nfp_net_common.c 86.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90 91 92 93 94 95 96 97 98 99 100
	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
{
	dma_sync_single_for_device(dp->dev, dma_addr,
				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				   dp->rx_dma_dir);
101 102
}

103
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
104
{
105 106 107 108 109 110 111 112 113 114
	dma_unmap_single_attrs(dp->dev, dma_addr,
			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
				    unsigned int len)
{
	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
				len, dp->rx_dma_dir);
115 116
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

227 228 229 230 231 232 233 234 235 236 237 238 239
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
240 241 242
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
243 244 245

	spin_lock_bh(&nn->reconfig_lock);

246
	nn->reconfig_sync_present = true;
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
265 266
	}

267 268 269 270 271 272 273 274 275 276
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

277
	spin_unlock_bh(&nn->reconfig_lock);
278

279 280 281 282 283 284 285 286 287 288 289
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
290
 * Clear the ICR for the IRQ entry.
291 292 293 294 295 296 297 298
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
299 300 301 302 303
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
304
 *
305
 * Return: Number of irqs obtained or 0 on error.
306
 */
307 308 309
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
310
{
311 312
	unsigned int i;
	int got_irqs;
313

314 315
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
316

317 318 319 320 321
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
322 323 324
		return 0;
	}

325 326 327 328 329
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
330 331 332
}

/**
333 334 335 336
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
337
 *
338 339
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
340
 */
341 342 343
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
344
{
345 346
	struct nfp_net_dp *dp = &nn->dp;

347
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
348
	dp->num_r_vecs = nn->max_r_vecs;
349

350
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
351

352 353
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
354 355 356
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
357

358 359 360
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
361 362 363 364
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
365
 * @pdev:        PCI device structure
366 367 368
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
369
void nfp_net_irqs_disable(struct pci_dev *pdev)
370
{
371
	pci_disable_msix(pdev);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

J
Jakub Kicinski 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
bool nfp_net_link_changed_read_clear(struct nfp_net *nn)
{
	unsigned long flags;
	bool ret;

	spin_lock_irqsave(&nn->link_status_lock, flags);
	ret = nn->link_changed;
	nn->link_changed = false;
	spin_unlock_irqrestore(&nn->link_status_lock, flags);

	return ret;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
J
Jakub Kicinski 已提交
426
	nn->link_changed = true;
427 428

	if (nn->link_up) {
429 430
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
431
	} else {
432 433
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
449 450 451
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
452 453 454

	nfp_net_read_link_status(nn);

455
	nfp_net_irq_unmask(nn, entry->entry);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
479 480
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
481
 * @is_xdp:   Is this an XDP TX ring?
482
 */
483 484
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
485 486
		     struct nfp_net_r_vector *r_vec, unsigned int idx,
		     bool is_xdp)
487 488 489
{
	struct nfp_net *nn = r_vec->nfp_net;

490 491
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;
492
	tx_ring->is_xdp = is_xdp;
493

494 495 496 497 498 499 500
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
501 502
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
503
 */
504 505 506
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
507 508 509
{
	struct nfp_net *nn = r_vec->nfp_net;

510 511 512
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

513 514 515 516 517
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
518
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
519 520
 * @netdev:   netdev structure
 */
521
static void nfp_net_vecs_init(struct net_device *netdev)
522 523 524 525 526 527 528 529
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

530
	for (r = 0; r < nn->max_r_vecs; r++) {
531 532 533 534
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

535 536 537
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
538 539
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

565
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
566 567 568 569 570 571
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
572
	nn_writeb(nn, ctrl_offset, entry->entry);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
614
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
660
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
691
 * @dp:  NFP Net data path struct
692 693 694 695 696 697 698 699
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
700 701
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
702 703 704 705 706 707 708
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

709
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
728
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
729 730 731 732 733 734 735 736 737 738 739
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
740
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
741 742 743 744 745 746 747 748 749 750 751
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

752 753 754 755 756 757 758
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

759 760 761 762 763 764 765 766 767 768 769 770 771
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
772 773
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
774
	struct netdev_queue *nd_q;
775
	struct nfp_net_dp *dp;
776 777 778 779 780 781
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

