amd_iommu.c 93.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

123 124
	spinlock_t bitmap_lock;

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	/* address allocation bitmap */
	unsigned long *bitmap;

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];

	unsigned long offset;
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

	/* address we start to search for free addresses */
	unsigned long next_address;

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];

	/* This will be set to true when TLB needs to be flushed */
	bool need_flush;
};

159 160 161 162 163 164
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

165 166 167 168 169
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

170
static struct iommu_dev_data *alloc_dev_data(u16 devid)
171 172 173 174 175 176 177 178
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

179
	dev_data->devid = devid;
180 181 182 183 184 185 186 187

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

219 220 221 222
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

223
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
224 225
}

226 227 228 229 230
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

231 232 233 234
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
235 236
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
237 238 239 240 241 242 243 244 245 246 247 248
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

249 250 251 252 253 254 255 256 257
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

258
/*
259 260
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
261
 */
262 263
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
264
{
265
	u64 addr;
266

267 268 269 270 271
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
272
	}
273
}
274

275 276 277 278 279 280 281 282
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
283

284
	devid = get_device_id(dev);
285

286 287 288 289 290
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
291 292
}

293 294 295 296 297 298 299 300 301 302 303
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

304 305
	/* No PCI device */
	if (!dev_is_pci(dev))
306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

320
static void init_iommu_group(struct device *dev)
321
{
322 323
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
324 325
	struct iommu_group *group;

326
	group = iommu_group_get_for_dev(dev);
327 328 329 330 331 332 333 334 335 336 337 338
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

353 354 355 356 357 358 359
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

360 361
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
362 363 364
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

365 366 367
	return 0;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

382 383
static void iommu_uninit_device(struct device *dev)
{
384 385 386 387 388
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
389 390 391
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

392 393
	iommu_group_remove_device(dev);

394 395 396
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

397
	/*
398 399
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
400
	 */
401
}
J
Joerg Roedel 已提交
402

403 404 405 406 407 408
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

409
DECLARE_STATS_COUNTER(compl_wait);
410
DECLARE_STATS_COUNTER(cnt_map_single);
411
DECLARE_STATS_COUNTER(cnt_unmap_single);
412
DECLARE_STATS_COUNTER(cnt_map_sg);
413
DECLARE_STATS_COUNTER(cnt_unmap_sg);
414
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
415
DECLARE_STATS_COUNTER(cnt_free_coherent);
416
DECLARE_STATS_COUNTER(cross_page);
417
DECLARE_STATS_COUNTER(domain_flush_single);
418
DECLARE_STATS_COUNTER(domain_flush_all);
419
DECLARE_STATS_COUNTER(alloced_io_mem);
420
DECLARE_STATS_COUNTER(total_map_requests);
421 422 423 424 425
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
445
					 &amd_iommu_unmap_flush);
446 447

	amd_iommu_stats_add(&compl_wait);
448
	amd_iommu_stats_add(&cnt_map_single);
449
	amd_iommu_stats_add(&cnt_unmap_single);
450
	amd_iommu_stats_add(&cnt_map_sg);
451
	amd_iommu_stats_add(&cnt_unmap_sg);
452
	amd_iommu_stats_add(&cnt_alloc_coherent);
453
	amd_iommu_stats_add(&cnt_free_coherent);
454
	amd_iommu_stats_add(&cross_page);
455
	amd_iommu_stats_add(&domain_flush_single);
456
	amd_iommu_stats_add(&domain_flush_all);
457
	amd_iommu_stats_add(&alloced_io_mem);
458
	amd_iommu_stats_add(&total_map_requests);
459 460 461 462
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
463 464 465 466
}

#endif

467 468 469 470 471 472
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

473 474 475 476
static void dump_dte_entry(u16 devid)
{
	int i;

477 478
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
479 480 481
			amd_iommu_dev_table[devid].data[i]);
}

482 483 484 485 486 487 488 489 490
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

491
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
492
{
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
514

515
	printk(KERN_ERR "AMD-Vi: Event logged [");
516 517 518 519 520

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
521
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
522
		       address, flags);
523
		dump_dte_entry(devid);
524 525 526 527
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
528
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 530 531 532 533
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
534
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
535 536 537 538 539
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
540
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
541 542 543 544
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
545
		dump_command(address);
546 547 548 549 550 551 552 553
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
554
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
555 556 557 558 559
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
560
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
561 562 563 564 565
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
566 567

	memset(__evt, 0, 4 * sizeof(u32));
568 569 570 571 572 573 574 575 576 577
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
578
		iommu_print_event(iommu, iommu->evt_buf + head);
579
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
580 581 582 583 584
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

585
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
586 587 588
{
	struct amd_iommu_fault fault;

589 590
	INC_STATS_COUNTER(pri_requests);

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
632

633 634 635
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
636

637 638 639 640 641 642 643
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
644 645
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
646 647 648 649 650 651

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
652 653 654 655
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

656
irqreturn_t amd_iommu_int_thread(int irq, void *data)
657
{
658 659
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
660

661 662 663 664
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
665

666 667 668 669
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
670

671 672 673 674
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
691
	return IRQ_HANDLED;
692 693
}

694 695 696 697 698
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

699 700 701 702 703 704
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
725 726 727
{
	u8 *target;

728
	target = iommu->cmd_buf + tail;
729
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
730 731 732 733 734

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
735
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
736
}
737

