nfp_net_common.c 84.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is dual licensed under the GNU General License Version 2,
 * June 1991 as shown in the file COPYING in the top-level directory of this
 * source tree or the BSD 2-Clause License provided below.  You have the
 * option to license this software under the complete terms of either license.
 *
 * The BSD 2-Clause License:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      1. Redistributions of source code must retain the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer.
 *
 *      2. Redistributions in binary form must reproduce the above
 *         copyright notice, this list of conditions and the following
 *         disclaimer in the documentation and/or other materials
 *         provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * nfp_net_common.c
 * Netronome network device driver: Common functions between PF and VF
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
 *          Brad Petrus <brad.petrus@netronome.com>
 *          Chris Telfer <chris.telfer@netronome.com>
 */

44
#include <linux/bitfield.h>
45
#include <linux/bpf.h>
46
#include <linux/bpf_trace.h>
47 48 49 50 51 52 53 54 55
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
56
#include <linux/page_ref.h>
57 58 59 60 61 62 63 64 65 66
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/msi.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/if_vlan.h>
#include <linux/random.h>

#include <linux/ktime.h>

67
#include <net/pkt_cls.h>
68 69
#include <net/vxlan.h>

70
#include "nfpcore/nfp_nsp_eth.h"
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include "nfp_net_ctrl.h"
#include "nfp_net.h"

/**
 * nfp_net_get_fw_version() - Read and parse the FW version
 * @fw_ver:	Output fw_version structure to read to
 * @ctrl_bar:	Mapped address of the control BAR
 */
void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
			    void __iomem *ctrl_bar)
{
	u32 reg;

	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
	put_unaligned_le32(reg, fw_ver);
}

88
static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
89
{
90
	return dma_map_single(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
91
			      dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
92
			      dp->rx_dma_dir);
93 94
}

95
static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
96
{
97
	dma_unmap_single(dp->dev, dma_addr,
98 99
			 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
			 dp->rx_dma_dir);
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Firmware reconfig
 *
 * Firmware reconfig may take a while so we have two versions of it -
 * synchronous and asynchronous (posted).  All synchronous callers are holding
 * RTNL so we don't have to worry about serializing them.
 */
static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
{
	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
	/* ensure update is written before pinging HW */
	nn_pci_flush(nn);
	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
}

/* Pass 0 as update to run posted reconfigs. */
static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
{
	update |= nn->reconfig_posted;
	nn->reconfig_posted = 0;

	nfp_net_reconfig_start(nn, update);

	nn->reconfig_timer_active = true;
	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
}

static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
{
	u32 reg;

	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
	if (reg == 0)
		return true;
	if (reg & NFP_NET_CFG_UPDATE_ERR) {
		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
		return true;
	} else if (last_check) {
		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
		return true;
	}

	return false;
}

static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
{
	bool timed_out = false;

	/* Poll update field, waiting for NFP to ack the config */
	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
		msleep(1);
		timed_out = time_is_before_eq_jiffies(deadline);
	}

	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
		return -EIO;

	return timed_out ? -EIO : 0;
}

static void nfp_net_reconfig_timer(unsigned long data)
{
	struct nfp_net *nn = (void *)data;

	spin_lock_bh(&nn->reconfig_lock);

	nn->reconfig_timer_active = false;

	/* If sync caller is present it will take over from us */
	if (nn->reconfig_sync_present)
		goto done;

	/* Read reconfig status and report errors */
	nfp_net_reconfig_check_done(nn, true);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

/**
 * nfp_net_reconfig_post() - Post async reconfig request
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 * whenever reconfiguration machinery is idle.  Multiple requests can be
 * merged together!
 */
static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
{
	spin_lock_bh(&nn->reconfig_lock);

	/* Sync caller will kick off async reconf when it's done, just post */
	if (nn->reconfig_sync_present) {
		nn->reconfig_posted |= update;
		goto done;
	}

	/* Opportunistically check if the previous command is done */
	if (!nn->reconfig_timer_active ||
	    nfp_net_reconfig_check_done(nn, false))
		nfp_net_reconfig_start_async(nn, update);
	else
		nn->reconfig_posted |= update;
done:
	spin_unlock_bh(&nn->reconfig_lock);
}

