nfp_net_common.c 87.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp.h"
71 72
#include "nfp_net_ctrl.h"
#include "nfp_net.h"
J
Jakub Kicinski 已提交
73
#include "nfp_port.h"
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

89
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
90
{
91 92 93 94 95 96 97 98 99 100 101
	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
{
	dma_sync_single_for_device(dp->dev, dma_addr,
				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				   dp->rx_dma_dir);
102 103
}

104
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
105
{
106 107 108 109 110 111 112 113 114 115
	dma_unmap_single_attrs(dp->dev, dma_addr,
			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
				    unsigned int len)
{
	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
				len, dp->rx_dma_dir);
116 117
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

228 229 230 231 232 233 234 235 236 237 238 239 240
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
241 242 243
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
244 245 246

	spin_lock_bh(&nn->reconfig_lock);

247
	nn->reconfig_sync_present = true;
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
266 267
	}

268 269 270 271 272 273 274 275 276 277
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

278
	spin_unlock_bh(&nn->reconfig_lock);
279

280 281 282 283 284 285 286 287 288 289 290
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
291
 * Clear the ICR for the IRQ entry.
292 293 294 295 296 297 298 299
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
300 301 302 303 304
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
305
 *
306
 * Return: Number of irqs obtained or 0 on error.
307
 */
308 309 310
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
311
{
312 313
	unsigned int i;
	int got_irqs;
314

315 316
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
317

318 319 320 321 322
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
323 324 325
		return 0;
	}

326 327 328 329 330
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
331 332 333
}

/**
334 335 336 337
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
338
 *
339 340
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
341
 */
342 343 344
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
345
{
346 347
	struct nfp_net_dp *dp = &nn->dp;

348
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
349
	dp->num_r_vecs = nn->max_r_vecs;
350

351
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
352

353 354
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
355 356 357
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
358

359 360 361
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
362 363 364 365
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
366
 * @pdev:        PCI device structure
367 368 369
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
370
void nfp_net_irqs_disable(struct pci_dev *pdev)
371
{
372
	pci_disable_msix(pdev);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
414 415
	if (nn->port)
		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
416 417

	if (nn->link_up) {
418 419
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
420
	} else {
421 422
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
438 439 440
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
441 442 443

	nfp_net_read_link_status(nn);

444
	nfp_net_irq_unmask(nn, entry->entry);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
468 469
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
470
 * @is_xdp:   Is this an XDP TX ring?
471
 */
472 473
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
474 475
		     struct nfp_net_r_vector *r_vec, unsigned int idx,
		     bool is_xdp)
476 477 478
{
	struct nfp_net *nn = r_vec->nfp_net;

479 480
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;
481
	tx_ring->is_xdp = is_xdp;
482

483 484 485 486 487 488 489
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
490 491
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
492
 */
493 494 495
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
496 497 498
{
	struct nfp_net *nn = r_vec->nfp_net;

499 500 501
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

502 503 504 505 506
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
507
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
508
 * @nn:		NFP Network structure
509
 */
510
static void nfp_net_vecs_init(struct nfp_net *nn)
511 512 513 514 515 516 517
{
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

518
	for (r = 0; r < nn->max_r_vecs; r++) {
519 520 521 522
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

523 524 525
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
526 527
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

553
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
554 555 556 557 558 559
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
560
	nn_writeb(nn, ctrl_offset, entry->entry);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
602
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
648
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
649 650 651 652 653 654 655 656 657
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

E
Edwin Peer 已提交
658 659 660
	if (!skb->encapsulation) {
		txd->l3_offset = skb_network_offset(skb);
		txd->l4_offset = skb_transport_offset(skb);
661
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
E
Edwin Peer 已提交
662 663 664
	} else {
		txd->l3_offset = skb_inner_network_offset(skb);
		txd->l4_offset = skb_inner_transport_offset(skb);
665 666
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);
E
Edwin Peer 已提交
667
	}
668 669 670 671 672

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
673
	txd->lso_hdrlen = hdrlen;
674 675 676 677 678 679 680 681 682 683
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
684
 * @dp:  NFP Net data path struct
685 686 687 688 689 690 691 692
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
693 694
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
695 696 697 698 699 700 701
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

702
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
721
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
722 723 724 725 726 727 728 729 730 731 732
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
733
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
734 735 736 737 738 739 740 741 742 743 744
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

745 746 747 748 749 750 751
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
765 766
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
767
	struct netdev_queue *nd_q;
768
	struct nfp_net_dp *dp;
769 770 771 772 773 774
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

775
	dp = &nn->dp;
776
	qidx = skb_get_queue_mapping(skb);
777
	tx_ring = &dp->tx_rings[qidx];
778
	r_vec = tx_ring->r_vec;
779
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
780 781 782 783