738
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
739
{
740 741
	WARN_ON(address & 0x7ULL);

742
	memset(cmd, 0, sizeof(*cmd));
743 744 745
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
746 747 748
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

749 750 751 752 753 754 755
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

756 757 758 759
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
760
	bool s;
761 762

	pages = iommu_num_pages(address, size, PAGE_SIZE);
763
	s     = false;
764 765 766 767 768 769 770

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
771
		s = true;
772 773 774 775 776 777 778 779 780 781 782
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
783
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
784 785 786
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

787 788 789 790
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
791
	bool s;
792 793

	pages = iommu_num_pages(address, size, PAGE_SIZE);
794
	s     = false;
795 796 797 798 799 800 801

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
802
		s = true;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

818 819 820 821 822 823 824
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

825
	cmd->data[0]  = pasid;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
844
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
845 846
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
847
	cmd->data[1] |= (pasid & 0xff) << 16;
848 849 850 851 852 853 854 855
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

856 857 858 859 860 861 862
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
863
		cmd->data[1]  = pasid;
864 865 866 867 868 869 870 871
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

872 873 874 875
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
876 877
}

878 879 880 881 882 883 884
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

885 886
/*
 * Writes the command to the IOMMUs command buffer and informs the
887
 * hardware about the new command.
888
 */
889 890 891
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
892
{
893
	u32 left, tail, head, next_tail;
894 895
	unsigned long flags;

896
again:
897 898
	spin_lock_irqsave(&iommu->lock, flags);

899 900
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
901 902
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
903

904 905 906 907
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
908

909 910
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
911

912 913 914 915 916 917
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
918 919
	}

920 921 922
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
923
	iommu->need_sync = sync;
924

925
	spin_unlock_irqrestore(&iommu->lock, flags);
926

927
	return 0;
928 929
}

930 931 932 933 934
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

935 936 937 938
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
939
static int iommu_completion_wait(struct amd_iommu *iommu)
940 941
{
	struct iommu_cmd cmd;
942
	volatile u64 sem = 0;
943
	int ret;
944

945
	if (!iommu->need_sync)
946
		return 0;
947

948
	build_completion_wait(&cmd, (u64)&sem);
949

950
	ret = iommu_queue_command_sync(iommu, &cmd, false);
951
	if (ret)
952
		return ret;
953

954
	return wait_on_sem(&sem);
955 956
}

957
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
958
{
959
	struct iommu_cmd cmd;
960

961
	build_inv_dte(&cmd, devid);
962

963 964
	return iommu_queue_command(iommu, &cmd);
}
965

966 967 968
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
969

970 971
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
972

973 974
	iommu_completion_wait(iommu);
}
975

976 977 978 979 980 981 982
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
983

984 985 986 987 988 989
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
990

991
	iommu_completion_wait(iommu);
992 993
}

994
static void iommu_flush_all(struct amd_iommu *iommu)
995
{
996
	struct iommu_cmd cmd;
997

998
	build_inv_all(&cmd);
999

1000 1001 1002 1003
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1023 1024
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1025 1026 1027 1028
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1029
		iommu_flush_irt_all(iommu);
1030
		iommu_flush_tlb_all(iommu);
1031 1032 1033
	}
}

1034
/*
1035
 * Command send function for flushing on-device TLB
1036
 */
1037 1038
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1039 1040
{
	struct amd_iommu *iommu;
1041
	struct iommu_cmd cmd;
1042
	int qdep;
1043

1044 1045
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1046

1047
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1048 1049

	return iommu_queue_command(iommu, &cmd);
1050 1051
}

1052 1053 1054
/*
 * Command send function for invalidating a device table entry
 */
1055
static int device_flush_dte(struct iommu_dev_data *dev_data)
1056
{
1057
	struct amd_iommu *iommu;
1058
	u16 alias;
1059
	int ret;
1060

1061
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1062
	alias = amd_iommu_alias_table[dev_data->devid];
1063

1064
	ret = iommu_flush_dte(iommu, dev_data->devid);
1065 1066
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1067 1068 1069
	if (ret)
		return ret;

1070
	if (dev_data->ats.enabled)
1071
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1072 1073

	return ret;
1074 1075
}

1076 1077 1078 1079 1080
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1081 1082
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1083
{
1084
	struct iommu_dev_data *dev_data;
1085 1086
	struct iommu_cmd cmd;
	int ret = 0, i;
1087

1088
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1089

1090 1091 1092 1093 1094 1095 1096 1097
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1098
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1099 1100
	}

1101 1102
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1103
		if (!dev_data->ats.enabled)
1104 1105
			continue;

1106
		ret |= device_flush_iotlb(dev_data, address, size);
1107 1108
	}

1109
	WARN_ON(ret);
1110 1111
}

1112 1113
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1114
{
1115
	__domain_flush_pages(domain, address, size, 0);
1116
}
1117

1118
/* Flush the whole IO/TLB for a given protection domain */
1119
static void domain_flush_tlb(struct protection_domain *domain)
1120
{
1121
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1122 1123
}

1124
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1125
static void domain_flush_tlb_pde(struct protection_domain *domain)
1126
{
1127
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1128 1129
}

1130
static void domain_flush_complete(struct protection_domain *domain)
1131
{
1132
	int i;
1133

1134 1135 1136
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1137

1138 1139 1140 1141 1142
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1143
	}
1144 1145
}

