nfp_net_common.c 87.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp.h"
71 72
#include "nfp_net_ctrl.h"
#include "nfp_net.h"
J
Jakub Kicinski 已提交
73
#include "nfp_port.h"
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

89
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
90
{
91 92 93 94 95 96 97 98 99 100 101
	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
{
	dma_sync_single_for_device(dp->dev, dma_addr,
				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
				   dp->rx_dma_dir);
102 103
}

104
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
105
{
106 107 108 109 110 111 112 113 114 115
	dma_unmap_single_attrs(dp->dev, dma_addr,
			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
}

static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
				    unsigned int len)
{
	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
				len, dp->rx_dma_dir);
116 117
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

228 229 230 231 232 233 234 235 236 237 238 239 240
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
241 242 243
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
244 245 246

	spin_lock_bh(&nn->reconfig_lock);

247
	nn->reconfig_sync_present = true;
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
266 267
	}

268 269 270 271 272 273 274 275 276 277
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

278
	spin_unlock_bh(&nn->reconfig_lock);
279

280 281 282 283 284 285 286 287 288 289 290
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
291
 * Clear the ICR for the IRQ entry.
292 293 294 295 296 297 298 299
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
300 301 302 303 304
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
305
 *
306
 * Return: Number of irqs obtained or 0 on error.
307
 */
308 309 310
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
311
{
312 313
	unsigned int i;
	int got_irqs;
314

315 316
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
317

318 319 320 321 322
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
323 324 325
		return 0;
	}

326 327 328 329 330
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
331 332 333
}

/**
334 335 336 337
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
338
 *
339 340
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
341
 */
342 343 344
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
345
{
346 347
	struct nfp_net_dp *dp = &nn->dp;

348
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
349
	dp->num_r_vecs = nn->max_r_vecs;
350

351
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
352

353 354
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
355 356 357
		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
			 dp->num_rx_rings, dp->num_tx_rings,
			 dp->num_r_vecs);
358

359 360 361
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
362 363 364 365
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
366
 * @pdev:        PCI device structure
367 368 369
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
370
void nfp_net_irqs_disable(struct pci_dev *pdev)
371
{
372
	pci_disable_msix(pdev);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

J
Jakub Kicinski 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
bool nfp_net_link_changed_read_clear(struct nfp_net *nn)
{
	unsigned long flags;
	bool ret;

	spin_lock_irqsave(&nn->link_status_lock, flags);
	ret = nn->link_changed;
	nn->link_changed = false;
	spin_unlock_irqrestore(&nn->link_status_lock, flags);

	return ret;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;
J
Jakub Kicinski 已提交
427
	nn->link_changed = true;
428 429

	if (nn->link_up) {
430 431
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
432
	} else {
433 434
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
450 451 452
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
453 454 455

	nfp_net_read_link_status(nn);

456
	nfp_net_irq_unmask(nn, entry->entry);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
480 481
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
482
 * @is_xdp:   Is this an XDP TX ring?
483
 */
484 485
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
486 487
		     struct nfp_net_r_vector *r_vec, unsigned int idx,
		     bool is_xdp)
488 489 490
{
	struct nfp_net *nn = r_vec->nfp_net;

491 492
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;
493
	tx_ring->is_xdp = is_xdp;
494

495 496 497 498 499 500 501
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
502 503
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
504
 */
505 506 507
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
508 509 510
{
	struct nfp_net *nn = r_vec->nfp_net;

511 512 513
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

514 515 516 517 518
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}

/**
519
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
520
 * @nn:		NFP Network structure
521
 */
522
static void nfp_net_vecs_init(struct nfp_net *nn)
523 524 525 526 527 528 529
{
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

530
	for (r = 0; r < nn->max_r_vecs; r++) {
531 532 533 534
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

535 536 537
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
538 539
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

565
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
566 567 568 569 570 571
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
572
	nn_writeb(nn, ctrl_offset, entry->entry);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
614
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
660
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
661 662 663 664 665 666 667 668 669
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

E
Edwin Peer 已提交
670 671 672
	if (!skb->encapsulation) {
		txd->l3_offset = skb_network_offset(skb);
		txd->l4_offset = skb_transport_offset(skb);
673
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
E
Edwin Peer 已提交
674 675 676
	} else {
		txd->l3_offset = skb_inner_network_offset(skb);
		txd->l4_offset = skb_inner_transport_offset(skb);
677 678
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);
E
Edwin Peer 已提交
679
	}
680 681 682 683 684

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
685
	txd->lso_hdrlen = hdrlen;
686 687 688 689 690 691 692 693 694 695
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
696
 * @dp:  NFP Net data path struct
697 698 699 700 701 702 703 704
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
705 706
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
707 708 709 710 711 712 713
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

714
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
733
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
734 735 736 737 738 739 740 741 742 743 744
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
745
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
746 747 748 749 750 751 752 753 754 755 756
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

757 758 759 760 761 762 763
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

