nfp_net_common.c 86.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66 67 68
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

#include <net/vxlan.h>

69
#include "nfpcore/nfp_nsp.h"
70
#include "nfp_app.h"
71 72
#include "nfp_net_ctrl.h"
#include "nfp_net.h"
J
Jakub Kicinski 已提交
73
#include "nfp_port.h"
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

89
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
90
{
91 92 93 94 95 96 97 98 99 100 101
	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
{
	dma_sync_single_for_device(dp->dev, dma_addr,
				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				   dp->rx_dma_dir);
102 103
}

104
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
105
{
106 107 108 109 110 111 112 113 114 115
	dma_unmap_single_attrs(dp->dev, dma_addr,
			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
				    unsigned int len)
{
	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
				len, dp->rx_dma_dir);
116 117
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

228 229 230 231 232 233 234 235 236 237 238 239 240
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
241 242 243
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
244 245 246

	spin_lock_bh(&nn->reconfig_lock);

247
	nn->reconfig_sync_present = true;
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
266 267
	}

268 269 270 271 272 273 274 275 276 277
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

278
	spin_unlock_bh(&nn->reconfig_lock);
279

280 281 282 283 284 285 286 287 288 289 290
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
291
 * Clear the ICR for the IRQ entry.
292 293 294 295 296 297 298 299
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
300 301 302 303 304
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
305
 *
306
 * Return: Number of irqs obtained or 0 on error.
307
 */
308 309 310
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
311
{
312 313
	unsigned int i;
	int got_irqs;
314

315 316
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
317

318 319 320 321 322
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
323 324 325
		return 0;
	}

326 327 328 329 330
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
331 332 333
}

/**
334 335 336 337
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
338
 *
339 340
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
341
 */
342 343 344
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
345
{
346 347
	struct nfp_net_dp *dp = &nn->dp;

348
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
349
	dp->num_r_vecs = nn->max_r_vecs;
350

351
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
352

353 354
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
355 356 357
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
358

359 360 361
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
362 363 364 365
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
366
 * @pdev:        PCI device structure
367 368 369
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
370
void nfp_net_irqs_disable(struct pci_dev *pdev)
371
{
372
	pci_disable_msix(pdev);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
414 415
	if (nn->port)
		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
416 417

	if (nn->link_up) {
418 419
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
420
	} else {
421 422
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
438 439 440
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
441 442 443

	nfp_net_read_link_status(nn);

444
	nfp_net_irq_unmask(nn, entry->entry);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
468 469
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
470
 * @is_xdp:   Is this an XDP TX ring?
471
 */
472 473
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
474 475
		     struct nfp_net_r_vector *r_vec, unsigned int idx,
		     bool is_xdp)
476 477 478
{
	struct nfp_net *nn = r_vec->nfp_net;

479 480
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;
481
	tx_ring->is_xdp = is_xdp;
482

483 484 485 486 487 488 489
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
490 491
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
492
 */
493 494 495
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
496 497 498
{
	struct nfp_net *nn = r_vec->nfp_net;

499 500 501
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

526
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
527 528 529 530 531 532
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
533
	nn_writeb(nn, ctrl_offset, entry->entry);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
575
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
621
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
622 623 624 625 626 627 628 629 630
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

E
Edwin Peer 已提交
631 632 633
	if (!skb->encapsulation) {
		txd->l3_offset = skb_network_offset(skb);
		txd->l4_offset = skb_transport_offset(skb);
634
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
E
Edwin Peer 已提交
635 636 637
	} else {
		txd->l3_offset = skb_inner_network_offset(skb);
		txd->l4_offset = skb_inner_transport_offset(skb);
638 639
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);
E
Edwin Peer 已提交
640
	}
641 642 643 644 645

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
646
	txd->lso_hdrlen = hdrlen;
647 648 649 650 651 652 653 654 655 656
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
657
 * @dp:  NFP Net data path struct
658 659 660 661 662 663 664 665
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
666 667
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
668 669 670 671 672 673 674
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

675
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
694
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
695 696 697 698 699 700 701 702 703 704 705
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
706
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
707 708 709 710 711 712 713 714 715 716 717
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

718 719 720 721 722 723 724
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
738 739
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
740
	struct netdev_queue *nd_q;
741
	struct nfp_net_dp *dp;
742 743 744 745 746 747
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

748
	dp = &nn->dp;
749
	qidx = skb_get_queue_mapping(skb);
750
	tx_ring = &dp->tx_rings[qidx];
751
	r_vec = tx_ring->r_vec;
752
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
753 754 755 756

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
757 758
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
759
		netif_tx_stop_queue(nd_q);
760
		nfp_net_tx_xmit_more_flush(tx_ring);
761 762 763 764 765 766 767
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
768
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
769
				  DMA_TO_DEVICE);
770
	if (dma_mapping_error(dp->dev, dma_addr))
771 772
		goto err_free;