1146

1147
/*
1148
 * This function flushes the DTEs for all devices in domain
1149
 */
1150
static void domain_flush_devices(struct protection_domain *domain)
1151
{
1152
	struct iommu_dev_data *dev_data;
1153

1154
	list_for_each_entry(dev_data, &domain->dev_list, list)
1155
		device_flush_dte(dev_data);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1194
		      unsigned long page_size,
1195 1196 1197
		      u64 **pte_page,
		      gfp_t gfp)
{
1198
	int level, end_lvl;
1199
	u64 *pte, *page;
1200 1201

	BUG_ON(!is_power_of_2(page_size));
1202 1203 1204 1205

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1206 1207 1208 1209
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1210 1211 1212 1213 1214 1215 1216 1217 1218

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1219 1220 1221 1222
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1240 1241 1242
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1243 1244 1245 1246
{
	int level;
	u64 *pte;

1247 1248 1249
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1250 1251 1252
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1253

1254 1255 1256
	while (level > 0) {

		/* Not Present */
1257 1258 1259
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1260
		/* Large PTE */
1261 1262 1263
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1264 1265 1266 1267 1268

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1269 1270
		level -= 1;

1271
		/* Walk to the next level */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1287 1288 1289 1290 1291
	}

	return pte;
}

1292 1293 1294 1295 1296 1297 1298
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1299 1300 1301
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1302
			  int prot,
1303
			  unsigned long page_size)
1304
{
1305
	u64 __pte, *pte;
1306
	int i, count;
1307

1308 1309 1310
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1311
	if (!(prot & IOMMU_PROT_MASK))
1312 1313
		return -EINVAL;

1314 1315
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1316

1317 1318 1319
	if (!pte)
		return -ENOMEM;

1320 1321 1322
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1323

1324
	if (count > 1) {
1325 1326 1327 1328
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1329 1330 1331 1332 1333 1334

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1335 1336
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1337

1338 1339
	update_domain(dom);

1340 1341 1342
	return 0;
}

1343 1344 1345
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1346
{
1347 1348
	unsigned long long unmapped;
	unsigned long unmap_size;
1349 1350 1351 1352 1353
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1354

1355 1356
	while (unmapped < page_size) {

1357 1358 1359 1360 1361 1362
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1363 1364 1365 1366 1367 1368 1369 1370
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1371
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1372

1373
	return unmapped;
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1385

1386
/*
1387
 * The address allocator core functions.
1388 1389 1390
 *
 * called with domain->lock held
 */
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1412 1413 1414 1415 1416
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1417
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1418 1419 1420
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1421
	struct amd_iommu *iommu;
1422
	unsigned long i, old_size, pte_pgsize;
1423

1424 1425 1426 1427
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

1441 1442
	spin_lock_init(&dma_dom->aperture[index]->bitmap_lock);

1443 1444 1445 1446 1447 1448
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1449
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1460
	old_size                = dma_dom->aperture_size;
1461 1462
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1475
	/* Initialize the exclusion range if necessary */
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1497
	     i += pte_pgsize) {
1498
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1499 1500 1501
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1502 1503
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1504 1505
	}

1506 1507
	update_domain(&dma_dom->domain);

1508 1509 1510
	return 0;

out_free:
1511 1512
	update_domain(&dma_dom->domain);

1513 1514 1515 1516 1517 1518 1519 1520
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1521 1522 1523 1524 1525 1526 1527
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1528
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1529 1530
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1531
	unsigned long boundary_size, mask;
1532 1533
	unsigned long address = -1;
	unsigned long limit;
1534
	unsigned long flags;
1535

1536 1537
	next_bit >>= PAGE_SHIFT;

1538 1539 1540 1541
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

1552
		spin_lock_irqsave(&dom->aperture[i]->bitmap_lock, flags);
1553 1554 1555
		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
1556
		spin_unlock_irqrestore(&dom->aperture[i]->bitmap_lock, flags);
1557 1558 1559
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1560
			dom->next_address = address + (pages << PAGE_SHIFT);
1561 1562 1563 1564 1565 1566 1567 1568 1569
			break;
		}

		next_bit = 0;
	}

	return address;
}

1570 1571
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1572
					     unsigned int pages,
1573 1574
					     unsigned long align_mask,
					     u64 dma_mask)
1575 1576 1577
{
	unsigned long address;

1578 1579 1580 1581
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1582

1583
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1584
				     dma_mask, dom->next_address);
1585

1586
	if (address == -1) {
1587
		dom->next_address = 0;
1588 1589
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1590 1591
		dom->need_flush = true;
	}
1592

1593
	if (unlikely(address == -1))
1594
		address = DMA_ERROR_CODE;
1595 1596 1597 1598 1599 1600

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1601 1602 1603 1604 1605
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1606 1607 1608 1609
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1610 1611
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1612
	unsigned long flags;
1613

1614 1615
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1616 1617 1618 1619
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1620

1621
	if (address >= dom->next_address)
1622
		dom->need_flush = true;
1623 1624

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1625

1626
	spin_lock_irqsave(&range->bitmap_lock, flags);
A
Akinobu Mita 已提交
1627
	bitmap_clear(range->bitmap, address, pages);
1628
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1629