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
784 785
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
786
		netif_tx_stop_queue(nd_q);
787
		nfp_net_tx_xmit_more_flush(tx_ring);
788 789 790 791 792 793 794
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
795
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
796
				  DMA_TO_DEVICE);
797
	if (dma_mapping_error(dp->dev, dma_addr))
798 799
		goto err_free;

800
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
819
	txd->lso_hdrlen = 0;
820

E
Edwin Peer 已提交
821
	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
822 823 824
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
825 826 827 828 829 830 831 832 833 834 835 836 837
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

838
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
839
						    fsize, DMA_TO_DEVICE);
840
			if (dma_mapping_error(dp->dev, dma_addr))
841 842
				goto err_unmap;

843
			wr_idx = D_IDX(tx_ring, wr_idx + 1);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
868 869
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
870 871 872 873 874 875 876 877 878

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
879
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
880 881 882 883 884 885 886 887
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
888
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
889 890 891 892 893
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
894
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
895
	nfp_net_tx_xmit_more_flush(tx_ring);
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
912
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
913 914 915 916 917 918 919 920 921
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

922 923 924
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

925 926 927 928 929 930
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

931
	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
932 933

	while (todo--) {
934
		idx = D_IDX(tx_ring, tx_ring->rd_p++);
935 936 937 938 939 940 941 942 943 944

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
945
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
946 947 948 949 950 951 952
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
953
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

973
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
974 975 976 977 978 979 980 981 982 983 984 985 986 987
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

988
static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
989 990 991
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	u32 done_pkts = 0, done_bytes = 0;
992
	bool done_all;
993 994 995 996 997 998 999
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
1000
		return true;
1001

1002
	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1003

1004 1005 1006
	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);

1007
	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1008

1009
	done_pkts = todo;
1010
	while (todo--) {
1011
		idx = D_IDX(tx_ring, tx_ring->rd_p);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		tx_ring->rd_p++;

		done_bytes += tx_ring->txbufs[idx].real_len;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1023
		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1024
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1025 1026

	return done_all;
1027 1028
}

1029
/**
1030
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1031
 * @dp:		NFP Net data path struct
1032
 * @tx_ring:	TX ring structure
1033 1034 1035
 *
 * Assumes that the device is stopped
 */
1036
static void
1037
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1038 1039
{
	const struct skb_frag_struct *frag;
1040
	struct netdev_queue *nd_q;
1041

1042
	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1043
		struct nfp_net_tx_buf *tx_buf;
1044 1045
		struct sk_buff *skb;
		int idx, nr_frags;
1046

1047
		idx = D_IDX(tx_ring, tx_ring->rd_p);
1048
		tx_buf = &tx_ring->txbufs[idx];
1049

1050 1051
		skb = tx_ring->txbufs[idx].skb;
		nr_frags = skb_shinfo(skb)->nr_frags;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061
		if (tx_buf->fidx == -1) {
			/* unmap head */
			dma_unmap_single(dp->dev, tx_buf->dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
			dma_unmap_page(dp->dev, tx_buf->dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
1062
		}
1063

1064 1065 1066 1067
		/* check for last gather fragment */
		if (tx_buf->fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

1068 1069 1070
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1071 1072 1073 1074 1075

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1076 1077 1078 1079 1080 1081
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1082
	if (tx_ring->is_xdp)
1083 1084
		return;

1085
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1086 1087 1088 1089 1090 1091 1092 1093
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1094
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1095 1096 1097 1098 1099 1100 1101 1102 1103
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1104
static unsigned int
1105
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1106 1107 1108
{
	unsigned int fl_bufsz;

1109
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1110
	fl_bufsz += dp->rx_dma_off;
1111
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1112
		fl_bufsz += NFP_NET_MAX_PREPEND;
1113
	else
1114
		fl_bufsz += dp->rx_offset;
1115
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1116

1117 1118 1119
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1120 1121
	return fl_bufsz;
}
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1132
/**
1133
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1134
 * @dp:		NFP Net data path struct
1135 1136
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1137
 * This function will allcate a new page frag, map it for DMA.
1138
 *
1139
 * Return: allocated page frag or NULL on failure.
1140
 */
1141
static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1142
{
1143
	void *frag;
1144

1145
	if (!dp->xdp_prog)
1146
		frag = netdev_alloc_frag(dp->fl_bufsz);
1147 1148
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1149
	if (!frag) {
1150
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1151 1152 1153
		return NULL;
	}

1154
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1155
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1156
		nfp_net_free_frag(frag, dp->xdp_prog);
1157
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1158 1159 1160
		return NULL;
	}

1161
	return frag;
1162 1163
}

1164
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1165 1166 1167
{
	void *frag;

1168 1169
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1170 1171
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1172
	if (!frag) {
1173
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1174 1175 1176
		return NULL;
	}