764 765 766 767 768 769 770 771 772 773 774 775 776
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
777 778
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
779
	struct netdev_queue *nd_q;
780
	struct nfp_net_dp *dp;
781 782 783 784 785 786
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

787
	dp = &nn->dp;
788
	qidx = skb_get_queue_mapping(skb);
789
	tx_ring = &dp->tx_rings[qidx];
790
	r_vec = tx_ring->r_vec;
791
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
792 793 794 795

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
796 797
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
798
		netif_tx_stop_queue(nd_q);
799
		nfp_net_tx_xmit_more_flush(tx_ring);
800 801 802 803 804 805 806
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
807
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
808
				  DMA_TO_DEVICE);
809
	if (dma_mapping_error(dp->dev, dma_addr))
810 811
		goto err_free;

812
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
831
	txd->lso_hdrlen = 0;
832

E
Edwin Peer 已提交
833
	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
834 835 836
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
837 838 839 840 841 842 843 844 845 846 847 848 849
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

850
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
851
						    fsize, DMA_TO_DEVICE);
852
			if (dma_mapping_error(dp->dev, dma_addr))
853 854
				goto err_unmap;

855
			wr_idx = D_IDX(tx_ring, wr_idx + 1);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
880 881
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
882 883 884 885 886 887 888 889 890

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
891
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
892 893 894 895 896 897 898 899
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
900
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
901 902 903 904 905
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
906
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
907
	nfp_net_tx_xmit_more_flush(tx_ring);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
924
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
925 926 927 928 929 930 931 932 933
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

934 935 936
	if (tx_ring->wr_p == tx_ring->rd_p)
		return;

937 938 939 940 941 942
	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

943
	todo = D_IDX(tx_ring, qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p);
944 945

	while (todo--) {
946
		idx = D_IDX(tx_ring, tx_ring->rd_p++);
947 948 949 950 951 952 953 954 955 956

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
957
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
958 959 960 961 962 963 964
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
965
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

985
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
986 987 988 989 990 991 992 993 994 995 996 997 998 999
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1000
static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1001 1002 1003
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	u32 done_pkts = 0, done_bytes = 0;
1004
	bool done_all;
1005 1006 1007 1008 1009 1010 1011
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
1012
		return true;
1013

1014
	todo = D_IDX(tx_ring, qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p);
1015

1016 1017 1018
	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);

1019
	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1020

1021
	done_pkts = todo;
1022
	while (todo--) {
1023
		idx = D_IDX(tx_ring, tx_ring->rd_p);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		tx_ring->rd_p++;

		done_bytes += tx_ring->txbufs[idx].real_len;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1035
		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1036
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1037 1038

	return done_all;
1039 1040
}

1041
/**
1042
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1043
 * @dp:		NFP Net data path struct
1044
 * @tx_ring:	TX ring structure
1045 1046 1047
 *
 * Assumes that the device is stopped
 */
1048
static void
1049
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1050 1051
{
	const struct skb_frag_struct *frag;
1052
	struct netdev_queue *nd_q;
1053

1054
	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1055
		struct nfp_net_tx_buf *tx_buf;
1056 1057
		struct sk_buff *skb;
		int idx, nr_frags;
1058

1059
		idx = D_IDX(tx_ring, tx_ring->rd_p);
1060
		tx_buf = &tx_ring->txbufs[idx];
1061

1062 1063
		skb = tx_ring->txbufs[idx].skb;
		nr_frags = skb_shinfo(skb)->nr_frags;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (tx_buf->fidx == -1) {
			/* unmap head */
			dma_unmap_single(dp->dev, tx_buf->dma_addr,
					 skb_headlen(skb), DMA_TO_DEVICE);
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
			dma_unmap_page(dp->dev, tx_buf->dma_addr,
				       skb_frag_size(frag), DMA_TO_DEVICE);
1074
		}
1075

1076 1077 1078 1079
		/* check for last gather fragment */
		if (tx_buf->fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

1080 1081 1082
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1083 1084 1085 1086 1087

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1088 1089 1090 1091 1092 1093
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1094
	if (tx_ring->is_xdp)
1095 1096
		return;

1097
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1098 1099 1100 1101 1102 1103 1104 1105
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1106
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1107 1108 1109 1110 1111 1112 1113 1114 1115
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1116
static unsigned int
1117
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1118 1119 1120
{
	unsigned int fl_bufsz;

1121
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1122
	fl_bufsz += dp->rx_dma_off;
1123
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1124
		fl_bufsz += NFP_NET_MAX_PREPEND;
1125
	else
1126
		fl_bufsz += dp->rx_offset;
1127
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1128

1129 1130 1131
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1132 1133
	return fl_bufsz;
}
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1144
/**
1145
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1146
 * @dp:		NFP Net data path struct
1147 1148
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1149
 * This function will allcate a new page frag, map it for DMA.
1150
 *
1151
 * Return: allocated page frag or NULL on failure.
1152
 */
1153
static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1154
{
1155
	void *frag;
1156