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * nfp_net_reconfig() - Reconfigure the firmware
 * @nn:      NFP Net device to reconfigure
 * @update:  The value for the update field in the BAR config
 *
 * Write the update word to the BAR and ping the reconfig queue.  The
 * poll until the firmware has acknowledged the update by zeroing the
 * update word.
 *
 * Return: Negative errno on error, 0 on success
 */
int nfp_net_reconfig(struct nfp_net *nn, u32 update)
{
225 226 227
	bool cancelled_timer = false;
	u32 pre_posted_requests;
	int ret;
228 229 230

	spin_lock_bh(&nn->reconfig_lock);

231
	nn->reconfig_sync_present = true;
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (nn->reconfig_timer_active) {
		del_timer(&nn->reconfig_timer);
		nn->reconfig_timer_active = false;
		cancelled_timer = true;
	}
	pre_posted_requests = nn->reconfig_posted;
	nn->reconfig_posted = 0;

	spin_unlock_bh(&nn->reconfig_lock);

	if (cancelled_timer)
		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);

	/* Run the posted reconfigs which were issued before we started */
	if (pre_posted_requests) {
		nfp_net_reconfig_start(nn, pre_posted_requests);
		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
250 251
	}

252 253 254 255 256 257 258 259 260 261
	nfp_net_reconfig_start(nn, update);
	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);

	spin_lock_bh(&nn->reconfig_lock);

	if (nn->reconfig_posted)
		nfp_net_reconfig_start_async(nn, 0);

	nn->reconfig_sync_present = false;

262
	spin_unlock_bh(&nn->reconfig_lock);
263

264 265 266 267 268 269 270 271 272 273 274
	return ret;
}

/* Interrupt configuration and handling
 */

/**
 * nfp_net_irq_unmask() - Unmask automasked interrupt
 * @nn:       NFP Network structure
 * @entry_nr: MSI-X table entry
 *
J
Jakub Kicinski 已提交
275
 * Clear the ICR for the IRQ entry.
276 277 278 279 280 281 282 283
 */
static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
{
	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
	nn_pci_flush(nn);
}

/**
284 285 286 287 288
 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 * @pdev:        PCI device structure
 * @irq_entries: Array to be initialized and used to hold the irq entries
 * @min_irqs:    Minimal acceptable number of interrupts
 * @wanted_irqs: Target number of interrupts to allocate
289
 *
290
 * Return: Number of irqs obtained or 0 on error.
291
 */
292 293 294
unsigned int
nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
		   unsigned int min_irqs, unsigned int wanted_irqs)
295
{
296 297
	unsigned int i;
	int got_irqs;
298

299 300
	for (i = 0; i < wanted_irqs; i++)
		irq_entries[i].entry = i;
301

302 303 304 305 306
	got_irqs = pci_enable_msix_range(pdev, irq_entries,
					 min_irqs, wanted_irqs);
	if (got_irqs < 0) {
		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
			min_irqs, wanted_irqs, got_irqs);
307 308 309
		return 0;
	}

310 311 312 313 314
	if (got_irqs < wanted_irqs)
		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
			 wanted_irqs, got_irqs);

	return got_irqs;
315 316 317
}

/**
318 319 320 321
 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 * @nn:		 NFP Network structure
 * @irq_entries: Table of allocated interrupts
 * @n:		 Size of @irq_entries (number of entries to grab)
322
 *
323 324
 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 * should be called to assign them to a specific netdev (port).
325
 */
326 327 328
void
nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
		    unsigned int n)
329
{
330 331
	struct nfp_net_dp *dp = &nn->dp;

332
	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
333
	dp->num_r_vecs = nn->max_r_vecs;
334

335
	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
336

337 338
	if (dp->num_rx_rings > dp->num_r_vecs ||
	    dp->num_tx_rings > dp->num_r_vecs)
339
		nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
340 341
			dp->num_rx_rings, dp->num_tx_rings,
			dp->num_r_vecs);
342

343 344 345
	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
	dp->num_stack_tx_rings = dp->num_tx_rings;
346 347 348 349
}

/**
 * nfp_net_irqs_disable() - Disable interrupts
350
 * @pdev:        PCI device structure
351 352 353
 *
 * Undoes what @nfp_net_irqs_alloc() does.
 */
354
void nfp_net_irqs_disable(struct pci_dev *pdev)
355
{
356
	pci_disable_msix(pdev);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}

/**
 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
{
	struct nfp_net_r_vector *r_vec = data;

	napi_schedule_irqoff(&r_vec->napi);

