nfp_net_common.c 86.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88 89 90 91
static dma_addr_t
nfp_net_dma_map_rx(struct nfp_net *nn, void *frag, unsigned int bufsz,
		   int direction)
{
92
	return dma_map_single(nn->dev, frag + NFP_NET_RX_BUF_HEADROOM,
93 94 95 96 97 98 99
			      bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

static void
nfp_net_dma_unmap_rx(struct nfp_net *nn, dma_addr_t dma_addr,
		     unsigned int bufsz, int direction)
{
100
	dma_unmap_single(nn->dev, dma_addr,
101 102 103
			 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

214 215 216 217 218 219 220 221 222 223 224 225 226
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
227 228 229
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
230 231 232

	spin_lock_bh(&nn->reconfig_lock);

233
	nn->reconfig_sync_present = true;
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
252 253
	}

254 255 256 257 258 259 260 261 262 263
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

264
	spin_unlock_bh(&nn->reconfig_lock);
265

266 267 268 269 270 271 272 273 274 275 276
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
277
 * Clear the ICR for the IRQ entry.
278 279 280 281 282 283 284 285
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
286 287 288 289 290
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
291
 *
292
 * Return: Number of irqs obtained or 0 on error.
293
 */
294 295 296
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
297
{
298 299
	unsigned int i;
	int got_irqs;
300

301 302
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
303

304 305 306 307 308
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
309 310 311
		return 0;
	}

312 313 314 315 316
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
317 318 319
}

/**
320 321 322 323
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
324
 *
325 326
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
327
 */
328 329 330
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
331
{
332 333
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
	nn->num_r_vecs = nn->max_r_vecs;
334

335
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
336

337 338 339 340 341 342 343 344
	if (nn->num_rx_rings > nn->num_r_vecs ||
	    nn->num_tx_rings > nn->num_r_vecs)
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
			nn->num_rx_rings, nn->num_tx_rings, nn->num_r_vecs);

	nn->num_rx_rings = min(nn->num_r_vecs, nn->num_rx_rings);
	nn->num_tx_rings = min(nn->num_r_vecs, nn->num_tx_rings);
	nn->num_stack_tx_rings = nn->num_tx_rings;
345 346 347 348
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
349
 * @pdev:        PCI device structure
350 351 352
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
353
void nfp_net_irqs_disable(struct pci_dev *pdev)
354
{
355
	pci_disable_msix(pdev);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
		netif_carrier_on(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Up\n");
	} else {
		netif_carrier_off(nn->netdev);
		netdev_info(nn->netdev, "NIC Link is Down\n");
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
419 420 421
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
422 423 424

	nfp_net_read_link_status(nn);

425
	nfp_net_irq_unmask(nn, entry->entry);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
449 450
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
451
 */
452 453 454
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
455 456 457
{
	struct nfp_net *nn = r_vec->nfp_net;

458 459 460
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

461 462 463 464 465 466 467
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
468 469
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
470
 */
471 472 473
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
474 475 476
{
	struct nfp_net *nn = r_vec->nfp_net;

477 478 479
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

480 481 482 483 484 485 486 487
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
488
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
489 490
 * @netdev:   netdev structure
 */
491
static void nfp_net_vecs_init(struct net_device *netdev)
492 493 494 495 496 497 498 499
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

500
	for (r = 0; r < nn->max_r_vecs; r++) {
501 502 503 504
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

505 506 507
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
508 509
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

	snprintf(name, name_sz, format, netdev_name(nn->netdev));
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
542
	nn_writeb(nn, ctrl_offset, entry->entry);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
584
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
		nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
				  iph->version);
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
		nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
				  l4_hdr);
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

724 725 726 727 728 729 730
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

731 732 733 734 735 736 737 738 739 740 741 742 743
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
744 745
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	struct netdev_queue *nd_q;
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

	qidx = skb_get_queue_mapping(skb);
	tx_ring = &nn->tx_rings[qidx];
	r_vec = tx_ring->r_vec;
	nd_q = netdev_get_tx_queue(nn->netdev, qidx);

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
		nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
				  qidx, tx_ring->wr_p, tx_ring->rd_p);
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
771
	dma_addr = dma_map_single(nn->dev, skb->data, skb_headlen(skb),
772
				  DMA_TO_DEVICE);
773
	if (dma_mapping_error(nn->dev, dma_addr))
774 775
		goto err_free;

776
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);

	nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);

	if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

815
			dma_addr = skb_frag_dma_map(nn->dev, frag, 0,
816
						    fsize, DMA_TO_DEVICE);
817
			if (dma_mapping_error(nn->dev, dma_addr))
818 819
				goto err_unmap;

820
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
845 846
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
847 848 849 850 851 852 853 854 855