1177
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1178 1179 1180
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1181 1182 1183 1184 1185 1186
		return NULL;
	}

	return frag;
}

1187 1188
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1189
 * @dp:		NFP Net data path struct
1190
 * @rx_ring:	RX ring structure
1191
 * @frag:	page fragment buffer
1192 1193
 * @dma_addr:	DMA address of skb mapping
 */
1194 1195
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1196
				void *frag, dma_addr_t dma_addr)
1197 1198 1199
{
	unsigned int wr_idx;

1200
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1201

1202 1203
	nfp_net_dma_sync_dev_rx(dp, dma_addr);

1204
	/* Stash SKB and DMA address away */
1205
	rx_ring->rxbufs[wr_idx].frag = frag;
1206 1207 1208 1209 1210
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1211 1212
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1213 1214

	rx_ring->wr_p++;
1215
	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1216 1217 1218 1219
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
1220
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1221 1222 1223 1224
	}
}

/**
1225 1226
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1227
 *
1228 1229
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1230
 */
1231
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1232
{
1233
	unsigned int wr_idx, last_idx;
1234

1235
	/* Move the empty entry to the end of the list */
1236
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1237 1238
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1239
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1240
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1241
	rx_ring->rxbufs[last_idx].frag = NULL;
1242

1243 1244 1245 1246
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
}
1247

1248 1249
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1250
 * @dp:		NFP Net data path struct
1251 1252 1253 1254 1255 1256 1257
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1258
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1259
			  struct nfp_net_rx_ring *rx_ring)
1260 1261
{
	unsigned int i;
1262

1263 1264 1265 1266 1267
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1268
		if (!rx_ring->rxbufs[i].frag)
1269 1270
			continue;

1271
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1272
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1273
		rx_ring->rxbufs[i].dma_addr = 0;
1274
		rx_ring->rxbufs[i].frag = NULL;
1275 1276 1277 1278
	}
}

/**
1279
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1280
 * @dp:		NFP Net data path struct
1281
 * @rx_ring:	RX ring to remove buffers from
1282
 */
1283
static int
1284
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1285
			   struct nfp_net_rx_ring *rx_ring)
1286
{
1287 1288 1289 1290
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1291

1292
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1293
		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1294
		if (!rxbufs[i].frag) {
1295
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1296 1297 1298 1299 1300 1301 1302
			return -ENOMEM;
		}
	}

	return 0;
}

1303 1304
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1305
 * @dp:	     NFP Net data path struct
1306 1307
 * @rx_ring: RX ring to fill
 */
1308 1309 1310
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1311 1312 1313 1314
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1315
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1316 1317 1318
				    rx_ring->rxbufs[i].dma_addr);
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1335
 * @dp:  NFP Net data path struct
1336 1337
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
1338
 * @meta: Parsed metadata prepend
1339 1340
 * @skb: Pointer to SKB
 */
1341 1342
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1343 1344
			    struct nfp_net_rx_desc *rxd,
			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1345 1346 1347
{
	skb_checksum_none_assert(skb);

1348
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1349 1350
		return;

1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (meta->csum_type) {
		skb->ip_summed = meta->csum_type;
		skb->csum = meta->csum;
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

1388 1389 1390
static void
nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
		 unsigned int type, __be32 *hash)
1391
{
1392
	if (!(netdev->features & NETIF_F_RXHASH))
1393 1394
		return;

1395
	switch (type) {
1396 1397 1398
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1399
		meta->hash_type = PKT_HASH_TYPE_L3;
1400 1401
		break;
	default:
1402
		meta->hash_type = PKT_HASH_TYPE_L4;
1403 1404
		break;
	}
1405 1406

	meta->hash = get_unaligned_be32(hash);
1407 1408
}

1409
static void
1410
nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1411
		      void *data, struct nfp_net_rx_desc *rxd)
1412
{
1413
	struct nfp_net_rx_hash *rx_hash = data;
1414 1415 1416 1417

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

1418
	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1419 1420 1421 1422
			 &rx_hash->hash);
}

static void *
1423
nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1424
		   void *data, int meta_len)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
1435
			nfp_net_set_hash(netdev, meta,
1436 1437 1438 1439 1440
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
1441
			meta->mark = get_unaligned_be32(data);
1442 1443
			data += 4;
			break;
1444 1445 1446 1447 1448 1449
		case NFP_NET_META_CSUM:
			meta->csum_type = CHECKSUM_COMPLETE;
			meta->csum =
				(__force __wsum)__get_unaligned_cpu32(data);
			data += 4;
			break;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1460
static void
1461 1462 1463
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1464 1465 1466 1467 1468
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1469 1470 1471 1472 1473
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1474
	if (rxbuf)
1475
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1476 1477 1478 1479
	if (skb)
		dev_kfree_skb_any(skb);
}