	/* The FW auto-masks any interrupt, either via the MASK bit in
	 * the MSI-X table or via the per entry ICR field.  So there
	 * is no need to disable interrupts here.
	 */
	return IRQ_HANDLED;
}

/**
 * nfp_net_read_link_status() - Reread link status from control BAR
 * @nn:       NFP Network structure
 */
static void nfp_net_read_link_status(struct nfp_net *nn)
{
	unsigned long flags;
	bool link_up;
	u32 sts;

	spin_lock_irqsave(&nn->link_status_lock, flags);

	sts = nn_readl(nn, NFP_NET_CFG_STS);
	link_up = !!(sts & NFP_NET_CFG_STS_LINK);

	if (nn->link_up == link_up)
		goto out;

	nn->link_up = link_up;

	if (nn->link_up) {
400 401
		netif_carrier_on(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
402
	} else {
403 404
		netif_carrier_off(nn->dp.netdev);
		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	}
out:
	spin_unlock_irqrestore(&nn->link_status_lock, flags);
}

/**
 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
{
	struct nfp_net *nn = data;
420 421 422
	struct msix_entry *entry;

	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
423 424 425

	nfp_net_read_link_status(nn);

426
	nfp_net_irq_unmask(nn, entry->entry);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	return IRQ_HANDLED;
}

/**
 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 * @irq:      Interrupt
 * @data:     Opaque data structure
 *
 * Return: Indicate if the interrupt has been handled.
 */
static irqreturn_t nfp_net_irq_exn(int irq, void *data)
{
	struct nfp_net *nn = data;

	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
	/* XXX TO BE IMPLEMENTED */
	return IRQ_HANDLED;
}

/**
 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 * @tx_ring:  TX ring structure
450 451
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
452
 */
453 454 455
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
456 457 458
{
	struct nfp_net *nn = r_vec->nfp_net;

459 460 461
	tx_ring->idx = idx;
	tx_ring->r_vec = r_vec;

462 463 464 465 466 467 468
	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}

/**
 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 * @rx_ring:  RX ring structure
469 470
 * @r_vec:    IRQ vector servicing this ring
 * @idx:      Ring index
471
 */
472 473 474
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
		     struct nfp_net_r_vector *r_vec, unsigned int idx)
475 476 477
{
	struct nfp_net *nn = r_vec->nfp_net;

478 479 480
	rx_ring->idx = idx;
	rx_ring->r_vec = r_vec;

481 482 483 484 485 486 487 488
	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
	rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);

	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
	rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
}

/**
489
 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
490 491
 * @netdev:   netdev structure
 */
492
static void nfp_net_vecs_init(struct net_device *netdev)
493 494 495 496 497 498 499 500
{
	struct nfp_net *nn = netdev_priv(netdev);
	struct nfp_net_r_vector *r_vec;
	int r;

	nn->lsc_handler = nfp_net_irq_lsc;
	nn->exn_handler = nfp_net_irq_exn;

501
	for (r = 0; r < nn->max_r_vecs; r++) {
502 503 504 505
		struct msix_entry *entry;

		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];

506 507 508
		r_vec = &nn->r_vecs[r];
		r_vec->nfp_net = nn;
		r_vec->handler = nfp_net_irq_rxtx;
509 510
		r_vec->irq_entry = entry->entry;
		r_vec->irq_vector = entry->vector;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

		cpumask_set_cpu(r, &r_vec->affinity_mask);
	}
}

/**
 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @format:	printf-style format to construct the interrupt name
 * @name:	Pointer to allocated space for interrupt name
 * @name_sz:	Size of space for interrupt name
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 * @handler:	IRQ handler to register for this interrupt
 */
static int
nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
			const char *format, char *name, size_t name_sz,
			unsigned int vector_idx, irq_handler_t handler)
{
	struct msix_entry *entry;
	int err;

	entry = &nn->irq_entries[vector_idx];

536
	snprintf(name, name_sz, format, netdev_name(nn->dp.netdev));
537 538 539 540 541 542
	err = request_irq(entry->vector, handler, 0, name, nn);
	if (err) {
		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
		       entry->vector, err);
		return err;
	}
543
	nn_writeb(nn, ctrl_offset, entry->entry);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	return 0;
}