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
856
		dma_unmap_page(nn->dev, tx_ring->txbufs[wr_idx].dma_addr,
857 858 859 860 861 862 863 864
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
865
	dma_unmap_single(nn->dev, tx_ring->txbufs[wr_idx].dma_addr,
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
	nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
910
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
911 912 913 914 915 916 917 918 919 920 921
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
922
			dma_unmap_single(nn->dev, tx_ring->txbufs[idx].dma_addr,
923 924 925 926 927 928 929
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
930
			dma_unmap_page(nn->dev, tx_ring->txbufs[idx].dma_addr,
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

		nfp_net_dma_unmap_rx(nn, tx_ring->txbufs[idx].dma_addr,
				     nn->fl_bufsz, DMA_BIDIRECTIONAL);
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1015
/**
1016 1017 1018
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
 * @nn:		NFP Net device
 * @tx_ring:	TX ring structure
1019 1020 1021
 *
 * Assumes that the device is stopped
 */
1022 1023
static void
nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
1024
{
1025
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1026
	const struct skb_frag_struct *frag;
1027
	struct netdev_queue *nd_q;
1028 1029

	while (tx_ring->rd_p != tx_ring->wr_p) {
1030 1031
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1032

1033
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1034
		tx_buf = &tx_ring->txbufs[idx];
1035

1036 1037 1038 1039
		if (tx_ring == r_vec->xdp_ring) {
			nfp_net_dma_unmap_rx(nn, tx_buf->dma_addr,
					     nn->fl_bufsz, DMA_BIDIRECTIONAL);
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1040
		} else {
1041 1042 1043 1044 1045
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1046
				dma_unmap_single(nn->dev, tx_buf->dma_addr,
1047 1048 1049 1050 1051
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1052
				dma_unmap_page(nn->dev, tx_buf->dma_addr,
1053 1054 1055
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1056

1057 1058 1059 1060
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1061

1062 1063 1064
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1065 1066 1067 1068 1069

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1070 1071 1072 1073 1074 1075
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1076 1077 1078
	if (tx_ring == r_vec->xdp_ring)
		return;

1079 1080 1081 1082 1083 1084 1085 1086 1087
	nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1088
	for (i = 0; i < nn->netdev->real_num_tx_queues; i++) {
1089 1090 1091 1092 1093 1094 1095 1096 1097
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1098 1099 1100 1101 1102
static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net *nn, unsigned int mtu)
{
	unsigned int fl_bufsz;

1103
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1104
	if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1105
		fl_bufsz += NFP_NET_MAX_PREPEND;
1106
	else
1107
		fl_bufsz += nn->rx_offset;
1108 1109
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;

1110 1111 1112
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1113 1114
	return fl_bufsz;
}
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1125
/**
1126
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1127 1128
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
1129
 * @fl_bufsz:	size of freelist buffers
1130
 * @xdp:	Whether XDP is enabled
1131
 *
1132
 * This function will allcate a new page frag, map it for DMA.
1133
 *
1134
 * Return: allocated page frag or NULL on failure.
1135
 */
1136
static void *
1137
nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1138
		     unsigned int fl_bufsz, bool xdp)
1139 1140
{
	struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1141
	int direction;
1142
	void *frag;
1143

1144 1145 1146 1147
	if (!xdp)
		frag = netdev_alloc_frag(fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1148 1149
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1150 1151 1152
		return NULL;
	}

1153 1154 1155
	direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;

	*dma_addr = nfp_net_dma_map_rx(nn, frag, fl_bufsz, direction);
1156
	if (dma_mapping_error(nn->dev, *dma_addr)) {
1157
		nfp_net_free_frag(frag, xdp);
1158 1159 1160 1161
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

1162
	return frag;
1163 1164
}

1165 1166
static void *
nfp_net_napi_alloc_one(struct nfp_net *nn, int direction, dma_addr_t *dma_addr)
1167 1168 1169
{
	void *frag;

1170 1171 1172 1173
	if (!nn->xdp_prog)
		frag = napi_alloc_frag(nn->fl_bufsz);
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1174 1175 1176 1177 1178
	if (!frag) {
		nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
		return NULL;
	}

1179
	*dma_addr = nfp_net_dma_map_rx(nn, frag, nn->fl_bufsz, direction);
1180
	if (dma_mapping_error(nn->dev, *dma_addr)) {
1181
		nfp_net_free_frag(frag, nn->xdp_prog);
1182 1183 1184 1185 1186 1187 1188
		nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
		return NULL;
	}

	return frag;
}

1189 1190 1191
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1192
 * @frag:	page fragment buffer
1193 1194 1195
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1196
				void *frag, dma_addr_t dma_addr)
1197 1198 1199
{
	unsigned int wr_idx;

1200
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1201 1202

	/* Stash SKB and DMA address away */
1203
	rx_ring->rxbufs[wr_idx].frag = frag;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1224 1225
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1226
 *
1227 1228
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1229
 */
1230
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1231
{
1232
	unsigned int wr_idx, last_idx;
1233

1234
	/* Move the empty entry to the end of the list */
1235
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1236 1237
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1238
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1239
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1240
	rx_ring->rxbufs[last_idx].frag = NULL;
1241

1242 1243 1244 1245 1246
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1247

1248 1249 1250 1251
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1252
 * @xdp:	Whether XDP is enabled
1253 1254 1255 1256 1257 1258
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1259 1260
nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			  bool xdp)
1261
{
1262
	int direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1263
	unsigned int i;
1264