1480
static bool
1481
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1482
		   struct nfp_net_tx_ring *tx_ring,
1483
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1484
		   unsigned int pkt_len, bool *completed)
1485 1486 1487 1488 1489 1490
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		if (!*completed) {
			nfp_net_xdp_complete(tx_ring);
			*completed = true;
		}

		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
					NULL);
			return false;
		}
1501 1502
	}

1503
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1504 1505 1506

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
1507 1508 1509

	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);

1510 1511 1512 1513 1514 1515
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1516
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1517
				   pkt_len, DMA_BIDIRECTIONAL);
1518 1519 1520 1521 1522

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1523
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1524 1525 1526 1527
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
1528
	txd->lso_hdrlen = 0;
1529 1530 1531

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1532
	return true;
1533 1534
}

1535 1536
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1537 1538
{
	struct xdp_buff xdp;
1539 1540 1541 1542 1543 1544
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1545

1546 1547
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1548

1549 1550 1551 1552
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1569
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1570 1571
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
1572
	bool xdp_tx_cmpl = false;
1573
	unsigned int true_bufsz;
1574
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1575
	int pkts_polled = 0;
1576 1577
	int idx;

1578
	rcu_read_lock();
1579 1580
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1581 1582
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1583
	while (pkts_polled < budget) {
1584
		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1585 1586
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
1587
		struct nfp_meta_parsed meta;
1588 1589 1590
		dma_addr_t new_dma_addr;
		void *new_frag;

1591
		idx = D_IDX(rx_ring, rx_ring->rd_p);
1592 1593

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1594
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1595
			break;
J
Jakub Kicinski 已提交
1596

1597 1598 1599 1600 1601
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

1602 1603
		memset(&meta, 0, sizeof(meta));

1604 1605 1606
		rx_ring->rd_p++;
		pkts_polled++;

1607
		rxbuf =	&rx_ring->rxbufs[idx];
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1620 1621
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1622
		pkt_len = data_len - meta_len;
1623

1624
		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1625
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1626
			pkt_off += meta_len;
1627
		else
1628 1629
			pkt_off += dp->rx_offset;
		meta_off = pkt_off - meta_len;
1630 1631 1632 1633

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1634
		r_vec->rx_bytes += pkt_len;
1635 1636
		u64_stats_update_end(&r_vec->rx_sync);

1637 1638 1639 1640
		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1641
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1642 1643 1644
			continue;
		}

1645 1646 1647
		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
					data_len);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, &meta,
					      rxbuf->frag + meta_off, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(dp->netdev, &meta,
						 rxbuf->frag + meta_off,
						 meta_len);
			if (unlikely(end != rxbuf->frag + pkt_off)) {
				nn_dp_warn(dp, "invalid RX packet metadata\n");
				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
						NULL);
				continue;
			}
		}

1665
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1666
				  dp->bpf_offload_xdp)) {
1667
			unsigned int dma_off;
1668
			void *hard_start;
1669 1670
			int act;

1671 1672 1673
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1674
					      &pkt_off, &pkt_len);
1675 1676 1677 1678
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1679
				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1680
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1681
								 tx_ring, rxbuf,
1682
								 dma_off,
1683 1684
								 pkt_len,
								 &xdp_tx_cmpl)))
1685 1686
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1687 1688 1689
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
1690
				/* fall through */
1691
			case XDP_ABORTED:
1692
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1693
				/* fall through */
1694
			case XDP_DROP:
1695
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1696 1697 1698 1699 1700 1701
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1702
		if (unlikely(!skb)) {
1703
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1704 1705
			continue;
		}
1706
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1707
		if (unlikely(!new_frag)) {
1708
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1709 1710 1711
			continue;
		}

1712
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1713

1714
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1715

1716
		skb_reserve(skb, pkt_off);
1717 1718
		skb_put(skb, pkt_len);

1719 1720
		skb->mark = meta.mark;
		skb_set_hash(skb, meta.hash, meta.hash_type);
1721

1722
		skb_record_rx_queue(skb, rx_ring->idx);
1723
		skb->protocol = eth_type_trans(skb, dp->netdev);
1724

1725
		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1726 1727 1728 1729 1730 1731 1732 1733

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1734 1735 1736 1737 1738 1739 1740 1741
	if (xdp_prog) {
		if (tx_ring->wr_ptr_add)
			nfp_net_tx_xmit_more_flush(tx_ring);
		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
			 !xdp_tx_cmpl)
			if (!nfp_net_xdp_complete(tx_ring))
				pkts_polled = budget;
	}
1742 1743
	rcu_read_unlock();

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1758
	unsigned int pkts_polled = 0;
1759

1760 1761
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1762
	if (r_vec->rx_ring)
1763
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1764

1765 1766 1767
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1782
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1783 1784 1785 1786