/**
 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 * @nn:		NFP Network structure
 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 * @vector_idx:	Index of MSI-X vector used for this interrupt
 */
static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
				 unsigned int vector_idx)
{
	nn_writeb(nn, ctrl_offset, 0xff);
	free_irq(nn->irq_entries[vector_idx].vector, nn);
}

/* Transmit
 *
 * One queue controller peripheral queue is used for transmit.  The
 * driver en-queues packets for transmit by advancing the write
 * pointer.  The device indicates that packets have transmitted by
 * advancing the read pointer.  The driver maintains a local copy of
 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 * keeps @wr_p in sync with the queue controller write pointer and can
 * determine how many packets have been transmitted by comparing its
 * copy of the read pointer @rd_p with the read pointer maintained by
 * the queue controller peripheral.
 */

/**
 * nfp_net_tx_full() - Check if the TX ring is full
 * @tx_ring: TX ring to check
 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 *
 * This function checks, based on the *host copy* of read/write
 * pointer if a given TX ring is full.  The real TX queue may have
 * some newly made available slots.
 *
 * Return: True if the ring is full.
 */
585
static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
}

/* Wrappers for deciding when to stop and restart TX queues */
static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
{
	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
}

static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
{
	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
}

/**
 * nfp_net_tx_ring_stop() - stop tx ring
 * @nd_q:    netdev queue
 * @tx_ring: driver tx queue structure
 *
 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 * someone else may be cleaning the TX ring completions so we need to be
 * extra careful here.
 */
static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
				 struct nfp_net_tx_ring *tx_ring)
{
	netif_tx_stop_queue(nd_q);

	/* We can race with the TX completion out of NAPI so recheck */
	smp_mb();
	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
		netif_tx_start_queue(nd_q);
}

/**
 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to HW TX descriptor
 * @skb: Pointer to SKB
 *
 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 * Return error on packet header greater than maximum supported LSO header size.
 */
631
static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
			   struct nfp_net_tx_buf *txbuf,
			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	u32 hdrlen;
	u16 mss;

	if (!skb_is_gso(skb))
		return;

	if (!skb->encapsulation)
		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
	else
		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);

	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
	txd->l4_offset = hdrlen;
	txd->mss = cpu_to_le16(mss);
	txd->flags |= PCIE_DESC_TX_LSO;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_lso++;
	u64_stats_update_end(&r_vec->tx_sync);
}

/**
 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
662
 * @dp:  NFP Net data path struct
663 664 665 666 667 668 669 670
 * @r_vec: per-ring structure
 * @txbuf: Pointer to driver soft TX descriptor
 * @txd: Pointer to TX descriptor
 * @skb: Pointer to SKB
 *
 * This function sets the TX checksum flags in the TX descriptor based
 * on the configuration and the protocol of the packet to be transmitted.
 */
671 672
static void nfp_net_tx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
673 674 675 676 677 678 679
			    struct nfp_net_tx_buf *txbuf,
			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
{
	struct ipv6hdr *ipv6h;
	struct iphdr *iph;
	u8 l4_hdr;

680
	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		return;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	txd->flags |= PCIE_DESC_TX_CSUM;
	if (skb->encapsulation)
		txd->flags |= PCIE_DESC_TX_ENCAP;

	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
		l4_hdr = iph->protocol;
	} else if (ipv6h->version == 6) {
		l4_hdr = ipv6h->nexthdr;
	} else {
699
		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
700 701 702 703 704 705 706 707 708 709 710
		return;
	}

	switch (l4_hdr) {
	case IPPROTO_TCP:
		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
		break;
	case IPPROTO_UDP:
		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
		break;
	default:
711
		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
712 713 714 715 716 717 718 719 720 721 722
		return;
	}

	u64_stats_update_begin(&r_vec->tx_sync);
	if (skb->encapsulation)
		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
	else
		r_vec->hw_csum_tx += txbuf->pkt_cnt;
	u64_stats_update_end(&r_vec->tx_sync);
}

723 724 725 726 727 728 729
static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
{
	wmb();
	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
	tx_ring->wr_ptr_add = 0;
}