1265 1266 1267 1268 1269
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1270
		if (!rx_ring->rxbufs[i].frag)
1271 1272
			continue;

1273
		nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[i].dma_addr,
1274 1275
				     rx_ring->bufsz, direction);
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, xdp);
1276
		rx_ring->rxbufs[i].dma_addr = 0;
1277
		rx_ring->rxbufs[i].frag = NULL;
1278 1279 1280 1281
	}
}

/**
1282 1283 1284
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
 * @nn:		NFP Net device
 * @rx_ring:	RX ring to remove buffers from
1285
 * @xdp:	Whether XDP is enabled
1286
 */
1287
static int
1288 1289
nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
			   bool xdp)
1290
{
1291 1292 1293 1294
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1295

1296
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1297
		rxbufs[i].frag =
1298
			nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1299
					     rx_ring->bufsz, xdp);
1300
		if (!rxbufs[i].frag) {
1301
			nfp_net_rx_ring_bufs_free(nn, rx_ring, xdp);
1302 1303 1304 1305 1306 1307 1308
			return -ENOMEM;
		}
	}

	return 0;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1318
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1319 1320 1321
				    rx_ring->rxbufs[i].dma_addr);
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
 * @nn:  NFP Net device
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	if (!(nn->netdev->features & NETIF_F_RXCSUM))
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1380
			     unsigned int type, __be32 *hash)
1381
{
1382
	if (!(netdev->features & NETIF_F_RXHASH))
1383 1384
		return;

1385
	switch (type) {
1386 1387 1388
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1389
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1390 1391
		break;
	default:
1392
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1393 1394 1395 1396
		break;
	}
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
		      struct nfp_net_rx_desc *rxd)
{
	struct nfp_net_rx_hash *rx_hash;

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
		   int meta_len)
{
	u8 *data = skb->data - meta_len;
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1445 1446 1447 1448 1449 1450 1451 1452
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1453 1454 1455 1456 1457
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1458
	if (rxbuf)
1459
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1460 1461 1462 1463
	if (skb)
		dev_kfree_skb_any(skb);
}

1464
static bool
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
nfp_net_tx_xdp_buf(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
		   struct nfp_net_tx_ring *tx_ring,
		   struct nfp_net_rx_buf *rxbuf, unsigned int pkt_off,
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1478
		return false;
1479 1480 1481 1482 1483
	}

	new_frag = nfp_net_napi_alloc_one(nn, DMA_BIDIRECTIONAL, &new_dma_addr);
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1484
		return false;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1498
	dma_sync_single_for_device(nn->dev, rxbuf->dma_addr + pkt_off,
1499
				   pkt_len, DMA_BIDIRECTIONAL);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + pkt_off);
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1514
	return true;
1515 1516 1517 1518 1519 1520 1521 1522 1523
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

1524
	return bpf_prog_run_xdp(prog, &xdp);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
1542 1543 1544
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1545
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1546
	int pkts_polled = 0;
1547
	int rx_dma_map_dir;
1548 1549
	int idx;

1550 1551 1552 1553 1554 1555
	rcu_read_lock();
	xdp_prog = READ_ONCE(nn->xdp_prog);
	rx_dma_map_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
	true_bufsz = xdp_prog ? PAGE_SIZE : nn->fl_bufsz;
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1556
	while (pkts_polled < budget) {
1557 1558 1559 1560 1561 1562
		unsigned int meta_len, data_len, data_off, pkt_len, pkt_off;
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;

1563
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1564 1565

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1566
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1567
			break;
J
Jakub Kicinski 已提交
1568

1569 1570 1571 1572 1573 1574 1575 1576
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1577
		rxbuf =	&rx_ring->rxbufs[idx];
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1590 1591
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1592
		pkt_len = data_len - meta_len;
1593

1594
		if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1595
			pkt_off = meta_len;
1596
		else
1597 1598
			pkt_off = nn->rx_offset;
		data_off = NFP_NET_RX_BUF_HEADROOM + pkt_off;
1599 1600 1601 1602

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1603
		r_vec->rx_bytes += pkt_len;
1604 1605
		u64_stats_update_end(&r_vec->rx_sync);

1606 1607
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
				  nn->bpf_offload_xdp)) {
1608 1609
			int act;

1610
			dma_sync_single_for_cpu(nn->dev,
1611
						rxbuf->dma_addr + pkt_off,
1612
						pkt_len, DMA_BIDIRECTIONAL);
1613 1614 1615 1616 1617 1618
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1619 1620 1621 1622
				if (unlikely(!nfp_net_tx_xdp_buf(nn, rx_ring,
								 tx_ring, rxbuf,
								 pkt_off, pkt_len)))
					trace_xdp_exception(nn->netdev, xdp_prog, act);
1623 1624 1625 1626
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1627
				trace_xdp_exception(nn->netdev, xdp_prog, act);
1628 1629 1630 1631 1632 1633 1634 1635
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1636 1637 1638 1639
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1640 1641
		new_frag = nfp_net_napi_alloc_one(nn, rx_dma_map_dir,
						  &new_dma_addr);
1642 1643 1644 1645 1646
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1647 1648
		nfp_net_dma_unmap_rx(nn, rxbuf->dma_addr, nn->fl_bufsz,
				     rx_dma_map_dir);
1649 1650 1651 1652 1653 1654