782
	dp = &nn->dp;
783
	qidx = skb_get_queue_mapping(skb);
784
	tx_ring = &dp->tx_rings[qidx];
785
	r_vec = tx_ring->r_vec;
786
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
787 788 789 790

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
791 792
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
793
		netif_tx_stop_queue(nd_q);
794
		nfp_net_tx_xmit_more_flush(tx_ring);
795 796 797 798 799 800 801
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
802
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
803
				  DMA_TO_DEVICE);
804
	if (dma_mapping_error(dp->dev, dma_addr))
805 806
		goto err_free;

807
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

828
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
829

830
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
831

832
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
833 834 835 836 837 838 839 840 841 842 843 844 845
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

846
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
847
						    fsize, DMA_TO_DEVICE);
848
			if (dma_mapping_error(dp->dev, dma_addr))
849 850
				goto err_unmap;

851
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
876 877
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
878 879 880 881 882 883 884 885 886

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
887
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
888 889 890 891 892 893 894 895
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
896
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
897 898 899 900 901
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
902
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
903
	nfp_net_tx_xmit_more_flush(tx_ring);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
920
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
921 922 923 924 925 926 927 928 929
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

930 931 932
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

933 934 935 936 937 938 939 940 941 942 943 944
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
945
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
946 947 948 949 950 951 952 953 954 955 956
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
957
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
958 959 960 961 962 963 964
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
965
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

985
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
986 987 988 989 990 991 992 993 994 995 996 997 998 999
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1000 1001 1002 1003 1004 1005 1006
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

1007 1008 1009
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

1021
	done_pkts = todo;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		done_bytes += tx_ring->txbufs[idx].real_len;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1041
/**
1042
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1043
 * @dp:		NFP Net data path struct
1044
 * @tx_ring:	TX ring structure
1045 1046 1047
 *
 * Assumes that the device is stopped
 */
1048
static void
1049
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1050 1051
{
	const struct skb_frag_struct *frag;
1052
	struct netdev_queue *nd_q;
1053

1054
	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1055
		struct nfp_net_tx_buf *tx_buf;
1056 1057
		struct sk_buff *skb;
		int idx, nr_frags;
1058

1059
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1060
		tx_buf = &tx_ring->txbufs[idx];
1061

1062 1063
		skb = tx_ring->txbufs[idx].skb;
		nr_frags = skb_shinfo(skb)->nr_frags;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (tx_buf->fidx == -1) {
			/* unmap head */
			dma_unmap_single(dp->dev, tx_buf->dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
			dma_unmap_page(dp->dev, tx_buf->dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
1074
		}
1075

1076 1077 1078 1079
		/* check for last gather fragment */
		if (tx_buf->fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

1080 1081 1082
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1083 1084 1085 1086 1087

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1088 1089 1090 1091 1092 1093
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1094
	if (tx_ring->is_xdp)
1095 1096
		return;

1097
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1098 1099 1100 1101 1102 1103 1104 1105
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1106
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1107 1108 1109 1110 1111 1112 1113 1114 1115
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1116
static unsigned int
1117
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1118 1119 1120
{
	unsigned int fl_bufsz;

1121
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1122
	fl_bufsz += dp->rx_dma_off;
1123
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1124
		fl_bufsz += NFP_NET_MAX_PREPEND;
1125
	else
1126
		fl_bufsz += dp->rx_offset;
1127
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1128

1129 1130 1131
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1132 1133
	return fl_bufsz;
}
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1144
/**
1145
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1146
 * @dp:		NFP Net data path struct
1147 1148
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1149
 * This function will allcate a new page frag, map it for DMA.
1150
 *
1151
 * Return: allocated page frag or NULL on failure.
1152
 */
1153
static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1154
{
1155
	void *frag;
1156

1157
	if (!dp->xdp_prog)
1158
		frag = netdev_alloc_frag(dp->fl_bufsz);
1159 1160
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1161
	if (!frag) {
1162
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1163 1164 1165
		return NULL;
	}