730 731 732 733 734 735 736 737 738 739 740 741 742
/**
 * nfp_net_tx() - Main transmit entry point
 * @skb:    SKB to transmit
 * @netdev: netdev structure
 *
 * Return: NETDEV_TX_OK on success.
 */
static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	const struct skb_frag_struct *frag;
	struct nfp_net_tx_desc *txd, txdg;
	struct nfp_net_tx_ring *tx_ring;
743 744
	struct nfp_net_r_vector *r_vec;
	struct nfp_net_tx_buf *txbuf;
745
	struct netdev_queue *nd_q;
746
	struct nfp_net_dp *dp;
747 748 749 750 751 752
	dma_addr_t dma_addr;
	unsigned int fsize;
	int f, nr_frags;
	int wr_idx;
	u16 qidx;

753
	dp = &nn->dp;
754
	qidx = skb_get_queue_mapping(skb);
755
	tx_ring = &dp->tx_rings[qidx];
756
	r_vec = tx_ring->r_vec;
757
	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
758 759 760 761

	nr_frags = skb_shinfo(skb)->nr_frags;

	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
762 763
		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
			   qidx, tx_ring->wr_p, tx_ring->rd_p);
764 765 766 767 768 769 770 771
		netif_tx_stop_queue(nd_q);
		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_busy++;
		u64_stats_update_end(&r_vec->tx_sync);
		return NETDEV_TX_BUSY;
	}

	/* Start with the head skbuf */
772
	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
773
				  DMA_TO_DEVICE);
774
	if (dma_mapping_error(dp->dev, dma_addr))
775 776
		goto err_free;

777
	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->skb = skb;
	txbuf->dma_addr = dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = skb->len;

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
	txd->dma_len = cpu_to_le16(skb_headlen(skb));
	nfp_desc_set_dma_addr(txd, dma_addr);
	txd->data_len = cpu_to_le16(skb->len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

798
	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
799

800
	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
801

802
	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
803 804 805 806 807 808 809 810 811 812 813 814 815
		txd->flags |= PCIE_DESC_TX_VLAN;
		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
	}

	/* Gather DMA */
	if (nr_frags > 0) {
		/* all descs must match except for in addr, length and eop */
		txdg = *txd;

		for (f = 0; f < nr_frags; f++) {
			frag = &skb_shinfo(skb)->frags[f];
			fsize = skb_frag_size(frag);

816
			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
817
						    fsize, DMA_TO_DEVICE);
818
			if (dma_mapping_error(dp->dev, dma_addr))
819 820
				goto err_unmap;

821
			wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
			tx_ring->txbufs[wr_idx].skb = skb;
			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
			tx_ring->txbufs[wr_idx].fidx = f;

			txd = &tx_ring->txds[wr_idx];
			*txd = txdg;
			txd->dma_len = cpu_to_le16(fsize);
			nfp_desc_set_dma_addr(txd, dma_addr);
			txd->offset_eop =
				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
		}

		u64_stats_update_begin(&r_vec->tx_sync);
		r_vec->tx_gather++;
		u64_stats_update_end(&r_vec->tx_sync);
	}

	netdev_tx_sent_queue(nd_q, txbuf->real_len);

	tx_ring->wr_p += nr_frags + 1;
	if (nfp_net_tx_ring_should_stop(tx_ring))
		nfp_net_tx_ring_stop(nd_q, tx_ring);

	tx_ring->wr_ptr_add += nr_frags + 1;
846 847
	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
		nfp_net_tx_xmit_more_flush(tx_ring);
848 849 850 851 852 853 854 855 856

	skb_tx_timestamp(skb);

	return NETDEV_TX_OK;

err_unmap:
	--f;
	while (f >= 0) {
		frag = &skb_shinfo(skb)->frags[f];
857
		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
858 859 860 861 862 863 864 865
			       skb_frag_size(frag), DMA_TO_DEVICE);
		tx_ring->txbufs[wr_idx].skb = NULL;
		tx_ring->txbufs[wr_idx].dma_addr = 0;
		tx_ring->txbufs[wr_idx].fidx = -2;
		wr_idx = wr_idx - 1;
		if (wr_idx < 0)
			wr_idx += tx_ring->cnt;
	}
866
	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
867 868 869 870 871
			 skb_headlen(skb), DMA_TO_DEVICE);
	tx_ring->txbufs[wr_idx].skb = NULL;
	tx_ring->txbufs[wr_idx].dma_addr = 0;
	tx_ring->txbufs[wr_idx].fidx = -2;
err_free:
872
	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_errors++;
	u64_stats_update_end(&r_vec->tx_sync);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * nfp_net_tx_complete() - Handled completed TX packets
 * @tx_ring:   TX ring structure
 *
 * Return: Number of completed TX descriptors
 */
static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
889
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	const struct skb_frag_struct *frag;
	struct netdev_queue *nd_q;
	u32 done_pkts = 0, done_bytes = 0;
	struct sk_buff *skb;
	int todo, nr_frags;
	u32 qcp_rd_p;
	int fidx;
	int idx;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
911
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
912 913 914 915 916 917 918 919 920 921 922
		tx_ring->rd_p++;