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1655 1656 1657 1658 1659 1660 1661 1662
		if (nn->fw_ver.major <= 3) {
			nfp_net_set_hash_desc(nn->netdev, skb, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(nn->netdev, skb, meta_len);
			if (unlikely(end != skb->data)) {
				nn_warn_ratelimit(nn, "invalid RX packet metadata\n");
1663
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1664 1665 1666 1667
				continue;
			}
		}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		skb_record_rx_queue(skb, rx_ring->idx);
		skb->protocol = eth_type_trans(skb, nn->netdev);

		nfp_net_rx_csum(nn, r_vec, rxd, skb);

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1680 1681 1682 1683
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1698
	unsigned int pkts_polled = 0;
1699

1700 1701
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1702
	if (r_vec->rx_ring) {
1703
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1704 1705 1706
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1707 1708 1709

	if (pkts_polled < budget) {
		napi_complete_done(napi, pkts_polled);
1710
		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	}

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1731
		dma_free_coherent(nn->dev, tx_ring->size,
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
 * @tx_ring:   TX Ring structure to allocate
1744
 * @cnt:       Ring buffer count
1745
 * @is_xdp:    True if ring will be used for XDP
1746 1747 1748
 *
 * Return: 0 on success, negative errno otherwise.
 */
1749 1750
static int
nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt, bool is_xdp)
1751 1752 1753 1754 1755
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	int sz;

1756
	tx_ring->cnt = cnt;
1757 1758

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1759
	tx_ring->txds = dma_zalloc_coherent(nn->dev, tx_ring->size,
1760 1761 1762 1763 1764 1765 1766 1767 1768
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1769 1770 1771
	if (!is_xdp)
		netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask,
				    tx_ring->idx);
1772 1773 1774 1775 1776 1777 1778 1779

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1780
static struct nfp_net_tx_ring *
1781 1782
nfp_net_tx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    unsigned int num_stack_tx_rings)
1783 1784 1785 1786
{
	struct nfp_net_tx_ring *rings;
	unsigned int r;

1787
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1788 1789 1790
	if (!rings)
		return NULL;

1791
	for (r = 0; r < s->n_rings; r++) {
1792 1793 1794 1795
		int bias = 0;

		if (r >= num_stack_tx_rings)
			bias = num_stack_tx_rings;
1796

1797 1798 1799
		nfp_net_tx_ring_init(&rings[r], &nn->r_vecs[r - bias], r);

		if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt, bias))
1800 1801 1802
			goto err_free_prev;
	}

1803
	return s->rings = rings;
1804 1805 1806 1807 1808 1809 1810 1811

err_free_prev:
	while (r--)
		nfp_net_tx_ring_free(&rings[r]);
	kfree(rings);
	return NULL;
}

1812
static void
1813
nfp_net_tx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1814
{
1815
	struct nfp_net_ring_set new = *s;
1816

1817 1818
	s->dcnt = nn->txd_cnt;
	s->rings = nn->tx_rings;
1819
	s->n_rings = nn->num_tx_rings;
1820 1821 1822

	nn->txd_cnt = new.dcnt;
	nn->tx_rings = new.rings;
1823
	nn->num_tx_rings = new.n_rings;
1824 1825 1826
}

static void
1827
nfp_net_tx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1828
{
1829
	struct nfp_net_tx_ring *rings = s->rings;
1830 1831
	unsigned int r;

1832
	for (r = 0; r < s->n_rings; r++)
1833 1834 1835 1836 1837
		nfp_net_tx_ring_free(&rings[r]);

	kfree(rings);
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1850
		dma_free_coherent(nn->dev, rx_ring->size,
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
 * @rx_ring:  RX ring to allocate
1863
 * @fl_bufsz: Size of buffers to allocate
1864
 * @cnt:      Ring buffer count
1865 1866 1867
 *
 * Return: 0 on success, negative errno otherwise.
 */
1868
static int
1869 1870
nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
		      u32 cnt)
1871 1872 1873 1874 1875
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
	struct nfp_net *nn = r_vec->nfp_net;
	int sz;

1876
	rx_ring->cnt = cnt;
1877
	rx_ring->bufsz = fl_bufsz;
1878 1879

	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1880
	rx_ring->rxds = dma_zalloc_coherent(nn->dev, rx_ring->size,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1897
static struct nfp_net_rx_ring *
1898 1899
nfp_net_rx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
			    bool xdp)
1900
{
1901
	unsigned int fl_bufsz =	nfp_net_calc_fl_bufsz(nn, s->mtu);
1902 1903 1904
	struct nfp_net_rx_ring *rings;
	unsigned int r;

1905
	rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1906 1907 1908
	if (!rings)
		return NULL;

1909 1910
	for (r = 0; r < s->n_rings; r++) {
		nfp_net_rx_ring_init(&rings[r], &nn->r_vecs[r], r);
1911