773
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
792
	txd->lso_hdrlen = 0;
793

E
Edwin Peer 已提交
794
	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
795 796 797
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
798 799 800 801 802 803 804 805 806 807 808 809 810
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

811
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
812
						    fsize, DMA_TO_DEVICE);
813
			if (dma_mapping_error(dp->dev, dma_addr))
814 815
				goto err_unmap;

816
			wr_idx = D_IDX(tx_ring, wr_idx + 1);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
841 842
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
843 844 845 846 847 848 849 850 851

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
852
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
853 854 855 856 857 858 859 860
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
861
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
862 863 864 865 866
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
867
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
868
	nfp_net_tx_xmit_more_flush(tx_ring);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
885
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
886 887 888 889 890 891 892 893 894
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

895 896 897
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

898 899 900 901 902 903
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

904
	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
905 906

	while (todo--) {
907
		idx = D_IDX(tx_ring, tx_ring->rd_p++);
908 909 910 911 912 913 914 915 916 917

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
918
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
919 920 921 922 923 924 925
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
926
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

946
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
947 948 949 950 951 952 953 954 955 956 957 958 959 960
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

961
static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
962 963 964
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	u32 done_pkts = 0, done_bytes = 0;
965
	bool done_all;
966 967 968 969 970 971 972
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
973
		return true;
974

975
	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
976

977 978 979
	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);

980
	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
981

982
	done_pkts = todo;
983
	while (todo--) {
984
		idx = D_IDX(tx_ring, tx_ring->rd_p);
985 986 987 988 989 990 991 992 993 994 995
		tx_ring->rd_p++;

		done_bytes += tx_ring->txbufs[idx].real_len;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
996
		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
997
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
998 999

	return done_all;
1000 1001
}

1002
/**
1003
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1004
 * @dp:		NFP Net data path struct
1005
 * @tx_ring:	TX ring structure
1006 1007 1008
 *
 * Assumes that the device is stopped
 */
1009
static void
1010
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1011 1012
{
	const struct skb_frag_struct *frag;
1013
	struct netdev_queue *nd_q;
1014

1015
	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1016
		struct nfp_net_tx_buf *tx_buf;
1017 1018
		struct sk_buff *skb;
		int idx, nr_frags;
1019

1020
		idx = D_IDX(tx_ring, tx_ring->rd_p);
1021
		tx_buf = &tx_ring->txbufs[idx];
1022

1023 1024
		skb = tx_ring->txbufs[idx].skb;
		nr_frags = skb_shinfo(skb)->nr_frags;
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034
		if (tx_buf->fidx == -1) {
			/* unmap head */
			dma_unmap_single(dp->dev, tx_buf->dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
			dma_unmap_page(dp->dev, tx_buf->dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
1035
		}
1036

1037 1038 1039 1040
		/* check for last gather fragment */
		if (tx_buf->fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

1041 1042 1043
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1044 1045 1046 1047 1048

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1049 1050 1051 1052 1053 1054
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1055
	if (tx_ring->is_xdp)
1056 1057
		return;

1058
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1059 1060 1061 1062 1063 1064 1065 1066
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1067
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1068 1069 1070 1071 1072 1073 1074 1075 1076
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1077
static unsigned int
1078
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1079 1080 1081
{
	unsigned int fl_bufsz;

1082
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1083
	fl_bufsz += dp->rx_dma_off;
1084
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1085
		fl_bufsz += NFP_NET_MAX_PREPEND;
1086
	else
1087
		fl_bufsz += dp->rx_offset;
1088
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1089

1090 1091 1092
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1093 1094
	return fl_bufsz;
}
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1105
/**
1106
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1107
 * @dp:		NFP Net data path struct
1108 1109
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1110
 * This function will allcate a new page frag, map it for DMA.
1111
 *
1112
 * Return: allocated page frag or NULL on failure.
1113
 */
1114
static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1115
{
1116
	void *frag;
1117

1118
	if (!dp->xdp_prog)
1119
		frag = netdev_alloc_frag(dp->fl_bufsz);
1120 1121
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1122
	if (!frag) {
1123
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1124 1125 1126
		return NULL;
	}

1127
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1128
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1129
		nfp_net_free_frag(frag, dp->xdp_prog);
1130
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1131 1132 1133
		return NULL;
	}

1134
	return frag;
1135 1136
}

1137
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1138 1139 1140
{
	void *frag;

1141 1142
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1143 1144
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1145
	if (!frag) {
1146
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1147 1148 1149
		return NULL;
	}

1150
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1151 1152 1153
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1154 1155 1156 1157 1158 1159
		return NULL;
	}

	return frag;
}

1160 1161
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1162
 * @dp:		NFP Net data path struct
1163
 * @rx_ring:	RX ring structure
1164
 * @frag:	page fragment buffer
1165 1166
 * @dma_addr:	DMA address of skb mapping
 */
1167 1168
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1169
				void *frag, dma_addr_t dma_addr)
1170 1171 1172
{
	unsigned int wr_idx;