		skb = tx_ring->txbufs[idx].skb;
		if (!skb)
			continue;

		nr_frags = skb_shinfo(skb)->nr_frags;
		fidx = tx_ring->txbufs[idx].fidx;

		if (fidx == -1) {
			/* unmap head */
923
			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
924 925 926 927 928 929 930
					 skb_headlen(skb), DMA_TO_DEVICE);

			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
			done_bytes += tx_ring->txbufs[idx].real_len;
		} else {
			/* unmap fragment */
			frag = &skb_shinfo(skb)->frags[fidx];
931
			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
				       skb_frag_size(frag), DMA_TO_DEVICE);
		}

		/* check for last gather fragment */
		if (fidx == nr_frags - 1)
			dev_kfree_skb_any(skb);

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].skb = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

951
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
952 953 954 955 956 957 958 959 960 961 962 963 964 965
	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
	if (nfp_net_tx_ring_should_wake(tx_ring)) {
		/* Make sure TX thread will see updated tx_ring->rd_p */
		smp_mb();

		if (unlikely(netif_tx_queue_stopped(nd_q)))
			netif_tx_wake_queue(nd_q);
	}

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

966 967 968
static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
969
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	u32 done_pkts = 0, done_bytes = 0;
	int idx, todo;
	u32 qcp_rd_p;

	/* Work out how many descriptors have been transmitted */
	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);

	if (qcp_rd_p == tx_ring->qcp_rd_p)
		return;

	if (qcp_rd_p > tx_ring->qcp_rd_p)
		todo = qcp_rd_p - tx_ring->qcp_rd_p;
	else
		todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;

	while (todo--) {
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
		tx_ring->rd_p++;

		if (!tx_ring->txbufs[idx].frag)
			continue;

992
		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[idx].dma_addr);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		__free_page(virt_to_page(tx_ring->txbufs[idx].frag));

		done_pkts++;
		done_bytes += tx_ring->txbufs[idx].real_len;

		tx_ring->txbufs[idx].dma_addr = 0;
		tx_ring->txbufs[idx].frag = NULL;
		tx_ring->txbufs[idx].fidx = -2;
	}

	tx_ring->qcp_rd_p = qcp_rd_p;

	u64_stats_update_begin(&r_vec->tx_sync);
	r_vec->tx_bytes += done_bytes;
	r_vec->tx_pkts += done_pkts;
	u64_stats_update_end(&r_vec->tx_sync);

	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
}

1015
/**
1016
 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1017
 * @dp:		NFP Net data path struct
1018
 * @tx_ring:	TX ring structure
1019 1020 1021
 *
 * Assumes that the device is stopped
 */
1022
static void
1023
nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1024
{
1025
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1026
	const struct skb_frag_struct *frag;
1027
	struct netdev_queue *nd_q;
1028 1029

	while (tx_ring->rd_p != tx_ring->wr_p) {
1030 1031
		struct nfp_net_tx_buf *tx_buf;
		int idx;
1032

1033
		idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1034
		tx_buf = &tx_ring->txbufs[idx];
1035

1036
		if (tx_ring == r_vec->xdp_ring) {
1037
			nfp_net_dma_unmap_rx(dp, tx_buf->dma_addr);
1038
			__free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1039
		} else {
1040 1041 1042 1043 1044
			struct sk_buff *skb = tx_ring->txbufs[idx].skb;
			int nr_frags = skb_shinfo(skb)->nr_frags;

			if (tx_buf->fidx == -1) {
				/* unmap head */
1045
				dma_unmap_single(dp->dev, tx_buf->dma_addr,
1046 1047 1048 1049 1050
						 skb_headlen(skb),
						 DMA_TO_DEVICE);
			} else {
				/* unmap fragment */
				frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1051
				dma_unmap_page(dp->dev, tx_buf->dma_addr,
1052 1053 1054
					       skb_frag_size(frag),
					       DMA_TO_DEVICE);
			}
1055