1912
		if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, s->dcnt))
1913 1914
			goto err_free_prev;

1915
		if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r], xdp))
1916 1917 1918
			goto err_free_ring;
	}

1919
	return s->rings = rings;
1920 1921 1922

err_free_prev:
	while (r--) {
1923
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1924 1925 1926 1927 1928 1929 1930
err_free_ring:
		nfp_net_rx_ring_free(&rings[r]);
	}
	kfree(rings);
	return NULL;
}

1931
static void
1932
nfp_net_rx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1933
{
1934
	struct nfp_net_ring_set new = *s;
1935

1936 1937 1938
	s->mtu = nn->netdev->mtu;
	s->dcnt = nn->rxd_cnt;
	s->rings = nn->rx_rings;
1939
	s->n_rings = nn->num_rx_rings;
1940 1941 1942 1943 1944

	nn->netdev->mtu = new.mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, new.mtu);
	nn->rxd_cnt = new.dcnt;
	nn->rx_rings = new.rings;
1945
	nn->num_rx_rings = new.n_rings;
1946 1947 1948
}

static void
1949 1950
nfp_net_rx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s,
			 bool xdp)
1951
{
1952
	struct nfp_net_rx_ring *rings = s->rings;
1953 1954
	unsigned int r;

1955
	for (r = 0; r < s->n_rings; r++) {
1956
		nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1957 1958 1959 1960 1961 1962
		nfp_net_rx_ring_free(&rings[r]);
	}

	kfree(rings);
}

1963 1964 1965 1966 1967
static void
nfp_net_vector_assign_rings(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
			    int idx)
{
	r_vec->rx_ring = idx < nn->num_rx_rings ? &nn->rx_rings[idx] : NULL;
1968 1969 1970 1971 1972
	r_vec->tx_ring =
		idx < nn->num_stack_tx_rings ? &nn->tx_rings[idx] : NULL;

	r_vec->xdp_ring = idx < nn->num_tx_rings - nn->num_stack_tx_rings ?
		&nn->tx_rings[nn->num_stack_tx_rings + idx] : NULL;
1973 1974
}

1975 1976 1977
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1978
{
1979
	int err;
1980

1981 1982 1983 1984
	/* Setup NAPI */
	netif_napi_add(nn->netdev, &r_vec->napi,
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1985 1986
	snprintf(r_vec->name, sizeof(r_vec->name),
		 "%s-rxtx-%d", nn->netdev->name, idx);
1987 1988
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1989
	if (err) {
1990
		netif_napi_del(&r_vec->napi);
1991
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1992 1993
		return err;
	}
1994
	disable_irq(r_vec->irq_vector);
1995

1996
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1997

1998 1999
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2000

2001
	return 0;
2002 2003
}

2004 2005
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2006
{
2007
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2008
	netif_napi_del(&r_vec->napi);
2009
	free_irq(r_vec->irq_vector, r_vec);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2033
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2057
	for (i = 0; i < nn->num_rx_rings; i++)
2058 2059 2060 2061 2062
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2063
	for (i = 0; i < nn->num_tx_rings; i++)
2064 2065 2066 2067
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2068
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2069 2070
 * @nn:      NFP Net device to reconfigure
 *
2071 2072 2073
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2074
 */
2075
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2076 2077 2078
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
		  get_unaligned_be32(nn->netdev->dev_addr));
J
Jakub Kicinski 已提交
2079 2080
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
		  get_unaligned_be16(nn->netdev->dev_addr + 4));
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2094 2095 2096 2097 2098 2099 2100
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2101
	unsigned int r;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	int err;

	new_ctrl = nn->ctrl;
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2118
	if (err)
2119 2120
		nn_err(nn, "Could not disable device: %d\n", err);

2121
	for (r = 0; r < nn->num_rx_rings; r++)
2122
		nfp_net_rx_ring_reset(&nn->rx_rings[r]);
2123
	for (r = 0; r < nn->num_tx_rings; r++)
2124
		nfp_net_tx_ring_reset(nn, &nn->tx_rings[r]);
2125
	for (r = 0; r < nn->num_r_vecs; r++)
2126 2127
		nfp_net_vec_clear_ring_data(nn, r);

2128 2129 2130
	nn->ctrl = new_ctrl;
}

2131
static void
2132 2133
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2134 2135
{
	/* Write the DMA address, size and MSI-X info to the device */
2136 2137
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2138
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2139
}
2140

2141 2142 2143 2144 2145 2146
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2147
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2148 2149
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

	new_ctrl = nn->ctrl;

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2172 2173 2174 2175
	for (r = 0; r < nn->num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->tx_rings[r], r);
	for (r = 0; r < nn->num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->rx_rings[r], r);
2176 2177 2178 2179 2180 2181 2182

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);

	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);

2183
	nfp_net_write_mac_addr(nn);
2184 2185

	nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
2186 2187
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
		  nn->fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

	nn->ctrl = new_ctrl;

2202
	for (r = 0; r < nn->num_rx_rings; r++)
2203
		nfp_net_rx_ring_fill_freelist(&nn->rx_rings[r]);
2204