1173
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1174

1175 1176
	nfp_net_dma_sync_dev_rx(dp, dma_addr);

1177
	/* Stash SKB and DMA address away */
1178
	rx_ring->rxbufs[wr_idx].frag = frag;
1179 1180 1181 1182 1183
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1184 1185
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1186 1187

	rx_ring->wr_p++;
1188
	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1189 1190 1191 1192
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
1193
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1194 1195 1196 1197
	}
}

/**
1198 1199
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1200
 *
1201 1202
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1203
 */
1204
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1205
{
1206
	unsigned int wr_idx, last_idx;
1207

1208
	/* Move the empty entry to the end of the list */
1209
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1210 1211
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1212
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1213
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1214
	rx_ring->rxbufs[last_idx].frag = NULL;
1215

1216 1217 1218 1219
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
}
1220

1221 1222
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1223
 * @dp:		NFP Net data path struct
1224 1225 1226 1227 1228 1229 1230
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1231
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1232
			  struct nfp_net_rx_ring *rx_ring)
1233 1234
{
	unsigned int i;
1235

1236 1237 1238 1239 1240
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1241
		if (!rx_ring->rxbufs[i].frag)
1242 1243
			continue;

1244
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1245
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1246
		rx_ring->rxbufs[i].dma_addr = 0;
1247
		rx_ring->rxbufs[i].frag = NULL;
1248 1249 1250 1251
	}
}

/**
1252
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1253
 * @dp:		NFP Net data path struct
1254
 * @rx_ring:	RX ring to remove buffers from
1255
 */
1256
static int
1257
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1258
			   struct nfp_net_rx_ring *rx_ring)
1259
{
1260 1261 1262 1263
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1264

1265
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1266
		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1267
		if (!rxbufs[i].frag) {
1268
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1269 1270 1271 1272 1273 1274 1275
			return -ENOMEM;
		}
	}

	return 0;
}

1276 1277
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1278
 * @dp:	     NFP Net data path struct
1279 1280
 * @rx_ring: RX ring to fill
 */
1281 1282 1283
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1284 1285 1286 1287
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1288
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1289 1290 1291
				    rx_ring->rxbufs[i].dma_addr);
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1308
 * @dp:  NFP Net data path struct
1309 1310
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
1311
 * @meta: Parsed metadata prepend
1312 1313
 * @skb: Pointer to SKB
 */
1314 1315
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1316 1317
			    struct nfp_net_rx_desc *rxd,
			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1318 1319 1320
{
	skb_checksum_none_assert(skb);

1321
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1322 1323
		return;

1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (meta->csum_type) {
		skb->ip_summed = meta->csum_type;
		skb->csum = meta->csum;
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

1361 1362 1363
static void
nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
		 unsigned int type, __be32 *hash)
1364
{
1365
	if (!(netdev->features & NETIF_F_RXHASH))
1366 1367
		return;

1368
	switch (type) {
1369 1370 1371
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1372
		meta->hash_type = PKT_HASH_TYPE_L3;
1373 1374
		break;
	default:
1375
		meta->hash_type = PKT_HASH_TYPE_L4;
1376 1377
		break;
	}
1378 1379

	meta->hash = get_unaligned_be32(hash);
1380 1381
}

1382
static void
1383
nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1384
		      void *data, struct nfp_net_rx_desc *rxd)
1385
{
1386
	struct nfp_net_rx_hash *rx_hash = data;
1387 1388 1389 1390

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

1391
	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1392 1393 1394 1395
			 &rx_hash->hash);
}

static void *
1396
nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1397
		   void *data, int meta_len)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
1408
			nfp_net_set_hash(netdev, meta,
1409 1410 1411 1412 1413
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
1414
			meta->mark = get_unaligned_be32(data);
1415 1416
			data += 4;
			break;
1417 1418 1419 1420 1421 1422
		case NFP_NET_META_CSUM:
			meta->csum_type = CHECKSUM_COMPLETE;
			meta->csum =
				(__force __wsum)__get_unaligned_cpu32(data);
			data += 4;
			break;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1433
static void
1434 1435 1436
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1437 1438 1439 1440 1441
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1442 1443 1444 1445 1446
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1447
	if (rxbuf)
1448
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1449 1450 1451 1452
	if (skb)
		dev_kfree_skb_any(skb);
}

1453
static bool
1454
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1455
		   struct nfp_net_tx_ring *tx_ring,
1456
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1457
		   unsigned int pkt_len, bool *completed)
1458 1459 1460 1461 1462 1463
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		if (!*completed) {
			nfp_net_xdp_complete(tx_ring);
			*completed = true;
		}

		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
					NULL);
			return false;
		}
1474 1475
	}