1630 1631
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1704
		/* PTE present? */				\
1705 1706 1707
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1708 1709 1710 1711 1712
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1725
static void free_pagetable(struct protection_domain *domain)
1726
{
1727
	unsigned long root = (unsigned long)domain->pt_root;
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1752 1753 1754
	}
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1785 1786
static void free_gcr3_table(struct protection_domain *domain)
{
1787 1788 1789 1790
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1791 1792
	else
		BUG_ON(domain->glx != 0);
1793

1794 1795 1796
	free_page((unsigned long)domain->gcr3_tbl);
}

1797 1798 1799 1800
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1801 1802
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1803 1804
	int i;

1805 1806 1807
	if (!dom)
		return;

1808 1809
	del_domain_from_list(&dom->domain);

1810
	free_pagetable(&dom->domain);
1811

1812 1813 1814 1815 1816 1817
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1818 1819 1820 1821

	kfree(dom);
}

1822 1823
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1824
 * It also initializes the page table and the address allocator data
1825 1826
 * structures required for the dma_ops interface
 */
1827
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1828 1829 1830 1831 1832 1833 1834
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1835
	if (protection_domain_init(&dma_dom->domain))
1836
		goto free_dma_dom;
1837

1838
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1839
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1840
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1841 1842 1843 1844
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1845 1846
	dma_dom->need_flush = false;

1847 1848
	add_domain_to_list(&dma_dom->domain);

1849
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1850 1851
		goto free_dma_dom;

1852
	/*
1853 1854
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1855
	 */
1856
	dma_dom->aperture[0]->bitmap[0] = 1;
1857
	dma_dom->next_address = 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1868 1869 1870 1871 1872 1873 1874 1875 1876
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1877
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1878
{
1879
	u64 pte_root = 0;
1880
	u64 flags = 0;
1881

1882 1883 1884
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1885 1886 1887
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1888

1889 1890
	flags = amd_iommu_dev_table[devid].data[1];

1891 1892 1893
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1920 1921 1922 1923 1924
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1925 1926 1927 1928 1929
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1930 1931
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1932 1933

	amd_iommu_apply_erratum_63(devid);
1934 1935
}

1936 1937
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1938 1939
{
	struct amd_iommu *iommu;
1940
	u16 alias;
1941
	bool ats;
1942

1943
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1944
	alias = amd_iommu_alias_table[dev_data->devid];
1945
	ats   = dev_data->ats.enabled;
1946 1947 1948 1949 1950 1951 1952 1953 1954

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1955 1956 1957 1958 1959
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

1960
	device_flush_dte(dev_data);
1961 1962
}

1963
static void do_detach(struct iommu_dev_data *dev_data)
1964 1965
{
	struct amd_iommu *iommu;
1966
	u16 alias;
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1977
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1978
	alias = amd_iommu_alias_table[dev_data->devid];
1979 1980

	/* decrease reference counters */
1981 1982 1983 1984 1985 1986
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1987
	clear_dte_entry(dev_data->devid);
1988 1989
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1990

1991
	/* Flush the DTE entry */
1992
	device_flush_dte(dev_data);
1993 1994 1995 1996 1997 1998
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1999
static int __attach_device(struct iommu_dev_data *dev_data,
2000
			   struct protection_domain *domain)
2001
{
2002
	int ret;
2003

2004 2005 2006 2007 2008 2009
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2010 2011 2012
	/* lock domain */
	spin_lock(&domain->lock);

2013
	ret = -EBUSY;
2014
	if (dev_data->domain != NULL)
2015
		goto out_unlock;
2016

2017
	/* Attach alias group root */
2018
	do_attach(dev_data, domain);
2019

2020 2021 2022 2023
	ret = 0;

out_unlock:

2024 2025
	/* ready */
	spin_unlock(&domain->lock);
2026

2027
	return ret;
2028
}
2029

2030 2031 2032 2033 2034 2035 2036 2037

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2038 2039 2040 2041 2042 2043
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2044
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2045 2046 2047
	if (!pos)
		return -EINVAL;

2048 2049 2050
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2051 2052 2053 2054

	return 0;
}

2055 2056
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2057 2058 2059 2060 2061 2062 2063 2064
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2076 2077
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2078 2079 2080
	if (ret)
		goto out_err;

2081 2082 2083 2084 2085 2086
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2100
/* FIXME: Move this to PCI code */
2101
#define PCI_PRI_TLP_OFF		(1 << 15)
2102

J
Joerg Roedel 已提交
2103
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2104
{
2105
	u16 status;
2106 2107
	int pos;

2108
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2109 2110 2111
	if (!pos)
		return false;

2112
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2113

2114
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2115 2116
}

2117
/*
F
Frank Arnold 已提交
2118
 * If a device is not yet associated with a domain, this function
2119 2120
 * assigns it visible for the hardware
 */
2121 2122
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2123
{
2124
	struct pci_dev *pdev = to_pci_dev(dev);
2125
	struct iommu_dev_data *dev_data;
2126
	unsigned long flags;
2127
	int ret;
2128

2129 2130
	dev_data = get_dev_data(dev);

2131
	if (domain->flags & PD_IOMMUV2_MASK) {
2132
		if (!dev_data->passthrough)
2133 2134
			return -EINVAL;

2135 2136 2137
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2138

2139 2140 2141 2142
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2143 2144
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2145 2146 2147
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2148

2149
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2150
	ret = __attach_device(dev_data, domain);
2151 2152
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2153 2154 2155 2156 2157
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2158
	domain_flush_tlb_pde(domain);
2159 2160

	return ret;
2161 2162
}

2163 2164 2165
/*
 * Removes a device from a protection domain (unlocked)
 */
2166
static void __detach_device(struct iommu_dev_data *dev_data)
2167
{
2168
	struct protection_domain *domain;
2169