1166
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1167
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1168
		nfp_net_free_frag(frag, dp->xdp_prog);
1169
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1170 1171 1172
		return NULL;
	}

1173
	return frag;
1174 1175
}

1176
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1177 1178 1179
{
	void *frag;

1180 1181
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1182 1183
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1184
	if (!frag) {
1185
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1186 1187 1188
		return NULL;
	}

1189
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1190 1191 1192
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1193 1194 1195 1196 1197 1198
		return NULL;
	}

	return frag;
}

1199 1200
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1201
 * @dp:		NFP Net data path struct
1202
 * @rx_ring:	RX ring structure
1203
 * @frag:	page fragment buffer
1204 1205
 * @dma_addr:	DMA address of skb mapping
 */
1206 1207
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1208
				void *frag, dma_addr_t dma_addr)
1209 1210 1211
{
	unsigned int wr_idx;

1212
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1213

1214 1215
	nfp_net_dma_sync_dev_rx(dp, dma_addr);

1216
	/* Stash SKB and DMA address away */
1217
	rx_ring->rxbufs[wr_idx].frag = frag;
1218 1219 1220 1221 1222
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1223 1224
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1239 1240
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1241
 *
1242 1243
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1244
 */
1245
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1246
{
1247
	unsigned int wr_idx, last_idx;
1248

1249
	/* Move the empty entry to the end of the list */
1250
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1251 1252
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1253
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1254
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1255
	rx_ring->rxbufs[last_idx].frag = NULL;
1256

1257 1258 1259 1260 1261
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1262

1263 1264
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1265
 * @dp:		NFP Net data path struct
1266 1267 1268 1269 1270 1271 1272
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1273
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1274
			  struct nfp_net_rx_ring *rx_ring)
1275 1276
{
	unsigned int i;
1277

1278 1279 1280 1281 1282
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1283
		if (!rx_ring->rxbufs[i].frag)
1284 1285
			continue;

1286
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1287
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1288
		rx_ring->rxbufs[i].dma_addr = 0;
1289
		rx_ring->rxbufs[i].frag = NULL;
1290 1291 1292 1293
	}
}

/**
1294
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1295
 * @dp:		NFP Net data path struct
1296
 * @rx_ring:	RX ring to remove buffers from
1297
 */
1298
static int
1299
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1300
			   struct nfp_net_rx_ring *rx_ring)
1301
{
1302 1303 1304 1305
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1306

1307
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1308
		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1309
		if (!rxbufs[i].frag) {
1310
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1311 1312 1313 1314 1315 1316 1317
			return -ENOMEM;
		}
	}

	return 0;
}

1318 1319
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1320
 * @dp:	     NFP Net data path struct
1321 1322
 * @rx_ring: RX ring to fill
 */
1323 1324 1325
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1326 1327 1328 1329
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1330
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1331 1332 1333
				    rx_ring->rxbufs[i].dma_addr);
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1350
 * @dp:  NFP Net data path struct
1351 1352 1353 1354
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1355 1356
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1357 1358 1359 1360
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1361
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

1392 1393 1394
static void
nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
		 unsigned int type, __be32 *hash)
1395
{
1396
	if (!(netdev->features & NETIF_F_RXHASH))
1397 1398
		return;

1399
	switch (type) {
1400 1401 1402
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1403
		meta->hash_type = PKT_HASH_TYPE_L3;
1404 1405
		break;
	default:
1406
		meta->hash_type = PKT_HASH_TYPE_L4;
1407 1408
		break;
	}
1409 1410

	meta->hash = get_unaligned_be32(hash);
1411 1412
}

1413
static void
1414
nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1415
		      void *data, struct nfp_net_rx_desc *rxd)
1416
{
1417
	struct nfp_net_rx_hash *rx_hash = data;
1418 1419 1420 1421

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

1422
	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1423 1424 1425 1426
			 &rx_hash->hash);
}

static void *
1427
nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1428
		   void *data, int meta_len)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
1439
			nfp_net_set_hash(netdev, meta,
1440 1441 1442 1443 1444
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
1445
			meta->mark = get_unaligned_be32(data);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1458
static void
1459 1460 1461
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1462 1463 1464 1465 1466
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1467 1468 1469 1470 1471
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1472
	if (rxbuf)
1473
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1474 1475 1476 1477
	if (skb)
		dev_kfree_skb_any(skb);
}