1476
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1477 1478 1479

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
1480 1481 1482

	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);

1483 1484 1485 1486 1487 1488
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1489
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1490
				   pkt_len, DMA_BIDIRECTIONAL);
1491 1492 1493 1494 1495

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1496
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1497 1498 1499 1500
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
1501
	txd->lso_hdrlen = 0;
1502 1503 1504

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1505
	return true;
1506 1507
}

1508 1509
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1510 1511
{
	struct xdp_buff xdp;
1512 1513 1514 1515 1516 1517
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1518

1519 1520
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1521

1522 1523 1524 1525
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1542
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1543 1544
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
1545
	bool xdp_tx_cmpl = false;
1546
	unsigned int true_bufsz;
1547
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1548
	int pkts_polled = 0;
1549 1550
	int idx;

1551
	rcu_read_lock();
1552 1553
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1554 1555
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1556
	while (pkts_polled < budget) {
1557
		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1558 1559
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
1560
		struct nfp_meta_parsed meta;
1561 1562 1563
		dma_addr_t new_dma_addr;
		void *new_frag;

1564
		idx = D_IDX(rx_ring, rx_ring->rd_p);
1565 1566

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1567
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1568
			break;
J
Jakub Kicinski 已提交
1569

1570 1571 1572 1573 1574
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

1575 1576
		memset(&meta, 0, sizeof(meta));

1577 1578 1579
		rx_ring->rd_p++;
		pkts_polled++;

1580
		rxbuf =	&rx_ring->rxbufs[idx];
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1593 1594
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1595
		pkt_len = data_len - meta_len;
1596

1597
		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1598
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1599
			pkt_off += meta_len;
1600
		else
1601 1602
			pkt_off += dp->rx_offset;
		meta_off = pkt_off - meta_len;
1603 1604 1605 1606

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1607
		r_vec->rx_bytes += pkt_len;
1608 1609
		u64_stats_update_end(&r_vec->rx_sync);

1610 1611 1612 1613
		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1614
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1615 1616 1617
			continue;
		}

1618 1619 1620
		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
					data_len);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, &meta,
					      rxbuf->frag + meta_off, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(dp->netdev, &meta,
						 rxbuf->frag + meta_off,
						 meta_len);
			if (unlikely(end != rxbuf->frag + pkt_off)) {
				nn_dp_warn(dp, "invalid RX packet metadata\n");
				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
						NULL);
				continue;
			}
		}

1638
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1639
				  dp->bpf_offload_xdp)) {
1640
			unsigned int dma_off;
1641
			void *hard_start;
1642 1643
			int act;

1644 1645 1646
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1647
					      &pkt_off, &pkt_len);
1648 1649 1650 1651
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1652
				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1653
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1654
								 tx_ring, rxbuf,
1655
								 dma_off,
1656 1657
								 pkt_len,
								 &xdp_tx_cmpl)))
1658 1659
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1660 1661 1662
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
1663
				/* fall through */
1664
			case XDP_ABORTED:
1665
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1666
				/* fall through */
1667
			case XDP_DROP:
1668
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1669 1670 1671 1672 1673 1674
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1675
		if (unlikely(!skb)) {
1676
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1677 1678
			continue;
		}
1679
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1680
		if (unlikely(!new_frag)) {
1681
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1682 1683 1684
			continue;
		}

1685
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1686

1687
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1688

1689
		skb_reserve(skb, pkt_off);
1690 1691
		skb_put(skb, pkt_len);

1692 1693
		skb->mark = meta.mark;
		skb_set_hash(skb, meta.hash, meta.hash_type);
1694

1695
		skb_record_rx_queue(skb, rx_ring->idx);
1696
		skb->protocol = eth_type_trans(skb, dp->netdev);
1697

1698
		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1699 1700 1701 1702 1703 1704 1705 1706

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1707 1708 1709 1710 1711 1712 1713 1714
	if (xdp_prog) {
		if (tx_ring->wr_ptr_add)
			nfp_net_tx_xmit_more_flush(tx_ring);
		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
			 !xdp_tx_cmpl)
			if (!nfp_net_xdp_complete(tx_ring))
				pkts_polled = budget;
	}
1715 1716
	rcu_read_unlock();

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1731
	unsigned int pkts_polled = 0;
1732

1733 1734
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1735
	if (r_vec->rx_ring)
1736
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1737

1738 1739 1740
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1741 1742 1743 1744 1745 1746 1747

	return pkts_polled;
}

/* Setup and Configuration
 */

J
Jakub Kicinski 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/**
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
 * @nn:		NFP Network structure
 */
static void nfp_net_vecs_init(struct nfp_net *nn)
{
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

	for (r = 0; r < nn->max_r_vecs; r++) {
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

1775 1776 1777 1778 1779 1780 1781
/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1782
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1783 1784 1785 1786