2170 2171 2172 2173 2174
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2175

2176 2177
	if (WARN_ON(!dev_data->domain))
		return;
2178

2179
	domain = dev_data->domain;
2180

2181
	spin_lock(&domain->lock);
2182

2183
	do_detach(dev_data);
2184

2185
	spin_unlock(&domain->lock);
2186 2187 2188 2189 2190
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2191
static void detach_device(struct device *dev)
2192
{
2193
	struct protection_domain *domain;
2194
	struct iommu_dev_data *dev_data;
2195 2196
	unsigned long flags;

2197
	dev_data = get_dev_data(dev);
2198
	domain   = dev_data->domain;
2199

2200 2201
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2202
	__detach_device(dev_data);
2203
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2204

2205
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2206 2207
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2208
		pci_disable_ats(to_pci_dev(dev));
2209 2210

	dev_data->ats.enabled = false;
2211
}
2212

2213
static int amd_iommu_add_device(struct device *dev)
2214
{
2215
	struct iommu_dev_data *dev_data;
2216
	struct iommu_domain *domain;
2217
	struct amd_iommu *iommu;
2218
	u16 devid;
2219
	int ret;
2220

2221
	if (!check_device(dev) || get_dev_data(dev))
2222
		return 0;
2223

2224 2225
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2226

2227
	ret = iommu_init_device(dev);
2228 2229 2230 2231
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2232

2233
		iommu_ignore_device(dev);
2234
		dev->archdata.dma_ops = &nommu_dma_ops;
2235 2236 2237
		goto out;
	}
	init_iommu_group(dev);
2238

2239
	dev_data = get_dev_data(dev);
2240

2241
	BUG_ON(!dev_data);
2242

2243
	if (iommu_pass_through || dev_data->iommu_v2)
2244
		iommu_request_dm_for_dev(dev);
2245

2246 2247
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2248
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2249
		dev_data->passthrough = true;
2250
	else
2251
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2252

2253
out:
2254 2255 2256 2257 2258
	iommu_completion_wait(iommu);

	return 0;
}

2259
static void amd_iommu_remove_device(struct device *dev)
2260
{
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2272 2273
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2287
static struct protection_domain *get_domain(struct device *dev)
2288
{
2289
	struct protection_domain *domain;
2290
	struct iommu_domain *io_domain;
2291

2292
	if (!check_device(dev))
2293
		return ERR_PTR(-EINVAL);
2294

2295
	io_domain = iommu_get_domain_for_dev(dev);
2296 2297
	if (!io_domain)
		return NULL;
2298

2299 2300
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2301
		return ERR_PTR(-EBUSY);
2302

2303
	return domain;
2304 2305
}

2306 2307
static void update_device_table(struct protection_domain *domain)
{
2308
	struct iommu_dev_data *dev_data;
2309

2310 2311
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2312 2313 2314 2315 2316 2317 2318 2319
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2320 2321 2322

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2323 2324 2325 2326

	domain->updated = false;
}

2327 2328 2329 2330 2331 2332
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2333
	struct aperture_range *aperture;
2334 2335
	u64 *pte, *pte_page;

2336 2337 2338 2339 2340
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2341
	if (!pte) {
2342
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2343
				GFP_ATOMIC);
2344 2345
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2346
		pte += PM_LEVEL_INDEX(0, address);
2347

2348
	update_domain(&dom->domain);
2349 2350 2351 2352

	return pte;
}

2353 2354 2355 2356
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2357
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2368
	pte  = dma_ops_get_pte(dom, address);
2369
	if (!pte)
2370
		return DMA_ERROR_CODE;
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2381
	WARN_ON_ONCE(*pte);
2382 2383 2384 2385 2386 2387

	*pte = __pte;

	return (dma_addr_t)address;
}

2388 2389 2390
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2391
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2392 2393
				 unsigned long address)
{
2394
	struct aperture_range *aperture;
2395 2396 2397 2398 2399
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2400 2401 2402 2403 2404 2405 2406
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2407

2408
	pte += PM_LEVEL_INDEX(0, address);
2409

2410
	WARN_ON_ONCE(!*pte);
2411 2412 2413 2414

	*pte = 0ULL;
}

2415 2416
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2417 2418
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2419 2420
 * Must be called with the domain lock held.
 */
2421 2422 2423 2424
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2425
			       int dir,
2426 2427
			       bool align,
			       u64 dma_mask)
2428 2429
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2430
	dma_addr_t address, start, ret;
2431
	unsigned int pages;
2432
	unsigned long align_mask = 0;
2433 2434
	int i;

2435
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2436 2437
	paddr &= PAGE_MASK;

2438 2439
	INC_STATS_COUNTER(total_map_requests);

2440 2441 2442
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2443 2444 2445
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2446
retry:
2447 2448
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2449
	if (unlikely(address == DMA_ERROR_CODE)) {
2450 2451 2452 2453 2454 2455 2456
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2457
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2458 2459 2460
			goto out;

		/*
2461
		 * aperture was successfully enlarged by 128 MB, try
2462 2463 2464 2465
		 * allocation again
		 */
		goto retry;
	}
2466 2467 2468

	start = address;
	for (i = 0; i < pages; ++i) {
2469
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2470
		if (ret == DMA_ERROR_CODE)
2471 2472
			goto out_unmap;