2205 2206 2207 2208 2209 2210
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
	if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2211
		udp_tunnel_get_rx_info(nn->netdev);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2240 2241
	for (r = 0; r < nn->num_r_vecs; r++) {
		napi_enable(&nn->r_vecs[r].napi);
2242
		enable_irq(nn->r_vecs[r].irq_vector);
2243
	}
2244 2245 2246

	netif_tx_wake_all_queues(nn->netdev);

2247
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2248 2249 2250
	nfp_net_read_link_status(nn);
}

2251 2252 2253
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
2254
	struct nfp_net_ring_set rx = {
2255
		.n_rings = nn->num_rx_rings,
2256 2257 2258 2259
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
2260
		.n_rings = nn->num_tx_rings,
2261 2262
		.dcnt = nn->txd_cnt,
	};
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	int err, r;

	if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2280 2281 2282 2283 2284
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2285
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2286

2287 2288 2289
	for (r = 0; r < nn->num_r_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2290 2291
			goto err_cleanup_vec_p;
	}
2292

2293
	nn->rx_rings = nfp_net_rx_ring_set_prepare(nn, &rx, nn->xdp_prog);
2294 2295 2296
	if (!nn->rx_rings) {
		err = -ENOMEM;
		goto err_cleanup_vec;
2297
	}
2298

2299 2300
	nn->tx_rings = nfp_net_tx_ring_set_prepare(nn, &tx,
						   nn->num_stack_tx_rings);
2301 2302 2303
	if (!nn->tx_rings) {
		err = -ENOMEM;
		goto err_free_rx_rings;
2304
	}
2305

2306 2307 2308
	for (r = 0; r < nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2309
	err = netif_set_real_num_tx_queues(netdev, nn->num_stack_tx_rings);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (err)
		goto err_free_rings;

	err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2324
	err = nfp_net_set_config_and_enable(nn);
2325
	if (err)
2326
		goto err_free_rings;
2327 2328 2329 2330 2331 2332 2333

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2334
	nfp_net_open_stack(nn);
2335 2336 2337 2338

	return 0;

err_free_rings:
2339 2340
	nfp_net_tx_ring_set_free(nn, &tx);
err_free_rx_rings:
2341
	nfp_net_rx_ring_set_free(nn, &rx, nn->xdp_prog);
2342
err_cleanup_vec:
2343
	r = nn->num_r_vecs;
2344
err_cleanup_vec_p:
2345
	while (r--)
2346
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2347
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2348 2349 2350 2351 2352 2353
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2354 2355
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2356
 */
2357
static void nfp_net_close_stack(struct nfp_net *nn)
2358
{
2359
	unsigned int r;
2360

2361
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2362
	netif_carrier_off(nn->netdev);
2363 2364
	nn->link_up = false;

2365
	for (r = 0; r < nn->num_r_vecs; r++) {
2366
		disable_irq(nn->r_vecs[r].irq_vector);
2367
		napi_disable(&nn->r_vecs[r].napi);
2368
	}
2369

2370 2371
	netif_tx_disable(nn->netdev);
}
2372

2373 2374 2375 2376 2377 2378 2379
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2380

2381
	for (r = 0; r < nn->num_rx_rings; r++) {
2382
		nfp_net_rx_ring_bufs_free(nn, &nn->rx_rings[r], nn->xdp_prog);
2383
		nfp_net_rx_ring_free(&nn->rx_rings[r]);
2384 2385
	}
	for (r = 0; r < nn->num_tx_rings; r++)
2386
		nfp_net_tx_ring_free(&nn->tx_rings[r]);
2387
	for (r = 0; r < nn->num_r_vecs; r++)
2388
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2389

2390 2391 2392
	kfree(nn->rx_rings);
	kfree(nn->tx_rings);

2393
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2394
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

	new_ctrl = nn->ctrl;

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

	if (new_ctrl == nn->ctrl)
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2446
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2447 2448 2449 2450

	nn->ctrl = new_ctrl;
}

2451 2452 2453 2454 2455 2456 2457 2458 2459
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
			ethtool_rxfh_indir_default(i, nn->num_rx_rings);
}

2460
static int
2461
nfp_net_ring_swap_enable(struct nfp_net *nn, unsigned int *num_vecs,
2462 2463
			 unsigned int *stack_tx_rings,
			 struct bpf_prog **xdp_prog,
2464 2465
			 struct nfp_net_ring_set *rx,
			 struct nfp_net_ring_set *tx)
2466
{
2467
	unsigned int r;
2468
	int err;
2469

2470
	if (rx)
2471
		nfp_net_rx_ring_set_swap(nn, rx);
2472
	if (tx)
2473
		nfp_net_tx_ring_set_swap(nn, tx);
2474

2475
	swap(*num_vecs, nn->num_r_vecs);
2476 2477
	swap(*stack_tx_rings, nn->num_stack_tx_rings);
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2478

2479 2480 2481
	for (r = 0; r <	nn->max_r_vecs; r++)
		nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);