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1787
		dma_free_coherent(dp->dev, tx_ring->size,
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1799
 * @dp:        NFP Net data path struct
1800 1801 1802 1803
 * @tx_ring:   TX Ring structure to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1804
static int
1805
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1806 1807 1808 1809
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1810
	tx_ring->cnt = dp->txd_cnt;
1811 1812

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1813
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1814 1815 1816 1817 1818 1819 1820 1821 1822
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1823
	if (!tx_ring->is_xdp)
1824
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1825
				    tx_ring->idx);
1826 1827 1828 1829 1830 1831 1832 1833

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_tx_ring *tx_ring)
{
	unsigned int i;

	if (!tx_ring->is_xdp)
		return;

	for (i = 0; i < tx_ring->cnt; i++) {
		if (!tx_ring->txbufs[i].frag)
			return;

		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
	}
}

static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
	unsigned int i;

	if (!tx_ring->is_xdp)
		return 0;

	for (i = 0; i < tx_ring->cnt; i++) {
		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
		if (!txbufs[i].frag) {
			nfp_net_tx_ring_bufs_free(dp, tx_ring);
			return -ENOMEM;
		}
	}

	return 0;
}

1873
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1874 1875 1876
{
	unsigned int r;

1877 1878 1879 1880
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1881

1882
	for (r = 0; r < dp->num_tx_rings; r++) {
1883 1884
		int bias = 0;

1885 1886
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1887

1888
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
1889
				     r, bias);
1890

1891
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
1892
			goto err_free_prev;
1893 1894 1895

		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
			goto err_free_ring;
1896 1897
	}

1898
	return 0;
1899 1900

err_free_prev:
1901 1902 1903
	while (r--) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
1904
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1905
	}
1906 1907
	kfree(dp->tx_rings);
	return -ENOMEM;
1908 1909
}

1910
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1911 1912 1913
{
	unsigned int r;

1914 1915
	for (r = 0; r < dp->num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
1916
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1917
	}
1918

1919
	kfree(dp->tx_rings);
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1929
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1930 1931 1932 1933

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1934
		dma_free_coherent(dp->dev, rx_ring->size,
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1946
 * @dp:	      NFP Net data path struct
1947 1948 1949 1950
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1951
static int
1952
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1953 1954 1955
{
	int sz;

1956
	rx_ring->cnt = dp->rxd_cnt;
1957
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1958
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1975
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1976 1977 1978
{
	unsigned int r;

1979 1980 1981 1982
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1983

1984 1985
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1986

1987
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1988 1989
			goto err_free_prev;

1990
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1991 1992 1993
			goto err_free_ring;
	}

1994
	return 0;
1995 1996 1997

err_free_prev:
	while (r--) {
1998
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1999
err_free_ring:
2000
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2001
	}
2002 2003
	kfree(dp->rx_rings);
	return -ENOMEM;
2004 2005
}

2006
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2007 2008 2009
{
	unsigned int r;

2010 2011 2012
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2013 2014
	}

2015
	kfree(dp->rx_rings);
2016 2017
}

2018
static void
2019 2020
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
2021
{
2022
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2023
	r_vec->tx_ring =
2024
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2025

2026 2027
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2028 2029
}

2030 2031 2032
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
2033
{
2034
	int err;
2035

2036
	/* Setup NAPI */
2037
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
2038 2039
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2040
	snprintf(r_vec->name, sizeof(r_vec->name),
2041
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
2042 2043
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2044
	if (err) {
2045
		netif_napi_del(&r_vec->napi);
2046
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2047 2048
		return err;
	}
2049
	disable_irq(r_vec->irq_vector);
2050

2051
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2052

2053 2054
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2055

2056
	return 0;
2057 2058
}

2059 2060
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2061
{
2062
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2063
	netif_napi_del(&r_vec->napi);
2064
	free_irq(r_vec->irq_vector, r_vec);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2088
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2112
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2113 2114 2115 2116 2117
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2118
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2119 2120 2121 2122
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2123
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2124
 * @nn:      NFP Net device to reconfigure
2125
 * @addr:    MAC address to write
2126
 *
2127 2128 2129
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2130
 */
2131
static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2132
{
2133 2134
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2135 2136
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2148 2149 2150 2151 2152 2153 2154
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2155
	unsigned int r;
2156 2157
	int err;

2158
	new_ctrl = nn->dp.ctrl;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2172
	if (err)
2173 2174
		nn_err(nn, "Could not disable device: %d\n", err);

2175 2176 2177 2178 2179
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2180 2181
		nfp_net_vec_clear_ring_data(nn, r);

2182
	nn->dp.ctrl = new_ctrl;
2183 2184
}

2185
static void
2186 2187
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2188 2189
{
	/* Write the DMA address, size and MSI-X info to the device */
2190 2191
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2192
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2193
}
2194

2195 2196 2197 2198 2199 2200
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2201
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2202 2203
}