1478
static bool
1479
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1480
		   struct nfp_net_tx_ring *tx_ring,
1481
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1482 1483 1484 1485 1486 1487 1488
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1489
		nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL);
1490
		return false;
1491 1492 1493 1494 1495 1496
	}

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
1497 1498 1499

	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);

1500 1501 1502 1503 1504 1505
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1506
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1507
				   pkt_len, DMA_BIDIRECTIONAL);
1508 1509 1510 1511 1512

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1513
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1514 1515 1516 1517 1518 1519 1520 1521
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1522
	return true;
1523 1524
}

1525 1526
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1527 1528
{
	struct xdp_buff xdp;
1529 1530 1531 1532 1533 1534
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1535

1536 1537
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1538

1539 1540 1541 1542
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1559
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1560 1561 1562
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1563
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1564
	int pkts_polled = 0;
1565 1566
	int idx;

1567
	rcu_read_lock();
1568 1569
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1570 1571
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1572
	while (pkts_polled < budget) {
1573
		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1574 1575
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
1576
		struct nfp_meta_parsed meta;
1577 1578 1579
		dma_addr_t new_dma_addr;
		void *new_frag;

1580
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1581 1582

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1583
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1584
			break;
J
Jakub Kicinski 已提交
1585

1586 1587 1588 1589 1590
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

1591 1592
		memset(&meta, 0, sizeof(meta));

1593 1594 1595
		rx_ring->rd_p++;
		pkts_polled++;

1596
		rxbuf =	&rx_ring->rxbufs[idx];
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1609 1610
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1611
		pkt_len = data_len - meta_len;
1612

1613
		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1614
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1615
			pkt_off += meta_len;
1616
		else
1617 1618
			pkt_off += dp->rx_offset;
		meta_off = pkt_off - meta_len;
1619 1620 1621 1622

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1623
		r_vec->rx_bytes += pkt_len;
1624 1625
		u64_stats_update_end(&r_vec->rx_sync);

1626 1627 1628 1629
		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1630
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1631 1632 1633
			continue;
		}

1634 1635 1636
		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
					data_len);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, &meta,
					      rxbuf->frag + meta_off, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(dp->netdev, &meta,
						 rxbuf->frag + meta_off,
						 meta_len);
			if (unlikely(end != rxbuf->frag + pkt_off)) {
				nn_dp_warn(dp, "invalid RX packet metadata\n");
				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
						NULL);
				continue;
			}
		}

1654
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1655
				  dp->bpf_offload_xdp)) {
1656
			unsigned int dma_off;
1657
			void *hard_start;
1658 1659
			int act;

1660 1661 1662
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1663
					      &pkt_off, &pkt_len);
1664 1665 1666 1667
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1668
				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1669
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1670
								 tx_ring, rxbuf,
1671
								 dma_off,
1672 1673 1674
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1675 1676 1677 1678
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1679
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1680
			case XDP_DROP:
1681
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1682 1683 1684 1685 1686 1687
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1688
		if (unlikely(!skb)) {
1689
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1690 1691
			continue;
		}
1692
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1693
		if (unlikely(!new_frag)) {
1694
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1695 1696 1697
			continue;
		}

1698
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1699

1700
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1701

1702
		skb_reserve(skb, pkt_off);
1703 1704
		skb_put(skb, pkt_len);

1705 1706
		skb->mark = meta.mark;
		skb_set_hash(skb, meta.hash, meta.hash_type);
1707

1708
		skb_record_rx_queue(skb, rx_ring->idx);
1709
		skb->protocol = eth_type_trans(skb, dp->netdev);
1710

1711
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1712 1713 1714 1715 1716 1717 1718 1719

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1720 1721 1722 1723
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1738
	unsigned int pkts_polled = 0;
1739

1740 1741
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1742
	if (r_vec->rx_ring) {
1743
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1744 1745 1746
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1747