2482 2483
	if (!netif_is_rxfh_configured(nn->netdev))
		nfp_net_rss_init_itbl(nn);
2484

2485 2486 2487 2488
	err = netif_set_real_num_rx_queues(nn->netdev,
					   nn->num_rx_rings);
	if (err)
		return err;
2489

2490
	if (nn->netdev->real_num_tx_queues != nn->num_stack_tx_rings) {
2491
		err = netif_set_real_num_tx_queues(nn->netdev,
2492
						   nn->num_stack_tx_rings);
2493 2494 2495 2496
		if (err)
			return err;
	}

2497 2498
	return __nfp_net_set_config_and_enable(nn);
}
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
static int
nfp_net_check_config(struct nfp_net *nn, struct bpf_prog *xdp_prog,
		     struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
{
	/* XDP-enabled tests */
	if (!xdp_prog)
		return 0;
	if (rx && nfp_net_calc_fl_bufsz(nn, rx->mtu) > PAGE_SIZE) {
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
	if (tx && tx->n_rings > nn->max_tx_rings) {
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2519
static void
2520
nfp_net_ring_reconfig_down(struct nfp_net *nn, struct bpf_prog **xdp_prog,
2521
			   struct nfp_net_ring_set *rx,
2522
			   struct nfp_net_ring_set *tx,
2523
			   unsigned int stack_tx_rings, unsigned int num_vecs)
2524 2525 2526 2527 2528
{
	nn->netdev->mtu = rx ? rx->mtu : nn->netdev->mtu;
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, nn->netdev->mtu);
	nn->rxd_cnt = rx ? rx->dcnt : nn->rxd_cnt;
	nn->txd_cnt = tx ? tx->dcnt : nn->txd_cnt;
2529 2530
	nn->num_rx_rings = rx ? rx->n_rings : nn->num_rx_rings;
	nn->num_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
2531
	nn->num_stack_tx_rings = stack_tx_rings;
2532
	nn->num_r_vecs = num_vecs;
2533
	*xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2534 2535 2536

	if (!netif_is_rxfh_configured(nn->netdev))
		nfp_net_rss_init_itbl(nn);
2537 2538
}

2539
int
2540 2541
nfp_net_ring_reconfig(struct nfp_net *nn, struct bpf_prog **xdp_prog,
		      struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2542
{
2543
	unsigned int stack_tx_rings, num_vecs, r;
2544 2545
	int err;

2546 2547 2548 2549 2550 2551 2552 2553 2554
	stack_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
	if (*xdp_prog)
		stack_tx_rings -= rx ? rx->n_rings : nn->num_rx_rings;

	num_vecs = max(rx ? rx->n_rings : nn->num_rx_rings, stack_tx_rings);

	err = nfp_net_check_config(nn, *xdp_prog, rx, tx);
	if (err)
		return err;
2555

2556
	if (!netif_running(nn->netdev)) {
2557 2558
		nfp_net_ring_reconfig_down(nn, xdp_prog, rx, tx,
					   stack_tx_rings, num_vecs);
2559 2560 2561 2562
		return 0;
	}

	/* Prepare new rings */
2563 2564 2565 2566 2567 2568 2569
	for (r = nn->num_r_vecs; r < num_vecs; r++) {
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
			num_vecs = r;
			goto err_cleanup_vecs;
		}
	}
2570
	if (rx) {
2571
		if (!nfp_net_rx_ring_set_prepare(nn, rx, *xdp_prog)) {
2572 2573 2574
			err = -ENOMEM;
			goto err_cleanup_vecs;
		}
2575
	}
2576
	if (tx) {
2577
		if (!nfp_net_tx_ring_set_prepare(nn, tx, stack_tx_rings)) {
2578 2579
			err = -ENOMEM;
			goto err_free_rx;
2580 2581 2582 2583 2584 2585 2586
		}
	}

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2587 2588
	err = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
				       xdp_prog, rx, tx);
2589
	if (err) {
2590
		int err2;
2591

2592
		nfp_net_clear_config_and_disable(nn);
2593

2594
		/* Try with old configuration and old rings */
2595 2596
		err2 = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
						xdp_prog, rx, tx);
2597
		if (err2)
2598
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2599
			       err, err2);
2600
	}
2601 2602
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2603

2604
	if (rx)
2605
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2606
	if (tx)
2607
		nfp_net_tx_ring_set_free(nn, tx);
2608 2609 2610 2611

	nfp_net_open_stack(nn);

	return err;
2612 2613 2614

err_free_rx:
	if (rx)
2615
		nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2616 2617 2618
err_cleanup_vecs:
	for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2619 2620 2621 2622 2623 2624 2625
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_ring_set rx = {
2626
		.n_rings = nn->num_rx_rings,
2627 2628 2629 2630
		.mtu = new_mtu,
		.dcnt = nn->rxd_cnt,
	};

2631
	return nfp_net_ring_reconfig(nn, &nn->xdp_prog, &rx, NULL);
2632 2633
}

2634 2635
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

	for (r = 0; r < nn->num_r_vecs; r++) {
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2686 2687 2688 2689 2690 2691
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
		if (!nn->bpf_offload_xdp)
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2692 2693 2694 2695

	return -EINVAL;
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

	new_ctrl = nn->ctrl;