2204 2205 2206 2207 2208
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2209
{
2210
	u32 bufsz, new_ctrl, update = 0;
2211 2212 2213
	unsigned int r;
	int err;

2214
	new_ctrl = nn->dp.ctrl;
2215

2216
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2217 2218 2219 2220 2221 2222
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

2223
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2224 2225 2226 2227
		nfp_net_coalesce_write_cfg(nn);
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2228 2229 2230 2231
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2232

2233 2234
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2235

2236 2237
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2238

2239
	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2240

2241
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2242 2243 2244

	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2256 2257 2258 2259
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2260

2261
	nn->dp.ctrl = new_ctrl;
2262

2263
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2264
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2265

2266 2267 2268
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2269
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2270 2271
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2272
		udp_tunnel_get_rx_info(nn->dp.netdev);
2273 2274
	}

2275
	return 0;
2276 2277
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/**
 * nfp_net_close_stack() - Quiesce the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_close_stack(struct nfp_net *nn)
{
	unsigned int r;

	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
	netif_carrier_off(nn->dp.netdev);
	nn->link_up = false;

	for (r = 0; r < nn->dp.num_r_vecs; r++) {
		disable_irq(nn->r_vecs[r].irq_vector);
		napi_disable(&nn->r_vecs[r].napi);
	}

	netif_tx_disable(nn->dp.netdev);
}

/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;

2306 2307 2308
	nfp_net_tx_rings_free(&nn->dp);
	nfp_net_rx_rings_free(&nn->dp);

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	for (r = 0; r < nn->dp.num_r_vecs; r++)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);

	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

2340 2341 2342 2343 2344 2345 2346 2347
/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2348
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2349
		napi_enable(&nn->r_vecs[r].napi);
2350
		enable_irq(nn->r_vecs[r].irq_vector);
2351
	}
2352

2353
	netif_tx_wake_all_queues(nn->dp.netdev);
2354

2355
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2356 2357 2358
	nfp_net_read_link_status(nn);
}

2359
static int nfp_net_open_alloc_all(struct nfp_net *nn)
2360 2361 2362 2363 2364 2365 2366 2367
{
	int err, r;

	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2368 2369 2370 2371 2372
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2373
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2374

2375
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2376 2377
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2378 2379
			goto err_cleanup_vec_p;
	}
2380

2381 2382
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2383
		goto err_cleanup_vec;
2384

2385 2386
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2387
		goto err_free_rx_rings;
2388

2389
	for (r = 0; r < nn->max_r_vecs; r++)
2390
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	return 0;

err_free_rx_rings:
	nfp_net_rx_rings_free(&nn->dp);
err_cleanup_vec:
	r = nn->dp.num_r_vecs;
err_cleanup_vec_p:
	while (r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_open_alloc_all(nn);
	if (err)
		return err;

2421
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2422
	if (err)
2423
		goto err_free_all;
2424

2425
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2426
	if (err)
2427
		goto err_free_all;
2428 2429 2430 2431 2432 2433 2434 2435

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2436
	err = nfp_net_set_config_and_enable(nn);
2437
	if (err)
2438
		goto err_free_all;
2439 2440 2441 2442 2443 2444 2445

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2446
	nfp_net_open_stack(nn);
2447 2448 2449

	return 0;

2450 2451
err_free_all:
	nfp_net_close_free_all(nn);
2452 2453 2454 2455 2456 2457 2458 2459
	return err;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2460
	new_ctrl = nn->dp.ctrl;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2471
	if (new_ctrl == nn->dp.ctrl)
2472 2473 2474
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2475
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2476

2477
	nn->dp.ctrl = new_ctrl;
2478 2479
}

2480 2481 2482 2483 2484 2485
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2486
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2487 2488
}

2489 2490 2491 2492 2493 2494
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2495 2496

	nn->dp.netdev->mtu = new_dp.mtu;
2497 2498 2499

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2500 2501
}

2502
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2503
{
2504
	unsigned int r;
2505
	int err;
2506

2507
	nfp_net_dp_swap(nn, dp);
2508

2509
	for (r = 0; r <	nn->max_r_vecs; r++)
2510
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2511

2512
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2513 2514
	if (err)
		return err;
2515

2516 2517 2518
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2519 2520 2521 2522
		if (err)
			return err;
	}

2523
	return nfp_net_set_config_and_enable(nn);
2524
}
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2546 2547 2548
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct netlink_ext_ack *extack)
2549 2550
{
	/* XDP-enabled tests */
2551
	if (!dp->xdp_prog)
2552
		return 0;
2553
	if (dp->fl_bufsz > PAGE_SIZE) {
2554
		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2555 2556
		return -EINVAL;
	}
2557
	if (dp->num_tx_rings > nn->max_tx_rings) {
2558
		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2559 2560 2561 2562 2563 2564
		return -EINVAL;
	}

	return 0;
}

2565 2566
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
			  struct netlink_ext_ack *extack)
2567
{
2568
	int r, err;
2569