1157
	if (!dp->xdp_prog)
1158
		frag = netdev_alloc_frag(dp->fl_bufsz);
1159 1160
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1161
	if (!frag) {
1162
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1163 1164 1165
		return NULL;
	}

1166
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1167
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1168
		nfp_net_free_frag(frag, dp->xdp_prog);
1169
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1170 1171 1172
		return NULL;
	}

1173
	return frag;
1174 1175
}

1176
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1177 1178 1179
{
	void *frag;

1180 1181
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1182 1183
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1184
	if (!frag) {
1185
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1186 1187 1188
		return NULL;
	}

1189
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1190 1191 1192
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1193 1194 1195 1196 1197 1198
		return NULL;
	}

	return frag;
}

1199 1200
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1201
 * @dp:		NFP Net data path struct
1202
 * @rx_ring:	RX ring structure
1203
 * @frag:	page fragment buffer
1204 1205
 * @dma_addr:	DMA address of skb mapping
 */
1206 1207
static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
				struct nfp_net_rx_ring *rx_ring,
1208
				void *frag, dma_addr_t dma_addr)
1209 1210 1211
{
	unsigned int wr_idx;

1212
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1213

1214 1215
	nfp_net_dma_sync_dev_rx(dp, dma_addr);

1216
	/* Stash SKB and DMA address away */
1217
	rx_ring->rxbufs[wr_idx].frag = frag;
1218 1219 1220 1221 1222
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1223 1224
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
			      dma_addr + dp->rx_dma_off);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1239 1240
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1241
 *
1242 1243
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1244
 */
1245
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1246
{
1247
	unsigned int wr_idx, last_idx;
1248

1249
	/* Move the empty entry to the end of the list */
1250
	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1251 1252
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1253
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1254
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1255
	rx_ring->rxbufs[last_idx].frag = NULL;
1256

1257 1258 1259 1260 1261
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1262

1263 1264
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1265
 * @dp:		NFP Net data path struct
1266 1267 1268 1269 1270 1271 1272
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1273
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1274
			  struct nfp_net_rx_ring *rx_ring)
1275 1276
{
	unsigned int i;
1277

1278 1279 1280 1281 1282
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1283
		if (!rx_ring->rxbufs[i].frag)
1284 1285
			continue;

1286
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1287
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1288
		rx_ring->rxbufs[i].dma_addr = 0;
1289
		rx_ring->rxbufs[i].frag = NULL;
1290 1291 1292 1293
	}
}

/**
1294
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1295
 * @dp:		NFP Net data path struct
1296
 * @rx_ring:	RX ring to remove buffers from
1297
 */
1298
static int
1299
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1300
			   struct nfp_net_rx_ring *rx_ring)
1301
{
1302 1303 1304 1305
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1306

1307
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1308
		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1309
		if (!rxbufs[i].frag) {
1310
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1311 1312 1313 1314 1315 1316 1317
			return -ENOMEM;
		}
	}

	return 0;
}

1318 1319
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1320
 * @dp:	     NFP Net data path struct
1321 1322
 * @rx_ring: RX ring to fill
 */
1323 1324 1325
static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
			      struct nfp_net_rx_ring *rx_ring)
1326 1327 1328 1329
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1330
		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1331 1332 1333
				    rx_ring->rxbufs[i].dma_addr);
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1350
 * @dp:  NFP Net data path struct
1351 1352
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
1353
 * @meta: Parsed metadata prepend
1354 1355
 * @skb: Pointer to SKB
 */
1356 1357
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1358 1359
			    struct nfp_net_rx_desc *rxd,
			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1360 1361 1362
{
	skb_checksum_none_assert(skb);

1363
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1364 1365
		return;

1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (meta->csum_type) {
		skb->ip_summed = meta->csum_type;
		skb->csum = meta->csum;
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

1403 1404 1405
static void
nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
		 unsigned int type, __be32 *hash)
1406
{
1407
	if (!(netdev->features & NETIF_F_RXHASH))
1408 1409
		return;

1410
	switch (type) {
1411 1412 1413
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1414
		meta->hash_type = PKT_HASH_TYPE_L3;
1415 1416
		break;
	default:
1417
		meta->hash_type = PKT_HASH_TYPE_L4;
1418 1419
		break;
	}
1420 1421

	meta->hash = get_unaligned_be32(hash);
1422 1423
}

1424
static void
1425
nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1426
		      void *data, struct nfp_net_rx_desc *rxd)
1427
{
1428
	struct nfp_net_rx_hash *rx_hash = data;
1429 1430 1431 1432

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

1433
	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1434 1435 1436 1437
			 &rx_hash->hash);
}

static void *
1438
nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1439
		   void *data, int meta_len)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
1450
			nfp_net_set_hash(netdev, meta,
1451 1452 1453 1454 1455
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
1456
			meta->mark = get_unaligned_be32(data);
1457 1458
			data += 4;
			break;
1459 1460 1461 1462 1463 1464
		case NFP_NET_META_CSUM:
			meta->csum_type = CHECKSUM_COMPLETE;
			meta->csum =
				(__force __wsum)__get_unaligned_cpu32(data);
			data += 4;
			break;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1475
static void
1476 1477 1478
nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
		struct sk_buff *skb)
1479 1480 1481 1482 1483
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1484 1485 1486 1487 1488
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1489
	if (rxbuf)
1490
		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1491 1492 1493 1494
	if (skb)
		dev_kfree_skb_any(skb);
}