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2750 2751 2752 2753 2754
	if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

	if (new_ctrl == nn->ctrl)
		return 0;

	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	nn->ctrl = new_ctrl;

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2804
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2805 2806 2807 2808 2809 2810 2811 2812
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2813
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2814 2815 2816 2817

	return features;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

	if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2859
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2886
				   struct udp_tunnel_info *ti)
2887 2888 2889 2890
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2891 2892 2893 2894
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2895 2896 2897 2898
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2899
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2900 2901 2902
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2903
				   struct udp_tunnel_info *ti)
2904 2905 2906 2907
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2908 2909 2910 2911
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2912
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2913 2914 2915 2916 2917 2918
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

	if (nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->bpf_offload_xdp)
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
	nn->bpf_offload_xdp = prog && !ret;
	return ret;
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct nfp_net_ring_set rx = {
		.n_rings = nn->num_rx_rings,
		.mtu = nn->netdev->mtu,
		.dcnt = nn->rxd_cnt,
	};
	struct nfp_net_ring_set tx = {
		.n_rings = nn->num_tx_rings,
		.dcnt = nn->txd_cnt,
	};
	int err;

2960 2961 2962 2963
	if (prog && prog->xdp_adjust_head) {
		nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
		return -EOPNOTSUPP;
	}
2964 2965 2966 2967 2968
	if (!prog && !nn->xdp_prog)
		return 0;
	if (prog && nn->xdp_prog) {
		prog = xchg(&nn->xdp_prog, prog);
		bpf_prog_put(prog);
2969
		nfp_net_xdp_offload(nn, nn->xdp_prog);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		return 0;
	}

	tx.n_rings += prog ? nn->num_rx_rings : -nn->num_rx_rings;

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
	err = nfp_net_ring_reconfig(nn, &prog, &rx, &tx);
	if (err)
		return err;

	/* @prog got swapped and is now the old one */
	if (prog)
		bpf_prog_put(prog);

2984 2985
	nfp_net_xdp_offload(nn, nn->xdp_prog);

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
		xdp->prog_attached = !!nn->xdp_prog;
		return 0;
	default:
		return -EINVAL;
	}
}

3004 3005 3006 3007 3008
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3009
	.ndo_setup_tc		= nfp_net_setup_tc,
3010 3011 3012 3013 3014 3015
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
3016
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3017 3018
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3019
	.ndo_xdp		= nfp_net_xdp,
3020 3021 3022 3023 3024 3025 3026 3027
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3028
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3029 3030 3031 3032 3033 3034 3035
		nn->is_vf ? "VF " : "",
		nn->num_tx_rings, nn->max_tx_rings,
		nn->num_rx_rings, nn->max_rx_rings);
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3036
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3053 3054
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3069 3070
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

	nn->netdev = netdev;
3084
	nn->dev = &pdev->dev;
3085 3086 3087 3088 3089
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3090 3091 3092
	nn->num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus());
	nn->num_rx_rings = min_t(unsigned int, max_rx_rings,
				 netif_get_num_default_rss_queues());
3093

J
Jakub Kicinski 已提交
3094 3095 3096
	nn->num_r_vecs = max(nn->num_tx_rings, nn->num_rx_rings);
	nn->num_r_vecs = min_t(unsigned int, nn->num_r_vecs, num_online_cpus());

3097 3098 3099 3100
	nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;

	spin_lock_init(&nn->reconfig_lock);
3101
	spin_lock_init(&nn->rx_filter_lock);
3102 3103
	spin_lock_init(&nn->link_status_lock);

3104 3105
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3106 3107
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3108

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
	free_netdev(nn->netdev);
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3142 3143 3144 3145 3146 3147
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3160
		dev_warn(nn->dev,
3161 3162 3163 3164 3165 3166
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3167

3168
	nfp_net_rss_init_itbl(nn);
3169 3170 3171 3172

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3173
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3204
	nfp_net_write_mac_addr(nn);
3205

3206 3207 3208 3209 3210 3211
	/* Determine RX packet/metadata boundary offset */
	if (nn->fw_ver.major >= 2)
		nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
	else
		nn->rx_offset = NFP_NET_RX_OFFSET;

3212 3213 3214 3215 3216
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3217
	nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, netdev->mtu);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
		nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
		nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
		nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
		nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
		nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
	}

	netdev->features = netdev->hw_features;

3270 3271 3272
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
		nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
		nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3303 3304 3305 3306 3307

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3308
	netif_carrier_off(netdev);
3309 3310

	nfp_net_set_ethtool_ops(netdev);
3311
	nfp_net_vecs_init(netdev);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3322 3323 3324 3325
	struct nfp_net *nn = netdev_priv(netdev);

	if (nn->xdp_prog)
		bpf_prog_put(nn->xdp_prog);
3326 3327
	if (nn->bpf_offload_xdp)
		nfp_net_xdp_offload(nn, NULL);
3328
	unregister_netdev(nn->netdev);
3329
}