2570
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2571

2572
	dp->num_stack_tx_rings = dp->num_tx_rings;
2573
	if (dp->xdp_prog)
2574
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2575

2576
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2577

2578
	err = nfp_net_check_config(nn, dp, extack);
2579
	if (err)
2580
		goto exit_free_dp;
2581

2582
	if (!netif_running(dp->netdev)) {
2583
		nfp_net_dp_swap(nn, dp);
2584 2585
		err = 0;
		goto exit_free_dp;
2586 2587 2588
	}

	/* Prepare new rings */
2589
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2590 2591
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2592
			dp->num_r_vecs = r;
2593 2594 2595
			goto err_cleanup_vecs;
		}
	}
2596 2597 2598 2599 2600 2601 2602 2603

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2604 2605 2606 2607 2608

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2609
	err = nfp_net_dp_swap_enable(nn, dp);
2610
	if (err) {
2611
		int err2;
2612

2613
		nfp_net_clear_config_and_disable(nn);
2614

2615
		/* Try with old configuration and old rings */
2616
		err2 = nfp_net_dp_swap_enable(nn, dp);
2617
		if (err2)
2618
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2619
			       err, err2);
2620
	}
2621
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2622
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2623

2624 2625
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2626 2627

	nfp_net_open_stack(nn);
2628 2629
exit_free_dp:
	kfree(dp);
2630 2631

	return err;
2632 2633

err_free_rx:
2634
	nfp_net_rx_rings_free(dp);
2635
err_cleanup_vecs:
2636
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2637
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2638
	kfree(dp);
2639 2640 2641 2642 2643 2644
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2645 2646 2647 2648 2649
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2650

2651 2652
	dp->mtu = new_mtu;

2653
	return nfp_net_ring_reconfig(nn, dp, NULL);
2654 2655
}

2656 2657
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2658 2659 2660 2661
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2662
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2689 2690 2691 2692 2693 2694
static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

2695
	return nfp_app_setup_tc(nn->app, netdev, handle, proto, tc);
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2708
	new_ctrl = nn->dp.ctrl;
2709 2710 2711

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
2712
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
2713
		else
2714
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
E
Edwin Peer 已提交
2726 2727
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					      NFP_NET_CFG_CTRL_LSO;
2728
		else
E
Edwin Peer 已提交
2729
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2753
	if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
2754 2755 2756 2757
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2758 2759 2760
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2761
	if (new_ctrl == nn->dp.ctrl)
2762 2763
		return 0;

2764
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2765 2766 2767 2768 2769
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2770
	nn->dp.ctrl = new_ctrl;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2807
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2808 2809 2810 2811 2812 2813 2814 2815
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2816
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2833
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2834 2835 2836 2837 2838 2839 2840 2841
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2842
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2869
				   struct udp_tunnel_info *ti)
2870 2871 2872 2873
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2874 2875 2876 2877
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2878 2879 2880 2881
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2882
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2883 2884 2885
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2886
				   struct udp_tunnel_info *ti)
2887 2888 2889 2890
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2891 2892 2893 2894
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2895
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2896 2897 2898 2899 2900 2901
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2902
static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp)
2903
{
2904
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2905
	struct bpf_prog *prog = xdp->prog;
2906
	struct nfp_net_dp *dp;
2907 2908
	int err;

2909
	if (!prog && !nn->dp.xdp_prog)
2910
		return 0;
2911 2912
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2913
		bpf_prog_put(prog);
2914
		nfp_app_xdp_offload(nn->app, nn, nn->dp.xdp_prog);
2915 2916 2917
		return 0;
	}

2918 2919 2920 2921
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2922
	dp->xdp_prog = prog;
2923
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2924
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2925
	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2926 2927

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2928
	err = nfp_net_ring_reconfig(nn, dp, xdp->extack);
2929 2930 2931
	if (err)
		return err;

2932 2933
	if (old_prog)
		bpf_prog_put(old_prog);
2934

2935
	nfp_app_xdp_offload(nn->app, nn, nn->dp.xdp_prog);
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
2946
		return nfp_net_xdp_setup(nn, xdp);
2947
	case XDP_QUERY_PROG:
2948
		xdp->prog_attached = !!nn->dp.xdp_prog;
2949 2950 2951 2952 2953 2954
		return 0;
	default:
		return -EINVAL;
	}
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct sockaddr *saddr = addr;
	int err;

	err = eth_prepare_mac_addr_change(netdev, addr);
	if (err)
		return err;

	nfp_net_write_mac_addr(nn, saddr->sa_data);