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1787
		dma_free_coherent(dp->dev, tx_ring->size,
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1799
 * @dp:        NFP Net data path struct
1800 1801 1802 1803
 * @tx_ring:   TX Ring structure to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1804
static int
1805
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1806 1807 1808 1809
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1810
	tx_ring->cnt = dp->txd_cnt;
1811 1812

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1813
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1814 1815 1816 1817 1818 1819 1820 1821 1822
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1823
	if (!tx_ring->is_xdp)
1824
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1825
				    tx_ring->idx);
1826 1827 1828 1829 1830 1831 1832 1833

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_tx_ring *tx_ring)
{
	unsigned int i;

	if (!tx_ring->is_xdp)
		return;

	for (i = 0; i < tx_ring->cnt; i++) {
		if (!tx_ring->txbufs[i].frag)
			return;

		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
	}
}

static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
	unsigned int i;

	if (!tx_ring->is_xdp)
		return 0;

	for (i = 0; i < tx_ring->cnt; i++) {
		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
		if (!txbufs[i].frag) {
			nfp_net_tx_ring_bufs_free(dp, tx_ring);
			return -ENOMEM;
		}
	}

	return 0;
}

1873
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1874 1875 1876
{
	unsigned int r;

1877 1878 1879 1880
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1881

1882
	for (r = 0; r < dp->num_tx_rings; r++) {
1883 1884
		int bias = 0;

1885 1886
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1887

1888
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
1889
				     r, bias);
1890

1891
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
1892
			goto err_free_prev;
1893 1894 1895

		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
			goto err_free_ring;
1896 1897
	}

1898
	return 0;
1899 1900

err_free_prev:
1901 1902 1903
	while (r--) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
1904
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1905
	}
1906 1907
	kfree(dp->tx_rings);
	return -ENOMEM;
1908 1909
}

1910
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1911 1912 1913
{
	unsigned int r;

1914 1915
	for (r = 0; r < dp->num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
1916
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1917
	}
1918

1919
	kfree(dp->tx_rings);
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1929
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1930 1931 1932 1933

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1934
		dma_free_coherent(dp->dev, rx_ring->size,
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1946
 * @dp:	      NFP Net data path struct
1947 1948 1949 1950
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1951
static int
1952
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1953 1954 1955
{
	int sz;

1956
	rx_ring->cnt = dp->rxd_cnt;
1957
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1958
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1975
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1976 1977 1978
{
	unsigned int r;

1979 1980 1981 1982
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1983

1984 1985
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1986

1987
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1988 1989
			goto err_free_prev;

1990
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1991 1992 1993
			goto err_free_ring;
	}

1994
	return 0;
1995 1996 1997

err_free_prev:
	while (r--) {
1998
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1999
err_free_ring:
2000
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2001
	}
2002 2003
	kfree(dp->rx_rings);
	return -ENOMEM;
2004 2005
}

2006
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2007 2008 2009
{
	unsigned int r;

2010 2011 2012
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2013 2014
	}

2015
	kfree(dp->rx_rings);
2016 2017
}

2018
static void
2019 2020
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
2021
{
2022
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2023
	r_vec->tx_ring =
2024
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2025

2026 2027
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2028 2029
}

2030 2031 2032
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
2033
{
2034
	int err;
2035

2036
	/* Setup NAPI */
2037
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
2038 2039
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2040
	snprintf(r_vec->name, sizeof(r_vec->name),
2041
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
2042 2043
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2044
	if (err) {
2045
		netif_napi_del(&r_vec->napi);
2046
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2047 2048
		return err;
	}
2049
	disable_irq(r_vec->irq_vector);
2050

2051
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2052

2053 2054
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2055

2056
	return 0;
2057 2058
}

2059 2060
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2061
{
2062
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2063
	netif_napi_del(&r_vec->napi);
2064
	free_irq(r_vec->irq_vector, r_vec);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2088
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2112
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2113 2114 2115 2116 2117
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2118
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2119 2120 2121 2122
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2123
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2124
 * @nn:      NFP Net device to reconfigure
2125
 * @addr:    MAC address to write
2126
 *
2127 2128 2129
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2130
 */
2131
static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2132
{
2133 2134
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2135 2136
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2148 2149 2150 2151 2152 2153 2154
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2155
	unsigned int r;
2156 2157
	int err;

2158
	new_ctrl = nn->dp.ctrl;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2172
	if (err)
2173 2174
		nn_err(nn, "Could not disable device: %d\n", err);

2175 2176 2177 2178 2179
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2180 2181
		nfp_net_vec_clear_ring_data(nn, r);

2182
	nn->dp.ctrl = new_ctrl;
2183 2184
}

2185
static void
2186 2187
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2188 2189
{
	/* Write the DMA address, size and MSI-X info to the device */
2190 2191
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2192
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2193
}
2194

2195 2196 2197 2198 2199 2200
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2201
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2202 2203
}