1495
static bool
1496
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1497
		   struct nfp_net_tx_ring *tx_ring,
1498
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1499
		   unsigned int pkt_len, bool *completed)
1500 1501 1502 1503 1504 1505
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		if (!*completed) {
			nfp_net_xdp_complete(tx_ring);
			*completed = true;
		}

		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
					NULL);
			return false;
		}
1516 1517
	}

1518
	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1519 1520 1521

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
1522 1523 1524

	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);

1525 1526 1527 1528 1529 1530
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1531
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1532
				   pkt_len, DMA_BIDIRECTIONAL);
1533 1534 1535 1536 1537

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1538
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1539 1540 1541 1542
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
1543
	txd->lso_hdrlen = 0;
1544 1545 1546

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1547
	return true;
1548 1549
}

1550 1551
static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
			   unsigned int *off, unsigned int *len)
1552 1553
{
	struct xdp_buff xdp;
1554 1555 1556 1557 1558 1559
	void *orig_data;
	int ret;

	xdp.data_hard_start = hard_start;
	xdp.data = data + *off;
	xdp.data_end = data + *off + *len;
1560

1561 1562
	orig_data = xdp.data;
	ret = bpf_prog_run_xdp(prog, &xdp);
1563

1564 1565 1566 1567
	*len -= xdp.data - orig_data;
	*off += xdp.data - orig_data;

	return ret;
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1584
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1585 1586
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
1587
	bool xdp_tx_cmpl = false;
1588
	unsigned int true_bufsz;
1589
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1590
	int pkts_polled = 0;
1591 1592
	int idx;

1593
	rcu_read_lock();
1594 1595
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1596 1597
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1598
	while (pkts_polled < budget) {
1599
		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1600 1601
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
1602
		struct nfp_meta_parsed meta;
1603 1604 1605
		dma_addr_t new_dma_addr;
		void *new_frag;

1606
		idx = D_IDX(rx_ring, rx_ring->rd_p);
1607 1608

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1609
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1610
			break;
J
Jakub Kicinski 已提交
1611

1612 1613 1614 1615 1616
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

1617 1618
		memset(&meta, 0, sizeof(meta));

1619 1620 1621
		rx_ring->rd_p++;
		pkts_polled++;

1622
		rxbuf =	&rx_ring->rxbufs[idx];
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1635 1636
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1637
		pkt_len = data_len - meta_len;
1638

1639
		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1640
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1641
			pkt_off += meta_len;
1642
		else
1643 1644
			pkt_off += dp->rx_offset;
		meta_off = pkt_off - meta_len;
1645 1646 1647 1648

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1649
		r_vec->rx_bytes += pkt_len;
1650 1651
		u64_stats_update_end(&r_vec->rx_sync);

1652 1653 1654 1655
		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
1656
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1657 1658 1659
			continue;
		}

1660 1661 1662
		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
					data_len);

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		if (!dp->chained_metadata_format) {
			nfp_net_set_hash_desc(dp->netdev, &meta,
					      rxbuf->frag + meta_off, rxd);
		} else if (meta_len) {
			void *end;

			end = nfp_net_parse_meta(dp->netdev, &meta,
						 rxbuf->frag + meta_off,
						 meta_len);
			if (unlikely(end != rxbuf->frag + pkt_off)) {
				nn_dp_warn(dp, "invalid RX packet metadata\n");
				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
						NULL);
				continue;
			}
		}

1680
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1681
				  dp->bpf_offload_xdp)) {
1682
			unsigned int dma_off;
1683
			void *hard_start;
1684 1685
			int act;

1686 1687 1688
			hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;

			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1689
					      &pkt_off, &pkt_len);
1690 1691 1692 1693
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1694
				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1695
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1696
								 tx_ring, rxbuf,
1697
								 dma_off,
1698 1699
								 pkt_len,
								 &xdp_tx_cmpl)))
1700 1701
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1702 1703 1704 1705
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1706
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1707
			case XDP_DROP:
1708
				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1709 1710 1711 1712 1713 1714
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1715
		if (unlikely(!skb)) {
1716
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1717 1718
			continue;
		}
1719
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1720
		if (unlikely(!new_frag)) {
1721
			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1722 1723 1724
			continue;
		}

1725
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1726

1727
		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1728

1729
		skb_reserve(skb, pkt_off);
1730 1731
		skb_put(skb, pkt_len);

1732 1733
		skb->mark = meta.mark;
		skb_set_hash(skb, meta.hash, meta.hash_type);
1734

1735
		skb_record_rx_queue(skb, rx_ring->idx);
1736
		skb->protocol = eth_type_trans(skb, dp->netdev);
1737

