one,
5345
	.shutdown = shutdown_one,
5346 5347 5348
#ifdef CONFIG_PCI_IOV
	.sriov_configure = cxgb4_iov_configure,
#endif
D
Dimitris Michailidis 已提交
5349
	.err_handler = &cxgb4_eeh,
5350 5351 5352 5353 5354 5355 5356 5357 5358
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
5359
		pr_warn("could not create debugfs entry, continuing\n");
5360 5361

	ret = pci_register_driver(&cxgb4_driver);
5362
	if (ret < 0)
5363
		debugfs_remove(cxgb4_debugfs_root);
5364

5365
#if IS_ENABLED(CONFIG_IPV6)
5366 5367 5368 5369
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
5370
#endif
5371

5372 5373 5374 5375 5376
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
5377
#if IS_ENABLED(CONFIG_IPV6)
5378
	if (inet6addr_registered) {
5379 5380 5381
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
5382
#endif
5383 5384 5385 5386 5387 5388
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);