2204 2205 2206 2207 2208
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2209
{
2210
	u32 bufsz, new_ctrl, update = 0;
2211 2212 2213
	unsigned int r;
	int err;

2214
	new_ctrl = nn->dp.ctrl;
2215

2216
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2217 2218 2219 2220 2221 2222
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

2223
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2224 2225 2226 2227
		nfp_net_coalesce_write_cfg(nn);
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2228 2229 2230 2231
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2232

2233 2234
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2235

2236 2237
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2238

2239
	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2240

2241
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2242 2243 2244

	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2256 2257 2258 2259
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2260

2261
	nn->dp.ctrl = new_ctrl;
2262

2263
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2264
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2265

2266 2267 2268
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2269
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2270 2271
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2272
		udp_tunnel_get_rx_info(nn->dp.netdev);
2273 2274
	}

2275
	return 0;
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2286
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2287
		napi_enable(&nn->r_vecs[r].napi);
2288
		enable_irq(nn->r_vecs[r].irq_vector);
2289
	}
2290

2291
	netif_tx_wake_all_queues(nn->dp.netdev);
2292

2293
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2294 2295 2296
	nfp_net_read_link_status(nn);
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2312 2313 2314 2315 2316
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2317
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2318

2319
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2320 2321
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2322 2323
			goto err_cleanup_vec_p;
	}
2324

2325 2326
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2327
		goto err_cleanup_vec;
2328

2329 2330
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2331
		goto err_free_rx_rings;
2332

2333
	for (r = 0; r < nn->max_r_vecs; r++)
2334
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2335

2336
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2337 2338 2339
	if (err)
		goto err_free_rings;

2340
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2351
	err = nfp_net_set_config_and_enable(nn);
2352
	if (err)
2353
		goto err_free_rings;
2354 2355 2356 2357 2358 2359 2360

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2361
	nfp_net_open_stack(nn);
2362 2363 2364 2365

	return 0;

err_free_rings:
2366
	nfp_net_tx_rings_free(&nn->dp);
2367
err_free_rx_rings:
2368
	nfp_net_rx_rings_free(&nn->dp);
2369
err_cleanup_vec:
2370
	r = nn->dp.num_r_vecs;
2371
err_cleanup_vec_p:
2372
	while (r--)
2373
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2374
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2375 2376 2377 2378 2379 2380
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2381 2382
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2383
 */
2384
static void nfp_net_close_stack(struct nfp_net *nn)
2385
{
2386
	unsigned int r;
2387

2388
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2389
	netif_carrier_off(nn->dp.netdev);
2390 2391
	nn->link_up = false;

2392
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2393
		disable_irq(nn->r_vecs[r].irq_vector);
2394
		napi_disable(&nn->r_vecs[r].napi);
2395
	}
2396

2397
	netif_tx_disable(nn->dp.netdev);
2398
}
2399

2400 2401 2402 2403 2404 2405 2406
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2407

2408
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2409
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2410
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2411
	}
2412 2413
	for (r = 0; r < nn->dp.num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(&nn->dp, &nn->dp.tx_rings[r]);
2414
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
2415
	}
2416
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2417
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2418

2419 2420
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2421

2422
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2423
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2455
	new_ctrl = nn->dp.ctrl;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2466
	if (new_ctrl == nn->dp.ctrl)
2467 2468 2469
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2470
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2471

2472
	nn->dp.ctrl = new_ctrl;
2473 2474
}

2475 2476 2477 2478 2479 2480
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2481
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2482 2483
}

2484 2485 2486 2487 2488 2489
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2490 2491

	nn->dp.netdev->mtu = new_dp.mtu;
2492 2493 2494

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2495 2496
}

2497
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2498
{
2499
	unsigned int r;
2500
	int err;
2501

2502
	nfp_net_dp_swap(nn, dp);
2503

2504
	for (r = 0; r <	nn->max_r_vecs; r++)
2505
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2506

2507
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2508 2509
	if (err)
		return err;
2510

2511 2512 2513
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2514 2515 2516 2517
		if (err)
			return err;
	}

2518
	return nfp_net_set_config_and_enable(nn);
2519
}
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2541 2542 2543
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct netlink_ext_ack *extack)
2544 2545
{
	/* XDP-enabled tests */
2546
	if (!dp->xdp_prog)
2547
		return 0;
2548
	if (dp->fl_bufsz > PAGE_SIZE) {
2549
		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2550 2551
		return -EINVAL;
	}
2552
	if (dp->num_tx_rings > nn->max_tx_rings) {
2553
		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2554 2555 2556 2557 2558 2559
		return -EINVAL;
	}

	return 0;
}

2560 2561
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
			  struct netlink_ext_ack *extack)
2562
{
2563
	int r, err;
2564