1738
		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1739 1740 1741 1742 1743 1744 1745 1746

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1747 1748 1749 1750 1751 1752 1753 1754
	if (xdp_prog) {
		if (tx_ring->wr_ptr_add)
			nfp_net_tx_xmit_more_flush(tx_ring);
		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
			 !xdp_tx_cmpl)
			if (!nfp_net_xdp_complete(tx_ring))
				pkts_polled = budget;
	}
1755 1756
	rcu_read_unlock();

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1771
	unsigned int pkts_polled = 0;
1772

1773 1774
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1775
	if (r_vec->rx_ring)
1776
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1777

1778 1779 1780
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1795
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1796 1797 1798 1799

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1800
		dma_free_coherent(dp->dev, tx_ring->size,
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1812
 * @dp:        NFP Net data path struct
1813 1814 1815 1816
 * @tx_ring:   TX Ring structure to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1817
static int
1818
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1819 1820 1821 1822
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1823
	tx_ring->cnt = dp->txd_cnt;
1824 1825

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1826
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1827 1828 1829 1830 1831 1832 1833 1834 1835
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1836
	if (!tx_ring->is_xdp)
1837
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1838
				    tx_ring->idx);
1839 1840 1841 1842 1843 1844 1845 1846

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
			  struct nfp_net_tx_ring *tx_ring)
{
	unsigned int i;

	if (!tx_ring->is_xdp)
		return;

	for (i = 0; i < tx_ring->cnt; i++) {
		if (!tx_ring->txbufs[i].frag)
			return;

		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
	}
}

static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
			   struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
	unsigned int i;

	if (!tx_ring->is_xdp)
		return 0;

	for (i = 0; i < tx_ring->cnt; i++) {
		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
		if (!txbufs[i].frag) {
			nfp_net_tx_ring_bufs_free(dp, tx_ring);
			return -ENOMEM;
		}
	}

	return 0;
}

1886
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1887 1888 1889
{
	unsigned int r;

1890 1891 1892 1893
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1894

1895
	for (r = 0; r < dp->num_tx_rings; r++) {
1896 1897
		int bias = 0;

1898 1899
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1900

1901
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
1902
				     r, bias);
1903

1904
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
1905
			goto err_free_prev;
1906 1907 1908

		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
			goto err_free_ring;
1909 1910
	}

1911
	return 0;
1912 1913

err_free_prev:
1914 1915 1916
	while (r--) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
1917
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1918
	}
1919 1920
	kfree(dp->tx_rings);
	return -ENOMEM;
1921 1922
}

1923
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1924 1925 1926
{
	unsigned int r;

1927 1928
	for (r = 0; r < dp->num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
1929
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1930
	}
1931

1932
	kfree(dp->tx_rings);
1933 1934
}

1935 1936 1937 1938 1939 1940 1941
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1942
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1943 1944 1945 1946

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1947
		dma_free_coherent(dp->dev, rx_ring->size,
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1959
 * @dp:	      NFP Net data path struct
1960 1961 1962 1963
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1964
static int
1965
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1966 1967 1968
{
	int sz;

1969
	rx_ring->cnt = dp->rxd_cnt;
1970
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1971
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1988
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1989 1990 1991
{
	unsigned int r;

1992 1993 1994 1995
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1996

1997 1998
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1999

2000
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2001 2002
			goto err_free_prev;

2003
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2004 2005 2006
			goto err_free_ring;
	}

2007
	return 0;
2008 2009 2010

err_free_prev:
	while (r--) {
2011
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2012
err_free_ring:
2013
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2014
	}
2015 2016
	kfree(dp->rx_rings);
	return -ENOMEM;
2017 2018
}

2019
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2020 2021 2022
{
	unsigned int r;

2023 2024 2025
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2026 2027
	}

2028
	kfree(dp->rx_rings);
2029 2030
}

2031
static void
2032 2033
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
2034
{
2035
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2036
	r_vec->tx_ring =
2037
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2038

2039 2040
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2041 2042
}

2043 2044 2045
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
2046
{
2047
	int err;
2048

2049
	/* Setup NAPI */
2050
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
2051 2052
		       nfp_net_poll, NAPI_POLL_WEIGHT);

2053
	snprintf(r_vec->name, sizeof(r_vec->name),
2054
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
2055 2056
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
2057
	if (err) {
2058
		netif_napi_del(&r_vec->napi);
2059
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2060 2061
		return err;
	}
2062
	disable_irq(r_vec->irq_vector);
2063

2064
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2065

2066 2067
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
2068

2069
	return 0;
2070 2071
}

2072 2073
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2074
{
2075
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2076
	netif_napi_del(&r_vec->napi);
2077
	free_irq(r_vec->irq_vector, r_vec);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

2101
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2125
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2126 2127 2128 2129 2130
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2131
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2132 2133 2134 2135
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2136
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2137 2138
 * @nn:      NFP Net device to reconfigure
 *
2139 2140 2141
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2142
 */
2143
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2144 2145
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2146
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2147
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2148
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2149 2150
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2162 2163 2164 2165 2166 2167 2168
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2169
	unsigned int r;
2170 2171
	int err;