2473 2474 2475 2476 2477
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2478 2479
	ADD_STATS_COUNTER(alloced_io_mem, size);

2480
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2481
		domain_flush_tlb(&dma_dom->domain);
2482
		dma_dom->need_flush = false;
2483
	} else if (unlikely(amd_iommu_np_cache))
2484
		domain_flush_pages(&dma_dom->domain, address, size);
2485

2486 2487
out:
	return address;
2488 2489 2490 2491 2492

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2493
		dma_ops_domain_unmap(dma_dom, start);
2494 2495 2496 2497
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2498
	return DMA_ERROR_CODE;
2499 2500
}

2501 2502 2503 2504
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2505
static void __unmap_single(struct dma_ops_domain *dma_dom,
2506 2507 2508 2509
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2510
	dma_addr_t flush_addr;
2511 2512 2513
	dma_addr_t i, start;
	unsigned int pages;

2514
	if ((dma_addr == DMA_ERROR_CODE) ||
2515
	    (dma_addr + size > dma_dom->aperture_size))
2516 2517
		return;

2518
	flush_addr = dma_addr;
2519
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2520 2521 2522 2523
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2524
		dma_ops_domain_unmap(dma_dom, start);
2525 2526 2527
		start += PAGE_SIZE;
	}

2528 2529
	SUB_STATS_COUNTER(alloced_io_mem, size);

2530
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2531

2532
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2533
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2534 2535
		dma_dom->need_flush = false;
	}
2536 2537
}

2538 2539 2540
/*
 * The exported map_single function for dma_ops.
 */
2541 2542 2543 2544
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2545 2546 2547 2548
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2549
	u64 dma_mask;
2550
	phys_addr_t paddr = page_to_phys(page) + offset;
2551

2552 2553
	INC_STATS_COUNTER(cnt_map_single);

2554 2555
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2556
		return (dma_addr_t)paddr;
2557 2558
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2559

2560 2561
	dma_mask = *dev->dma_mask;

2562
	spin_lock_irqsave(&domain->lock, flags);
2563

2564
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2565
			    dma_mask);
2566
	if (addr == DMA_ERROR_CODE)
2567 2568
		goto out;

2569
	domain_flush_complete(domain);
2570 2571 2572 2573 2574 2575 2576

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2577 2578 2579
/*
 * The exported unmap_single function for dma_ops.
 */
2580 2581
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2582 2583 2584 2585
{
	unsigned long flags;
	struct protection_domain *domain;

2586 2587
	INC_STATS_COUNTER(cnt_unmap_single);

2588 2589
	domain = get_domain(dev);
	if (IS_ERR(domain))
2590 2591
		return;

2592 2593
	spin_lock_irqsave(&domain->lock, flags);

2594
	__unmap_single(domain->priv, dma_addr, size, dir);
2595

2596
	domain_flush_complete(domain);
2597 2598 2599 2600

	spin_unlock_irqrestore(&domain->lock, flags);
}

2601 2602 2603 2604
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2605
static int map_sg(struct device *dev, struct scatterlist *sglist,
2606 2607
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2608 2609 2610 2611 2612 2613 2614
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2615
	u64 dma_mask;
2616

2617 2618
	INC_STATS_COUNTER(cnt_map_sg);

2619
	domain = get_domain(dev);
2620
	if (IS_ERR(domain))
2621
		return 0;
2622

2623
	dma_mask = *dev->dma_mask;
2624 2625 2626 2627 2628 2629

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2630
		s->dma_address = __map_single(dev, domain->priv,
2631 2632
					      paddr, s->length, dir, false,
					      dma_mask);
2633 2634 2635 2636 2637 2638 2639 2640

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2641
	domain_flush_complete(domain);
2642 2643 2644 2645 2646 2647 2648 2649

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2650
			__unmap_single(domain->priv, s->dma_address,
2651 2652 2653 2654 2655 2656 2657 2658 2659
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2660 2661 2662 2663
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2664
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2665 2666
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2667 2668 2669 2670 2671 2672
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2673 2674
	INC_STATS_COUNTER(cnt_unmap_sg);

2675 2676
	domain = get_domain(dev);
	if (IS_ERR(domain))
2677 2678
		return;

2679 2680 2681
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2682
		__unmap_single(domain->priv, s->dma_address,
2683 2684 2685 2686
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2687
	domain_flush_complete(domain);
2688 2689 2690 2691

	spin_unlock_irqrestore(&domain->lock, flags);
}

2692 2693 2694
/*
 * The exported alloc_coherent function for dma_ops.
 */
2695
static void *alloc_coherent(struct device *dev, size_t size,
2696 2697
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2698
{
2699
	u64 dma_mask = dev->coherent_dma_mask;
2700 2701 2702
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2703

2704 2705
	INC_STATS_COUNTER(cnt_alloc_coherent);

2706 2707
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2708 2709 2710
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2711 2712
	} else if (IS_ERR(domain))
		return NULL;
2713

2714
	size	  = PAGE_ALIGN(size);
2715 2716
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2717
	flag     |= __GFP_ZERO;
2718

2719 2720
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2721
		if (!gfpflags_allow_blocking(flag))
2722
			return NULL;
2723

2724 2725 2726 2727 2728
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2729

2730 2731 2732
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2733 2734
	spin_lock_irqsave(&domain->lock, flags);