2565
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2566

2567
	dp->num_stack_tx_rings = dp->num_tx_rings;
2568
	if (dp->xdp_prog)
2569
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2570

2571
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2572

2573
	err = nfp_net_check_config(nn, dp, extack);
2574
	if (err)
2575
		goto exit_free_dp;
2576

2577
	if (!netif_running(dp->netdev)) {
2578
		nfp_net_dp_swap(nn, dp);
2579 2580
		err = 0;
		goto exit_free_dp;
2581 2582 2583
	}

	/* Prepare new rings */
2584
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2585 2586
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2587
			dp->num_r_vecs = r;
2588 2589 2590
			goto err_cleanup_vecs;
		}
	}
2591 2592 2593 2594 2595 2596 2597 2598

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2599 2600 2601 2602 2603

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2604
	err = nfp_net_dp_swap_enable(nn, dp);
2605
	if (err) {
2606
		int err2;
2607

2608
		nfp_net_clear_config_and_disable(nn);
2609

2610
		/* Try with old configuration and old rings */
2611
		err2 = nfp_net_dp_swap_enable(nn, dp);
2612
		if (err2)
2613
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2614
			       err, err2);
2615
	}
2616
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2617
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2618

2619 2620
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2621 2622

	nfp_net_open_stack(nn);
2623 2624
exit_free_dp:
	kfree(dp);
2625 2626

	return err;
2627 2628

err_free_rx:
2629
	nfp_net_rx_rings_free(dp);
2630
err_cleanup_vecs:
2631
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2632
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2633
	kfree(dp);
2634 2635 2636 2637 2638 2639
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2640 2641 2642 2643 2644
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2645

2646 2647
	dp->mtu = new_mtu;

2648
	return nfp_net_ring_reconfig(nn, dp, NULL);
2649 2650
}

2651 2652
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2653 2654 2655 2656
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2657
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
2699
		return -EOPNOTSUPP;
2700
	if (proto != htons(ETH_P_ALL))
2701
		return -EOPNOTSUPP;
2702

2703
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2704
		if (!nn->dp.bpf_offload_xdp)
2705 2706 2707 2708
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2709 2710 2711 2712

	return -EINVAL;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2723
	new_ctrl = nn->dp.ctrl;
2724 2725 2726

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
2727
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
2728
		else
2729
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
E
Edwin Peer 已提交
2741 2742
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					      NFP_NET_CFG_CTRL_LSO;
2743
		else
E
Edwin Peer 已提交
2744
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2768
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2769 2770 2771 2772
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2773 2774 2775
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2776
	if (new_ctrl == nn->dp.ctrl)
2777 2778
		return 0;

2779
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2780 2781 2782 2783 2784
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2785
	nn->dp.ctrl = new_ctrl;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2822
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 2824 2825 2826 2827 2828 2829 2830
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2831
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2848
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2849 2850 2851 2852 2853 2854 2855 2856
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2857
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2884
				   struct udp_tunnel_info *ti)
2885 2886 2887 2888
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2889 2890 2891 2892
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2893 2894 2895 2896
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2897
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2898 2899 2900
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2901
				   struct udp_tunnel_info *ti)
2902 2903 2904 2905
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2906 2907 2908 2909
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2910
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2911 2912 2913 2914 2915 2916
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2927 2928
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2941
	nn->dp.bpf_offload_xdp = prog && !ret;
2942 2943 2944
	return ret;
}

2945
static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp)
2946
{
2947
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2948
	struct bpf_prog *prog = xdp->prog;
2949
	struct nfp_net_dp *dp;
2950 2951
	int err;

2952
	if (!prog && !nn->dp.xdp_prog)
2953
		return 0;
2954 2955
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2956
		bpf_prog_put(prog);
2957
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2958 2959 2960
		return 0;
	}

2961 2962 2963 2964
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2965
	dp->xdp_prog = prog;
2966
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2967
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2968
	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2969 2970

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2971
	err = nfp_net_ring_reconfig(nn, dp, xdp->extack);
2972 2973 2974
	if (err)
		return err;

2975 2976
	if (old_prog)
		bpf_prog_put(old_prog);
2977

2978
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
2989
		return nfp_net_xdp_setup(nn, xdp);
2990
	case XDP_QUERY_PROG:
2991
		xdp->prog_attached = !!nn->dp.xdp_prog;
2992 2993 2994 2995 2996 2997
		return 0;
	default:
		return -EINVAL;
	}
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct sockaddr *saddr = addr;
	int err;

	err = eth_prepare_mac_addr_change(netdev, addr);
	if (err)
		return err;

	nfp_net_write_mac_addr(nn, saddr->sa_data);