2172
	new_ctrl = nn->dp.ctrl;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2186
	if (err)
2187 2188
		nn_err(nn, "Could not disable device: %d\n", err);

2189 2190 2191 2192 2193
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2194 2195
		nfp_net_vec_clear_ring_data(nn, r);

2196
	nn->dp.ctrl = new_ctrl;
2197 2198
}

2199
static void
2200 2201
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2202 2203
{
	/* Write the DMA address, size and MSI-X info to the device */
2204 2205
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2206
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2207
}
2208

2209 2210 2211 2212 2213 2214
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2215
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2216 2217
}

2218 2219 2220 2221 2222
/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2223
{
2224
	u32 bufsz, new_ctrl, update = 0;
2225 2226 2227
	unsigned int r;
	int err;

2228
	new_ctrl = nn->dp.ctrl;
2229

2230
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2231 2232 2233 2234 2235 2236
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

2237
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2238 2239 2240 2241
		nfp_net_coalesce_write_cfg(nn);
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2242 2243 2244 2245
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2246

2247 2248
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2249

2250 2251
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2252

2253
	nfp_net_write_mac_addr(nn);
2254

2255
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2256 2257 2258

	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2270 2271 2272 2273
	if (err) {
		nfp_net_clear_config_and_disable(nn);
		return err;
	}
2274

2275
	nn->dp.ctrl = new_ctrl;
2276

2277
	for (r = 0; r < nn->dp.num_rx_rings; r++)
2278
		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2279

2280 2281 2282
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2283
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2284 2285
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2286
		udp_tunnel_get_rx_info(nn->dp.netdev);
2287 2288
	}

2289
	return 0;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2300
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2301
		napi_enable(&nn->r_vecs[r].napi);
2302
		enable_irq(nn->r_vecs[r].irq_vector);
2303
	}
2304

2305
	netif_tx_wake_all_queues(nn->dp.netdev);
2306

2307
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2308 2309 2310
	nfp_net_read_link_status(nn);
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2326 2327 2328 2329 2330
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2331
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2332

2333
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2334 2335
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2336 2337
			goto err_cleanup_vec_p;
	}
2338

2339 2340
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2341
		goto err_cleanup_vec;
2342

2343 2344
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2345
		goto err_free_rx_rings;
2346

2347
	for (r = 0; r < nn->max_r_vecs; r++)
2348
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2349

2350
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2351 2352 2353
	if (err)
		goto err_free_rings;

2354
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2365
	err = nfp_net_set_config_and_enable(nn);
2366
	if (err)
2367
		goto err_free_rings;
2368 2369 2370 2371 2372 2373 2374

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2375
	nfp_net_open_stack(nn);
2376 2377 2378 2379

	return 0;

err_free_rings:
2380
	nfp_net_tx_rings_free(&nn->dp);
2381
err_free_rx_rings:
2382
	nfp_net_rx_rings_free(&nn->dp);
2383
err_cleanup_vec:
2384
	r = nn->dp.num_r_vecs;
2385
err_cleanup_vec_p:
2386
	while (r--)
2387
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2388
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2389 2390 2391 2392 2393 2394
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2395 2396
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2397
 */
2398
static void nfp_net_close_stack(struct nfp_net *nn)
2399
{
2400
	unsigned int r;
2401

2402
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2403
	netif_carrier_off(nn->dp.netdev);
2404 2405
	nn->link_up = false;

2406
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2407
		disable_irq(nn->r_vecs[r].irq_vector);
2408
		napi_disable(&nn->r_vecs[r].napi);
2409
	}
2410

2411
	netif_tx_disable(nn->dp.netdev);
2412
}
2413

2414 2415 2416 2417 2418 2419 2420
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2421

2422
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2423
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2424
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2425
	}
2426 2427
	for (r = 0; r < nn->dp.num_tx_rings; r++) {
		nfp_net_tx_ring_bufs_free(&nn->dp, &nn->dp.tx_rings[r]);
2428
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
2429
	}
2430
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2431
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2432

2433 2434
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2435

2436
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2437
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2469
	new_ctrl = nn->dp.ctrl;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2480
	if (new_ctrl == nn->dp.ctrl)
2481 2482 2483
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2484
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2485

2486
	nn->dp.ctrl = new_ctrl;
2487 2488
}

2489 2490 2491 2492 2493 2494
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2495
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2496 2497
}

2498 2499 2500 2501 2502 2503
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2504 2505

	nn->dp.netdev->mtu = new_dp.mtu;
2506 2507 2508

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2509 2510
}

2511
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2512
{
2513
	unsigned int r;
2514
	int err;
2515

2516
	nfp_net_dp_swap(nn, dp);
2517

2518
	for (r = 0; r <	nn->max_r_vecs; r++)
2519
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2520

2521
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2522 2523
	if (err)
		return err;
2524

2525 2526 2527
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2528 2529 2530 2531
		if (err)
			return err;
	}