2735
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2736
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2737

2738
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2739
		spin_unlock_irqrestore(&domain->lock, flags);
2740
		goto out_free;
J
Jiri Slaby 已提交
2741
	}
2742

2743
	domain_flush_complete(domain);
2744 2745 2746

	spin_unlock_irqrestore(&domain->lock, flags);

2747
	return page_address(page);
2748 2749 2750

out_free:

2751 2752
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2753 2754

	return NULL;
2755 2756
}

2757 2758 2759
/*
 * The exported free_coherent function for dma_ops.
 */
2760
static void free_coherent(struct device *dev, size_t size,
2761 2762
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2763 2764
{
	struct protection_domain *domain;
2765 2766
	unsigned long flags;
	struct page *page;
2767

2768 2769
	INC_STATS_COUNTER(cnt_free_coherent);

2770 2771 2772
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2773 2774
	domain = get_domain(dev);
	if (IS_ERR(domain))
2775 2776
		goto free_mem;

2777 2778
	spin_lock_irqsave(&domain->lock, flags);

2779
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2780

2781
	domain_flush_complete(domain);
2782 2783 2784 2785

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2786 2787
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2788 2789
}

2790 2791 2792 2793 2794 2795
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2796
	return check_device(dev);
2797 2798
}

2799
static struct dma_map_ops amd_iommu_dma_ops = {
2800 2801
	.alloc = alloc_coherent,
	.free = free_coherent,
2802 2803
	.map_page = map_page,
	.unmap_page = unmap_page,
2804 2805
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2806
	.dma_supported = amd_iommu_dma_supported,
2807 2808
};

2809
int __init amd_iommu_init_api(void)
2810
{
2811
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2812 2813
}

2814 2815
int __init amd_iommu_init_dma_ops(void)
{
2816
	swiotlb        = iommu_pass_through ? 1 : 0;
2817 2818
	iommu_detected = 1;

2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2828 2829
	amd_iommu_stats_init();

2830 2831 2832 2833 2834
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2835 2836
	return 0;
}
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2850
	struct iommu_dev_data *entry;
2851 2852 2853 2854
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2855 2856 2857 2858
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2859
	}
2860 2861 2862 2863

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2864 2865 2866 2867 2868
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2869 2870
	del_domain_from_list(domain);

2871 2872 2873 2874 2875 2876
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2889
static struct protection_domain *protection_domain_alloc(void)
2890 2891 2892 2893 2894
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2895
		return NULL;
2896

2897
	if (protection_domain_init(domain))
2898 2899
		goto out_err;

2900 2901
	add_domain_to_list(domain);

2902 2903 2904 2905 2906 2907 2908 2909
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2910
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2911
{
2912
	struct protection_domain *pdomain;
2913
	struct dma_ops_domain *dma_domain;
2914

2915 2916 2917 2918 2919
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2920

2921 2922 2923 2924 2925 2926
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2927

2928 2929 2930
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2941 2942 2943 2944
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2945

2946 2947
		pdomain->mode = PAGE_MODE_NONE;
		break;
2948 2949 2950
	default:
		return NULL;
	}
2951

2952
	return &pdomain->domain;
2953 2954
}

2955
static void amd_iommu_domain_free(struct iommu_domain *dom)
2956
{
2957
	struct protection_domain *domain;
2958

2959
	if (!dom)
2960 2961
		return;

2962 2963
	domain = to_pdomain(dom);

2964 2965 2966 2967 2968
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2969 2970
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2971

2972 2973 2974
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2975
	protection_domain_free(domain);
2976 2977
}

2978 2979 2980
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2981
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2982 2983 2984
	struct amd_iommu *iommu;
	u16 devid;

2985
	if (!check_device(dev))
2986 2987
		return;

2988
	devid = get_device_id(dev);
2989

2990
	if (dev_data->domain != NULL)
2991
		detach_device(dev);
2992 2993 2994 2995 2996 2997 2998 2999

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3000 3001 3002
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3003
	struct protection_domain *domain = to_pdomain(dom);
3004
	struct iommu_dev_data *dev_data;
3005
	struct amd_iommu *iommu;
3006
	int ret;
3007

3008
	if (!check_device(dev))
3009 3010
		return -EINVAL;

3011 3012
	dev_data = dev->archdata.iommu;

3013
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3014 3015 3016
	if (!iommu)
		return -EINVAL;

3017
	if (dev_data->domain)
3018
		detach_device(dev);
3019

3020
	ret = attach_device(dev, domain);
3021 3022 3023

	iommu_completion_wait(iommu);

3024
	return ret;
3025 3026
}

3027
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3028
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3029
{
3030
	struct protection_domain *domain = to_pdomain(dom);
3031 3032 3033
	int prot = 0;
	int ret;

3034 3035 3036
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3037 3038 3039 3040 3041
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3042
	mutex_lock(&domain->api_lock);
3043
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3044 3045
	mutex_unlock(&domain->api_lock);

3046
	return ret;
3047 3048
}

3049 3050
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3051
{
3052
	struct protection_domain *domain = to_pdomain(dom);
3053
	size_t unmap_size;
3054

3055 3056 3057
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3058
	mutex_lock(&domain->api_lock);
3059
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3060
	mutex_unlock(&domain->api_lock);
3061