1748 1749 1750
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1765
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1766 1767 1768 1769

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1770
		dma_free_coherent(dp->dev, tx_ring->size,
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1782
 * @dp:        NFP Net data path struct
1783 1784 1785 1786
 * @tx_ring:   TX Ring structure to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1787
static int
1788
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1789 1790 1791 1792
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1793
	tx_ring->cnt = dp->txd_cnt;
1794 1795

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1796
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1797 1798 1799 1800 1801 1802 1803 1804 1805
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1806
	if (!tx_ring->is_xdp)
1807
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1808
				    tx_ring->idx);
1809 1810 1811 1812 1813 1814 1815 1816

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_tx_ring *tx_ring)
{
	unsigned int i;

	if (!tx_ring->is_xdp)
		return;

	for (i = 0; i < tx_ring->cnt; i++) {
		if (!tx_ring->txbufs[i].frag)
			return;

		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
	}
}

static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
	unsigned int i;

	if (!tx_ring->is_xdp)
		return 0;

	for (i = 0; i < tx_ring->cnt; i++) {
		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
		if (!txbufs[i].frag) {
			nfp_net_tx_ring_bufs_free(dp, tx_ring);
			return -ENOMEM;
		}
	}

	return 0;
}

1856
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1857 1858 1859
{
	unsigned int r;

1860 1861 1862 1863
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1864

1865
	for (r = 0; r < dp->num_tx_rings; r++) {
1866 1867
		int bias = 0;

1868 1869
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1870

1871
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
1872
				     r, bias);
1873

1874
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
1875
			goto err_free_prev;
1876 1877 1878

		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
			goto err_free_ring;
1879 1880
	}

1881
	return 0;
1882 1883

err_free_prev:
1884 1885 1886
	while (r--) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
1887
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1888
	}
1889 1890
	kfree(dp->tx_rings);
	return -ENOMEM;
1891 1892
}

1893
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1894 1895 1896
{
	unsigned int r;

1897 1898
	for (r = 0; r < dp->num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
1899
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1900
	}
1901

1902
	kfree(dp->tx_rings);
1903 1904
}

1905 1906 1907 1908 1909 1910 1911
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1912
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1913 1914 1915 1916

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1917
		dma_free_coherent(dp->dev, rx_ring->size,
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1929
 * @dp:	      NFP Net data path struct
1930 1931 1932 1933
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1934
static int
1935
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1936 1937 1938
{
	int sz;

1939
	rx_ring->cnt = dp->rxd_cnt;
1940
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1941
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1958
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1959 1960 1961
{
	unsigned int r;

1962 1963 1964 1965
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1966

1967 1968
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1969

1970
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1971 1972
			goto err_free_prev;

1973
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1974 1975 1976
			goto err_free_ring;
	}

1977
	return 0;
1978 1979 1980

err_free_prev:
	while (r--) {
1981
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1982
err_free_ring:
1983
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1984
	}
1985 1986
	kfree(dp->rx_rings);
	return -ENOMEM;
1987 1988
}

1989
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1990 1991 1992
{
	unsigned int r;

1993 1994 1995
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1996 1997
	}

1998
	kfree(dp->rx_rings);
1999 2000
}

2001
static void
2002 2003
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
2004
{
2005
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2006
	r_vec->tx_ring =
2007
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2008

2009 2010
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2011 2012
}

2013 2014 2015
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
2016
{
2017
	int err;
2018

2019
	/* Setup NAPI */
2020
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
2021 2022
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2023
	snprintf(r_vec->name, sizeof(r_vec->name),
2024
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
2025 2026
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2027
	if (err) {
2028
		netif_napi_del(&r_vec->napi);
2029
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2030 2031
		return err;
	}
2032
	disable_irq(r_vec->irq_vector);
2033

2034
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2035

2036 2037
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2038

2039
	return 0;
2040 2041
}

2042 2043
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2044
{
2045
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2046
	netif_napi_del(&r_vec->napi);
2047
	free_irq(r_vec->irq_vector, r_vec);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2071
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2095
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2096 2097 2098 2099 2100
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2101
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2102 2103 2104 2105
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2106
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2107 2108
 * @nn:      NFP Net device to reconfigure
 *
2109 2110 2111
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2112
 */
2113
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2114 2115
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2116
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2117
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2118
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2132 2133 2134 2135 2136 2137 2138
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2139
	unsigned int r;
2140 2141
	int err;