2532
	return nfp_net_set_config_and_enable(nn);
2533
}
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2555 2556 2557
static int
nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
		     struct netlink_ext_ack *extack)
2558 2559
{
	/* XDP-enabled tests */
2560
	if (!dp->xdp_prog)
2561
		return 0;
2562
	if (dp->fl_bufsz > PAGE_SIZE) {
2563
		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2564 2565
		return -EINVAL;
	}
2566
	if (dp->num_tx_rings > nn->max_tx_rings) {
2567
		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2568 2569 2570 2571 2572 2573
		return -EINVAL;
	}

	return 0;
}

2574 2575
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
			  struct netlink_ext_ack *extack)
2576
{
2577
	int r, err;
2578

2579
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2580

2581
	dp->num_stack_tx_rings = dp->num_tx_rings;
2582
	if (dp->xdp_prog)
2583
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2584

2585
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2586

2587
	err = nfp_net_check_config(nn, dp, extack);
2588
	if (err)
2589
		goto exit_free_dp;
2590

2591
	if (!netif_running(dp->netdev)) {
2592
		nfp_net_dp_swap(nn, dp);
2593 2594
		err = 0;
		goto exit_free_dp;
2595 2596 2597
	}

	/* Prepare new rings */
2598
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2599 2600
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2601
			dp->num_r_vecs = r;
2602 2603 2604
			goto err_cleanup_vecs;
		}
	}
2605 2606 2607 2608 2609 2610 2611 2612

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2613 2614 2615 2616 2617

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2618
	err = nfp_net_dp_swap_enable(nn, dp);
2619
	if (err) {
2620
		int err2;
2621

2622
		nfp_net_clear_config_and_disable(nn);
2623

2624
		/* Try with old configuration and old rings */
2625
		err2 = nfp_net_dp_swap_enable(nn, dp);
2626
		if (err2)
2627
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2628
			       err, err2);
2629
	}
2630
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2631
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2632

2633 2634
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2635 2636

	nfp_net_open_stack(nn);
2637 2638
exit_free_dp:
	kfree(dp);
2639 2640

	return err;
2641 2642

err_free_rx:
2643
	nfp_net_rx_rings_free(dp);
2644
err_cleanup_vecs:
2645
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2646
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2647
	kfree(dp);
2648 2649 2650 2651 2652 2653
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2654 2655 2656 2657 2658
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2659

2660 2661
	dp->mtu = new_mtu;

2662
	return nfp_net_ring_reconfig(nn, dp, NULL);
2663 2664
}

2665 2666
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2667 2668 2669 2670
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2671
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
2713
		return -EOPNOTSUPP;
2714
	if (proto != htons(ETH_P_ALL))
2715
		return -EOPNOTSUPP;
2716

2717
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2718
		if (!nn->dp.bpf_offload_xdp)
2719 2720 2721 2722
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2723 2724 2725 2726

	return -EINVAL;
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2737
	new_ctrl = nn->dp.ctrl;
2738 2739 2740

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
2741
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
2742
		else
2743
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
E
Edwin Peer 已提交
2755 2756
			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					      NFP_NET_CFG_CTRL_LSO;
2757
		else
E
Edwin Peer 已提交
2758
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2782
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2783 2784 2785 2786
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2787 2788 2789
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2790
	if (new_ctrl == nn->dp.ctrl)
2791 2792
		return 0;

2793
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2794 2795 2796 2797 2798
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2799
	nn->dp.ctrl = new_ctrl;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2836
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2837 2838 2839 2840 2841 2842 2843 2844
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2845
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	return features;
}

/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2862
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2863 2864 2865 2866 2867 2868 2869 2870
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2871
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2898
				   struct udp_tunnel_info *ti)
2899 2900 2901 2902
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2903 2904 2905 2906
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2907 2908 2909 2910
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2911
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2912 2913 2914
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2915
				   struct udp_tunnel_info *ti)
2916 2917 2918 2919
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2920 2921 2922 2923
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2924
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2925 2926 2927 2928 2929 2930
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2941 2942
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2955
	nn->dp.bpf_offload_xdp = prog && !ret;
2956 2957 2958
	return ret;
}

2959
static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp)
2960
{
2961
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2962
	struct bpf_prog *prog = xdp->prog;
2963
	struct nfp_net_dp *dp;
2964 2965
	int err;

2966
	if (!prog && !nn->dp.xdp_prog)
2967
		return 0;
2968 2969
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2970
		bpf_prog_put(prog);
2971
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2972 2973 2974
		return 0;
	}

2975 2976 2977 2978
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2979
	dp->xdp_prog = prog;
2980
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2981
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2982
	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
2983 2984

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2985
	err = nfp_net_ring_reconfig(nn, dp, xdp->extack);
2986 2987 2988
	if (err)
		return err;