3062
	domain_flush_tlb_pde(domain);
3063

3064
	return unmap_size;
3065 3066
}

3067
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3068
					  dma_addr_t iova)
3069
{
3070
	struct protection_domain *domain = to_pdomain(dom);
3071
	unsigned long offset_mask, pte_pgsize;
3072
	u64 *pte, __pte;
3073

3074 3075 3076
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3077
	pte = fetch_pte(domain, iova, &pte_pgsize);
3078

3079
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3080 3081
		return 0;

3082 3083
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3084

3085
	return (__pte & ~offset_mask) | (iova & offset_mask);
3086 3087
}

3088
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3089
{
3090 3091
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3092
		return true;
3093
	case IOMMU_CAP_INTR_REMAP:
3094
		return (irq_remapping_enabled == 1);
3095 3096
	case IOMMU_CAP_NOEXEC:
		return false;
3097 3098
	}

3099
	return false;
S
Sheng Yang 已提交
3100 3101
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3143
static const struct iommu_ops amd_iommu_ops = {
3144
	.capable = amd_iommu_capable,
3145 3146
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3147 3148
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3149 3150
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3151
	.map_sg = default_iommu_map_sg,
3152
	.iova_to_phys = amd_iommu_iova_to_phys,
3153 3154
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3155
	.device_group = pci_device_group,
3156 3157
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3158
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3159 3160
};

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3183 3184 3185

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3186
	struct protection_domain *domain = to_pdomain(dom);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3204 3205 3206

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3207
	struct protection_domain *domain = to_pdomain(dom);
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3285 3286 3287 3288 3289 3290
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3316 3317
	INC_STATS_COUNTER(invalidate_iotlb);

3318 3319 3320 3321 3322 3323
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3324
	struct protection_domain *domain = to_pdomain(dom);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3338 3339
	INC_STATS_COUNTER(invalidate_iotlb_all);

3340 3341 3342 3343 3344 3345
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3346
	struct protection_domain *domain = to_pdomain(dom);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3426
	struct protection_domain *domain = to_pdomain(dom);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3440
	struct protection_domain *domain = to_pdomain(dom);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3451 3452 3453 3454 3455 3456 3457 3458

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3459 3460
	INC_STATS_COUNTER(complete_ppr);

3461 3462 3463 3464 3465 3466 3467 3468 3469
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3470 3471 3472

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3473
	struct protection_domain *pdomain;
3474

3475 3476
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3477 3478 3479
		return NULL;

	/* Only return IOMMUv2 domains */
3480
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3481 3482
		return NULL;

3483
	return &pdomain->domain;
3484 3485
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3565 3566 3567 3568 3569
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3632 3633 3634
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3635 3636 3637 3638 3639 3640 3641
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3642
		table = NULL;
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3660
		set_dte_irq_entry(alias, table);
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3673
static int alloc_irq_index(u16 devid, int count)
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3757
static int get_devid(struct irq_alloc_info *info)
3758
{
3759
	int devid = -1;
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3776

3777 3778
	return devid;
}
3779

3780 3781 3782 3783
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3784

3785 3786
	if (!info)
		return NULL;
3787

3788 3789 3790 3791 3792 3793
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3794

3795
	return NULL;
3796 3797
}

3798
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3799
{
3800 3801
	struct amd_iommu *iommu;
	int devid;
3802

3803 3804
	if (!info)
		return NULL;
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3819

3820 3821
	return NULL;
}
3822

3823 3824 3825 3826 3827 3828
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3829 3830 3831
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3832

3833 3834 3835 3836 3837 3838 3839 3840 3841
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3842

3843 3844
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3845

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3868

3869 3870 3871 3872 3873 3874 3875
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3876

3877 3878 3879 3880
	default:
		BUG_ON(1);
		break;
	}
3881 3882
}

3883 3884
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3885
{
3886 3887 3888
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3889
	struct irq_cfg *cfg;
3890 3891
	int i, ret, devid;
	int index = -1;
3892

3893 3894 3895 3896
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3897 3898
		return -EINVAL;

3899 3900 3901 3902 3903 3904
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3905

3906 3907 3908
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3909

3910 3911 3912
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3913

3914 3915 3916 3917 3918 3919
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3920
		index = alloc_irq_index(devid, nr_irqs);
3921 3922 3923 3924 3925
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3926

3927 3928 3929 3930 3931 3932 3933
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3934

3935 3936 3937 3938 3939
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3940 3941 3942 3943 3944 3945
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3946

3947
	return 0;
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3960 3961
}

3962 3963
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3964
{
3965 3966 3967 3968
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3981

3982 3983 3984 3985 3986
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3987

3988
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3989 3990
}

3991 3992
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3993
{
3994 3995 3996
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3997

3998 3999 4000
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4001

4002 4003 4004 4005 4006
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4007
};
4008

4009 4010 4011 4012 4013 4014 4015 4016
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4017

4018 4019 4020
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4021

4022 4023 4024 4025 4026 4027 4028
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4029

4030 4031 4032 4033 4034
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4035
	send_cleanup_vector(cfg);
4036 4037

	return IRQ_SET_MASK_OK_DONE;
4038 4039
}

4040
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4041
{
4042
	struct amd_ir_data *ir_data = irq_data->chip_data;
4043

4044 4045
	*msg = ir_data->msi_entry;
}
4046

4047 4048 4049 4050 4051
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4052

4053 4054 4055 4056 4057
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4058

4059 4060
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4061 4062 4063

	return 0;
}
4064
#endif