2142
	new_ctrl = nn->dp.ctrl;
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2156
	if (err)
2157 2158
		nn_err(nn, "Could not disable device: %d\n", err);

2159 2160 2161 2162 2163
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2164 2165
		nfp_net_vec_clear_ring_data(nn, r);

2166
	nn->dp.ctrl = new_ctrl;
2167 2168
}

2169
static void
2170 2171
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2172 2173
{
	/* Write the DMA address, size and MSI-X info to the device */
2174 2175
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2176
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2177
}
2178

2179 2180 2181 2182 2183 2184
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2185
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2186 2187
}

2188 2189 2190 2191 2192
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2193
{
2194
	u32 bufsz, new_ctrl, update = 0;
2195 2196 2197
	unsigned int r;
	int err;

2198
	new_ctrl = nn->dp.ctrl;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2214 2215 2216 2217
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2218

2219 2220
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2221

2222 2223
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2224

2225
	nfp_net_write_mac_addr(nn);
2226

2227
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2228 2229 2230

	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2242 2243 2244 2245
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2246

2247
	nn->dp.ctrl = new_ctrl;
2248

2249
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2250
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2251

2252 2253 2254
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2255
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2256 2257
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2258
		udp_tunnel_get_rx_info(nn->dp.netdev);
2259 2260
	}

2261
	return 0;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2272
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2273
		napi_enable(&nn->r_vecs[r].napi);
2274
		enable_irq(nn->r_vecs[r].irq_vector);
2275
	}
2276

2277
	netif_tx_wake_all_queues(nn->dp.netdev);
2278

2279
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2280 2281 2282
	nfp_net_read_link_status(nn);
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2298 2299 2300 2301 2302
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2303
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2304

2305
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2306 2307
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2308 2309
			goto err_cleanup_vec_p;
	}
2310

2311 2312
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2313
		goto err_cleanup_vec;
2314

2315 2316
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2317
		goto err_free_rx_rings;
2318

2319
	for (r = 0; r < nn->max_r_vecs; r++)
2320
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2321

2322
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2323 2324 2325
	if (err)
		goto err_free_rings;

2326
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2337
	err = nfp_net_set_config_and_enable(nn);
2338
	if (err)
2339
		goto err_free_rings;
2340 2341 2342 2343 2344 2345 2346

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2347
	nfp_net_open_stack(nn);
2348 2349 2350 2351

	return 0;

err_free_rings:
2352
	nfp_net_tx_rings_free(&nn->dp);
2353
err_free_rx_rings:
2354
	nfp_net_rx_rings_free(&nn->dp);
2355
err_cleanup_vec:
2356
	r = nn->dp.num_r_vecs;
2357
err_cleanup_vec_p:
2358
	while (r--)
2359
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2360
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2361 2362 2363 2364 2365 2366
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2367 2368
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2369
 */
2370
static void nfp_net_close_stack(struct nfp_net *nn)
2371
{
2372
	unsigned int r;
2373

2374
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2375
	netif_carrier_off(nn->dp.netdev);
2376 2377
	nn->link_up = false;

2378
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2379
		disable_irq(nn->r_vecs[r].irq_vector);
2380
		napi_disable(&nn->r_vecs[r].napi);
2381
	}
2382

2383
	netif_tx_disable(nn->dp.netdev);
2384
}
2385

2386 2387 2388 2389 2390 2391 2392
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2393

2394
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2395
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2396
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2397
	}
2398 2399
	for (r = 0; r < nn->dp.num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(&nn->dp, &nn->dp.tx_rings[r]);
2400
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
2401
	}
2402
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2403
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2404

2405 2406
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2407

2408
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2409
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2441
	new_ctrl = nn->dp.ctrl;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2452
	if (new_ctrl == nn->dp.ctrl)
2453 2454 2455
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2456
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2457