	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
	if (err)
		return err;

	eth_commit_mac_addr_change(netdev, addr);

	return 0;
}

J
Jakub Kicinski 已提交
2976
const struct net_device_ops nfp_net_netdev_ops = {
2977 2978 2979 2980
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2981
	.ndo_setup_tc		= nfp_net_setup_tc,
2982 2983 2984
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
2985
	.ndo_set_mac_address	= nfp_net_set_mac_address,
2986 2987
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
J
Jakub Kicinski 已提交
2988
	.ndo_get_phys_port_name	= nfp_port_get_phys_port_name,
2989 2990
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2991
	.ndo_xdp		= nfp_net_xdp,
2992 2993 2994 2995 2996 2997 2998 2999
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3000
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3001 3002 3003
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3004 3005 3006 3007
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3008
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
E
Edwin Peer 已提交
3019 3020
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3021 3022
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3023 3024 3025 3026
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3027
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3028
		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3029
						      "RXCSUM_COMPLETE " : "",
3030 3031
		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
		nfp_app_extra_cap(nn->app, nn));
3032 3033 3034
}

/**
3035
 * nfp_net_alloc() - Allocate netdev and related structure
3036 3037 3038 3039 3040 3041 3042 3043 3044
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
3045 3046 3047
struct nfp_net *nfp_net_alloc(struct pci_dev *pdev,
			      unsigned int max_tx_rings,
			      unsigned int max_rx_rings)
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3060 3061
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3062 3063 3064 3065 3066
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3067 3068 3069
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3070
				 netif_get_num_default_rss_queues());
3071

3072 3073 3074
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3075

3076 3077
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3078 3079 3080 3081

	spin_lock_init(&nn->reconfig_lock);
	spin_lock_init(&nn->link_status_lock);

3082 3083 3084
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);

3085 3086 3087 3088
	return nn;
}

/**
3089
 * nfp_net_free() - Undo what @nfp_net_alloc() did
3090 3091
 * @nn:      NFP Net device to reconfigure
 */
3092
void nfp_net_free(struct nfp_net *nn)
3093
{
3094
	free_netdev(nn->dp.netdev);
3095 3096
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3118 3119 3120 3121 3122 3123
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3136
		dev_warn(nn->dp.dev,
3137 3138 3139 3140 3141 3142
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3143

3144
	nfp_net_rss_init_itbl(nn);
3145 3146 3147 3148

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3149
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
3166 3167
 * nfp_net_init() - Initialise/finalise the nfp_net structure
 * @nn:		NFP Net device structure
3168 3169 3170
 *
 * Return: 0 on success or negative errno on error.
 */
3171
int nfp_net_init(struct nfp_net *nn)
3172
{
3173
	struct net_device *netdev = nn->dp.netdev;
3174 3175
	int err;

3176 3177
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3178 3179 3180 3181
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3182 3183 3184 3185 3186 3187
	/* Chained metadata is signalled by capabilities except in version 4 */
	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;

3188
	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3189

3190
	/* Determine RX packet/metadata boundary offset */
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3201
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3202
	}
3203

3204 3205 3206 3207 3208
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3209 3210
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3211 3212 3213 3214 3215 3216 3217

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
3218 3219 3220
	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;

3221
	netdev->hw_features = NETIF_F_HIGHDMA;
3222
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3223
		netdev->hw_features |= NETIF_F_RXCSUM;
3224
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3225 3226 3227
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3228
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3229 3230 3231
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3232
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3233
	}
E
Edwin Peer 已提交
3234 3235
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3236
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
E
Edwin Peer 已提交
3237 3238
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					 NFP_NET_CFG_CTRL_LSO;
3239
	}
3240
	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3241 3242
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3243 3244
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
					 NFP_NET_CFG_CTRL_RSS;
3245 3246 3247 3248 3249 3250
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3251
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3252 3253 3254 3255 3256 3257 3258 3259

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3260
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3261 3262
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
E
Edwin Peer 已提交
3263 3264 3265 3266 3267 3268
		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
		} else {
			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		}
3269 3270 3271 3272
	}

	netdev->features = netdev->hw_features;

3273
	if (nfp_app_has_tc(nn->app))
3274 3275
		netdev->hw_features |= NETIF_F_HW_TC;

3276 3277
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
E
Edwin Peer 已提交
3278
	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3279 3280 3281

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3282
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3283
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3284
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3285 3286 3287 3288

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3289
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3307 3308 3309 3310 3311

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3312
	netif_carrier_off(netdev);
3313 3314

	nfp_net_set_ethtool_ops(netdev);
3315
	nfp_net_vecs_init(nn);
3316 3317 3318 3319 3320

	return register_netdev(netdev);
}

/**
3321 3322
 * nfp_net_clean() - Undo what nfp_net_init() did.
 * @nn:		NFP Net device structure
3323
 */
3324
void nfp_net_clean(struct nfp_net *nn)
3325
{
3326
	unregister_netdev(nn->dp.netdev);
3327

3328 3329
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
3330
}