	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
	if (err)
		return err;

	eth_commit_mac_addr_change(netdev, addr);

	return 0;
}

J
Jakub Kicinski 已提交
3019
const struct net_device_ops nfp_net_netdev_ops = {
3020 3021 3022 3023
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3024
	.ndo_setup_tc		= nfp_net_setup_tc,
3025 3026 3027
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
3028
	.ndo_set_mac_address	= nfp_net_set_mac_address,
3029 3030
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
J
Jakub Kicinski 已提交
3031
	.ndo_get_phys_port_name	= nfp_port_get_phys_port_name,
3032 3033
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3034
	.ndo_xdp		= nfp_net_xdp,
3035 3036 3037 3038 3039 3040 3041 3042
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3043
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3044 3045 3046
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3047 3048 3049 3050
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3051
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
E
Edwin Peer 已提交
3062 3063
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3064 3065
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3066 3067 3068 3069
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3070
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3071 3072
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "",
		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3073 3074
						      "RXCSUM_COMPLETE " : "",
		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "");
3075 3076 3077
}

/**
3078
 * nfp_net_alloc() - Allocate netdev and related structure
3079 3080 3081 3082 3083 3084 3085 3086 3087
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
3088 3089 3090
struct nfp_net *nfp_net_alloc(struct pci_dev *pdev,
			      unsigned int max_tx_rings,
			      unsigned int max_rx_rings)
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3103 3104
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3105 3106 3107 3108 3109
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3110 3111 3112
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3113
				 netif_get_num_default_rss_queues());
3114

3115 3116 3117
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3118

3119 3120
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3121 3122

	spin_lock_init(&nn->reconfig_lock);
3123
	spin_lock_init(&nn->rx_filter_lock);
3124 3125
	spin_lock_init(&nn->link_status_lock);

3126 3127
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3128 3129
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3130

3131 3132 3133 3134
	return nn;
}

/**
3135
 * nfp_net_free() - Undo what @nfp_net_alloc() did
3136 3137
 * @nn:      NFP Net device to reconfigure
 */
3138
void nfp_net_free(struct nfp_net *nn)
3139
{
3140
	free_netdev(nn->dp.netdev);
3141 3142
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3164 3165 3166 3167 3168 3169
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3182
		dev_warn(nn->dp.dev,
3183 3184 3185 3186 3187 3188
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3189

3190
	nfp_net_rss_init_itbl(nn);
3191 3192 3193 3194

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3195
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
3212 3213
 * nfp_net_init() - Initialise/finalise the nfp_net structure
 * @nn:		NFP Net device structure
3214 3215 3216
 *
 * Return: 0 on success or negative errno on error.
 */
3217
int nfp_net_init(struct nfp_net *nn)
3218
{
3219
	struct net_device *netdev = nn->dp.netdev;
3220 3221
	int err;

3222 3223
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3224 3225 3226 3227
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3228 3229 3230 3231 3232 3233
	/* Chained metadata is signalled by capabilities except in version 4 */
	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;

3234
	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3235

3236
	/* Determine RX packet/metadata boundary offset */
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3247
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3248
	}
3249

3250 3251 3252 3253 3254
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3255 3256
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3257 3258 3259 3260 3261 3262 3263

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
3264 3265 3266
	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;

3267
	netdev->hw_features = NETIF_F_HIGHDMA;
3268
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3269
		netdev->hw_features |= NETIF_F_RXCSUM;
3270
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3271 3272 3273
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3274
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3275 3276 3277
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3278
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3279
	}
E
Edwin Peer 已提交
3280 3281
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3282
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
E
Edwin Peer 已提交
3283 3284
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					 NFP_NET_CFG_CTRL_LSO;
3285
	}
3286
	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3287 3288
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3289 3290
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
					 NFP_NET_CFG_CTRL_RSS;
3291 3292 3293 3294 3295 3296
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3297
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3298 3299 3300 3301 3302 3303 3304 3305

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3306
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3307 3308
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
E
Edwin Peer 已提交
3309 3310 3311 3312 3313 3314
		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
		} else {
			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		}
3315 3316 3317 3318
	}

	netdev->features = netdev->hw_features;

3319 3320 3321
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3322 3323
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
E
Edwin Peer 已提交
3324
	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3325 3326 3327

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3328
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3329
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3330
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3331 3332 3333 3334

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3335
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3353 3354 3355 3356 3357

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3358
	netif_carrier_off(netdev);
3359 3360

	nfp_net_set_ethtool_ops(netdev);
3361
	nfp_net_vecs_init(nn);
3362 3363 3364 3365 3366

	return register_netdev(netdev);
}

/**
3367 3368
 * nfp_net_clean() - Undo what nfp_net_init() did.
 * @nn:		NFP Net device structure
3369
 */
3370
void nfp_net_clean(struct nfp_net *nn)
3371
{
3372
	unregister_netdev(nn->dp.netdev);
3373

3374 3375 3376
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3377
		nfp_net_xdp_offload(nn, NULL);
3378
}