2458
	nn->dp.ctrl = new_ctrl;
2459 2460
}

2461 2462 2463 2464 2465 2466
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2467
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2468 2469
}

2470 2471 2472 2473 2474 2475
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2476 2477

	nn->dp.netdev->mtu = new_dp.mtu;
2478 2479 2480

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2481 2482
}

2483
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2484
{
2485
	unsigned int r;
2486
	int err;
2487

2488
	nfp_net_dp_swap(nn, dp);
2489

2490
	for (r = 0; r <	nn->max_r_vecs; r++)
2491
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2492

2493
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2494 2495
	if (err)
		return err;
2496

2497 2498 2499
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2500 2501 2502 2503
		if (err)
			return err;
	}

2504
	return nfp_net_set_config_and_enable(nn);
2505
}
2506

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2527 2528 2529
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct netlink_ext_ack *extack)
2530 2531
{
	/* XDP-enabled tests */
2532
	if (!dp->xdp_prog)
2533
		return 0;
2534
	if (dp->fl_bufsz > PAGE_SIZE) {
2535
		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2536 2537
		return -EINVAL;
	}
2538
	if (dp->num_tx_rings > nn->max_tx_rings) {
2539
		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2540 2541 2542 2543 2544 2545
		return -EINVAL;
	}

	return 0;
}

2546 2547
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
			  struct netlink_ext_ack *extack)
2548
{
2549
	int r, err;
2550

2551
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2552

2553
	dp->num_stack_tx_rings = dp->num_tx_rings;
2554
	if (dp->xdp_prog)
2555
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2556

2557
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2558

2559
	err = nfp_net_check_config(nn, dp, extack);
2560
	if (err)
2561
		goto exit_free_dp;
2562

2563
	if (!netif_running(dp->netdev)) {
2564
		nfp_net_dp_swap(nn, dp);
2565 2566
		err = 0;
		goto exit_free_dp;
2567 2568 2569
	}

	/* Prepare new rings */
2570
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2571 2572
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2573
			dp->num_r_vecs = r;
2574 2575 2576
			goto err_cleanup_vecs;
		}
	}
2577 2578 2579 2580 2581 2582 2583 2584

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2585 2586 2587 2588 2589

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2590
	err = nfp_net_dp_swap_enable(nn, dp);
2591
	if (err) {
2592
		int err2;
2593

2594
		nfp_net_clear_config_and_disable(nn);
2595

2596
		/* Try with old configuration and old rings */
2597
		err2 = nfp_net_dp_swap_enable(nn, dp);
2598
		if (err2)
2599
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2600
			       err, err2);
2601
	}
2602
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2603
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2604

2605 2606
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2607 2608

	nfp_net_open_stack(nn);
2609 2610
exit_free_dp:
	kfree(dp);
2611 2612

	return err;
2613 2614

err_free_rx:
2615
	nfp_net_rx_rings_free(dp);
2616
err_cleanup_vecs:
2617
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2618
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2619
	kfree(dp);
2620 2621 2622 2623 2624 2625
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2626 2627 2628 2629 2630
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2631

2632 2633
	dp->mtu = new_mtu;

2634
	return nfp_net_ring_reconfig(nn, dp, NULL);
2635 2636
}

2637 2638
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2639 2640 2641 2642
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2643
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
2685
		return -EOPNOTSUPP;
2686
	if (proto != htons(ETH_P_ALL))
2687
		return -EOPNOTSUPP;
2688

2689
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2690
		if (!nn->dp.bpf_offload_xdp)
2691 2692 2693 2694
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2695 2696 2697 2698

	return -EINVAL;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2709
	new_ctrl = nn->dp.ctrl;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2753
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2754 2755 2756 2757
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2758 2759 2760
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2761
	if (new_ctrl == nn->dp.ctrl)
2762 2763
		return 0;