2989 2990
	if (old_prog)
		bpf_prog_put(old_prog);
2991

2992
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2993

2994 2995 2996 2997 2998 2999 3000 3001 3002
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
3003
		return nfp_net_xdp_setup(nn, xdp);
3004
	case XDP_QUERY_PROG:
3005
		xdp->prog_attached = !!nn->dp.xdp_prog;
3006 3007 3008 3009 3010 3011
		return 0;
	default:
		return -EINVAL;
	}
}

J
Jakub Kicinski 已提交
3012
const struct net_device_ops nfp_net_netdev_ops = {
3013 3014 3015 3016
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
3017
	.ndo_setup_tc		= nfp_net_setup_tc,
3018 3019 3020 3021 3022 3023
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
J
Jakub Kicinski 已提交
3024
	.ndo_get_phys_port_name	= nfp_port_get_phys_port_name,
3025 3026
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3027
	.ndo_xdp		= nfp_net_xdp,
3028 3029 3030 3031 3032 3033 3034 3035
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
3036
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3037 3038 3039
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
3040 3041 3042 3043
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
3044
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
E
Edwin Peer 已提交
3055 3056
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3057 3058
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3059 3060 3061 3062
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3063
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3064 3065 3066
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "",
		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
						      "RXCSUM_COMPLETE " : "");
3067 3068 3069
}

/**
3070
 * nfp_net_alloc() - Allocate netdev and related structure
3071 3072 3073 3074 3075 3076 3077 3078 3079
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
3080 3081 3082
struct nfp_net *nfp_net_alloc(struct pci_dev *pdev,
			      unsigned int max_tx_rings,
			      unsigned int max_rx_rings)
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3095 3096
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3097 3098 3099 3100 3101
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3102 3103 3104
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3105
				 netif_get_num_default_rss_queues());
3106

3107 3108 3109
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3110

3111 3112
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3113 3114

	spin_lock_init(&nn->reconfig_lock);
3115
	spin_lock_init(&nn->rx_filter_lock);
3116 3117
	spin_lock_init(&nn->link_status_lock);

3118 3119
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3120 3121
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3122

3123 3124 3125 3126
	return nn;
}

/**
3127
 * nfp_net_free() - Undo what @nfp_net_alloc() did
3128 3129
 * @nn:      NFP Net device to reconfigure
 */
3130
void nfp_net_free(struct nfp_net *nn)
3131
{
3132
	free_netdev(nn->dp.netdev);
3133 3134
}

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3156 3157 3158 3159 3160 3161
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3174
		dev_warn(nn->dp.dev,
3175 3176 3177 3178 3179 3180
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3181

3182
	nfp_net_rss_init_itbl(nn);
3183 3184 3185 3186

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3187
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
3204 3205
 * nfp_net_init() - Initialise/finalise the nfp_net structure
 * @nn:		NFP Net device structure
3206 3207 3208
 *
 * Return: 0 on success or negative errno on error.
 */
3209
int nfp_net_init(struct nfp_net *nn)
3210
{
3211
	struct net_device *netdev = nn->dp.netdev;
3212 3213
	int err;

3214 3215
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3216 3217 3218 3219
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3220 3221 3222 3223 3224 3225
	/* Chained metadata is signalled by capabilities except in version 4 */
	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;

3226
	nfp_net_write_mac_addr(nn);
3227

3228
	/* Determine RX packet/metadata boundary offset */
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3239
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3240
	}
3241

3242 3243 3244 3245 3246
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3247 3248
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3249 3250 3251 3252 3253 3254 3255 3256

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
3257
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3258
		netdev->hw_features |= NETIF_F_RXCSUM;
3259
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3260 3261 3262
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3263
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3264 3265 3266
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3267
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3268
	}
E
Edwin Peer 已提交
3269 3270
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3271
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
E
Edwin Peer 已提交
3272 3273
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
					 NFP_NET_CFG_CTRL_LSO;
3274
	}
3275
	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3276 3277
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3278 3279
		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
					 NFP_NET_CFG_CTRL_RSS;
3280 3281 3282 3283 3284 3285
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3286
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3287 3288 3289 3290 3291 3292 3293 3294

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3295
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3296 3297
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
E
Edwin Peer 已提交
3298 3299 3300 3301 3302 3303
		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
		} else {
			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		}
3304 3305 3306 3307
	}

	netdev->features = netdev->hw_features;

3308 3309 3310
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3311 3312
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
E
Edwin Peer 已提交
3313
	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3314 3315 3316

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3317
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3318
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3319
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3320 3321 3322 3323

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3324
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3342 3343 3344 3345 3346

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3347
	netif_carrier_off(netdev);
3348 3349

	nfp_net_set_ethtool_ops(netdev);
3350
	nfp_net_vecs_init(nn);
3351 3352 3353 3354 3355

	return register_netdev(netdev);
}

/**
3356 3357
 * nfp_net_clean() - Undo what nfp_net_init() did.
 * @nn:		NFP Net device structure
3358
 */
3359
void nfp_net_clean(struct nfp_net *nn)
3360
{
3361
	unregister_netdev(nn->dp.netdev);
3362

3363 3364 3365
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3366
		nfp_net_xdp_offload(nn, NULL);
3367
}