2764
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2765 2766 2767 2768 2769
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2770
	nn->dp.ctrl = new_ctrl;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2807
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2808 2809 2810 2811 2812 2813 2814 2815
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2816
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2817 2818 2819 2820

	return features;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2853
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2854 2855 2856 2857 2858 2859 2860 2861
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2862
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2889
				   struct udp_tunnel_info *ti)
2890 2891 2892 2893
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2894 2895 2896 2897
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2898 2899 2900 2901
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2902
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2903 2904 2905
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2906
				   struct udp_tunnel_info *ti)
2907 2908 2909 2910
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2911 2912 2913 2914
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2915
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2916 2917 2918 2919 2920 2921
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2932 2933
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2946
	nn->dp.bpf_offload_xdp = prog && !ret;
2947 2948 2949
	return ret;
}

2950
static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp)
2951
{
2952
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2953
	struct bpf_prog *prog = xdp->prog;
2954
	struct nfp_net_dp *dp;
2955 2956
	int err;

2957
	if (!prog && !nn->dp.xdp_prog)
2958
		return 0;
2959 2960
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2961
		bpf_prog_put(prog);
2962
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2963 2964 2965
		return 0;
	}

2966 2967 2968 2969
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2970
	dp->xdp_prog = prog;
2971
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2972
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2973
	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2974 2975

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2976
	err = nfp_net_ring_reconfig(nn, dp, xdp->extack);
2977 2978 2979
	if (err)
		return err;

2980 2981
	if (old_prog)
		bpf_prog_put(old_prog);
2982

2983
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
2994
		return nfp_net_xdp_setup(nn, xdp);
2995
	case XDP_QUERY_PROG:
2996
		xdp->prog_attached = !!nn->dp.xdp_prog;
2997 2998 2999 3000 3001 3002
		return 0;
	default:
		return -EINVAL;
	}
}

3003 3004 3005 3006 3007
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3008
	.ndo_setup_tc		= nfp_net_setup_tc,
3009 3010 3011 3012 3013 3014
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
3015
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3016 3017
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3018
	.ndo_xdp		= nfp_net_xdp,
3019 3020 3021 3022 3023 3024 3025 3026
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3027
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3028 3029 3030
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3031 3032 3033 3034
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3035
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3052 3053
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3068 3069
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3082 3083
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3084 3085 3086 3087 3088
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3089 3090 3091
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3092
				 netif_get_num_default_rss_queues());
3093

3094 3095 3096
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3097

3098 3099
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3100 3101

	spin_lock_init(&nn->reconfig_lock);
3102
	spin_lock_init(&nn->rx_filter_lock);
3103 3104
	spin_lock_init(&nn->link_status_lock);

3105 3106
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3107 3108
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3119
	free_netdev(nn->dp.netdev);
3120 3121
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3143 3144 3145 3146 3147 3148
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3161
		dev_warn(nn->dp.dev,
3162 3163 3164 3165 3166 3167
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3168

3169
	nfp_net_rss_init_itbl(nn);
3170 3171 3172 3173

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3174
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3201
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3202

3203 3204
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3205 3206 3207 3208
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3209
	nfp_net_write_mac_addr(nn);
3210

3211
	/* Determine RX packet/metadata boundary offset */
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3222
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3223
	}
3224

3225 3226 3227 3228 3229
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3230 3231
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3242
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3243 3244 3245
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3246
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3247 3248 3249
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3250
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3251 3252 3253
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3254
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3255 3256 3257 3258
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3259
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3260 3261 3262 3263 3264 3265
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3266
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3267 3268 3269 3270 3271 3272 3273 3274

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3275
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3276 3277 3278
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3279
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3280 3281 3282 3283
	}

	netdev->features = netdev->hw_features;

3284 3285 3286
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3287 3288
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3289
	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO;
3290 3291 3292

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3293
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3294
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3295
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3296 3297 3298 3299

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3300
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3318 3319 3320 3321 3322

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3323
	netif_carrier_off(netdev);
3324 3325

	nfp_net_set_ethtool_ops(netdev);
3326
	nfp_net_vecs_init(netdev);
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3337 3338
	struct nfp_net *nn = netdev_priv(netdev);

3339
	unregister_netdev(nn->dp.netdev);
3340

3341 3342 3343
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3344
		nfp_net_xdp_offload(nn, NULL);
3345
}