1056 1057 1058 1059
			/* check for last gather fragment */
			if (tx_buf->fidx == nr_frags - 1)
				dev_kfree_skb_any(skb);
		}
1060

1061 1062 1063
		tx_buf->dma_addr = 0;
		tx_buf->skb = NULL;
		tx_buf->fidx = -2;
1064 1065 1066 1067 1068

		tx_ring->qcp_rd_p++;
		tx_ring->rd_p++;
	}

1069 1070 1071 1072 1073 1074
	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
	tx_ring->wr_p = 0;
	tx_ring->rd_p = 0;
	tx_ring->qcp_rd_p = 0;
	tx_ring->wr_ptr_add = 0;

1075 1076 1077
	if (tx_ring == r_vec->xdp_ring)
		return;

1078
	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1079 1080 1081 1082 1083 1084 1085 1086
	netdev_tx_reset_queue(nd_q);
}

static void nfp_net_tx_timeout(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int i;

1087
	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1088 1089 1090 1091 1092 1093 1094 1095 1096
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
			continue;
		nn_warn(nn, "TX timeout on ring: %d\n", i);
	}
	nn_warn(nn, "TX watchdog timeout\n");
}

/* Receive processing
 */
1097
static unsigned int
1098
nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1099 1100 1101
{
	unsigned int fl_bufsz;

1102
	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1103
	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1104
		fl_bufsz += NFP_NET_MAX_PREPEND;
1105
	else
1106
		fl_bufsz += dp->rx_offset;
1107
	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1108

1109 1110 1111
	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));

1112 1113
	return fl_bufsz;
}
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void
nfp_net_free_frag(void *frag, bool xdp)
{
	if (!xdp)
		skb_free_frag(frag);
	else
		__free_page(virt_to_page(frag));
}

1124
/**
1125
 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1126
 * @dp:		NFP Net data path struct
1127 1128 1129
 * @rx_ring:	RX ring structure of the skb
 * @dma_addr:	Pointer to storage for DMA address (output param)
 *
1130
 * This function will allcate a new page frag, map it for DMA.
1131
 *
1132
 * Return: allocated page frag or NULL on failure.
1133
 */
1134
static void *
1135 1136
nfp_net_rx_alloc_one(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
		     dma_addr_t *dma_addr)
1137
{
1138
	void *frag;
1139

1140
	if (!dp->xdp_prog)
1141
		frag = netdev_alloc_frag(dp->fl_bufsz);
1142 1143
	else
		frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1144
	if (!frag) {
1145
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1146 1147 1148
		return NULL;
	}

1149
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1150
	if (dma_mapping_error(dp->dev, *dma_addr)) {
1151
		nfp_net_free_frag(frag, dp->xdp_prog);
1152
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1153 1154 1155
		return NULL;
	}

1156
	return frag;
1157 1158
}

1159
static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1160 1161 1162
{
	void *frag;

1163 1164
	if (!dp->xdp_prog)
		frag = napi_alloc_frag(dp->fl_bufsz);
1165 1166
	else
		frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1167
	if (!frag) {
1168
		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1169 1170 1171
		return NULL;
	}

1172
	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1173 1174 1175
	if (dma_mapping_error(dp->dev, *dma_addr)) {
		nfp_net_free_frag(frag, dp->xdp_prog);
		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1176 1177 1178 1179 1180 1181
		return NULL;
	}

	return frag;
}

1182 1183 1184
/**
 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
 * @rx_ring:	RX ring structure
1185
 * @frag:	page fragment buffer
1186 1187 1188
 * @dma_addr:	DMA address of skb mapping
 */
static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1189
				void *frag, dma_addr_t dma_addr)
1190 1191 1192
{
	unsigned int wr_idx;

1193
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1194 1195

	/* Stash SKB and DMA address away */
1196
	rx_ring->rxbufs[wr_idx].frag = frag;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;

	/* Fill freelist descriptor */
	rx_ring->rxds[wr_idx].fld.reserved = 0;
	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);

	rx_ring->wr_p++;
	rx_ring->wr_ptr_add++;
	if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
		/* Update write pointer of the freelist queue. Make
		 * sure all writes are flushed before telling the hardware.
		 */
		wmb();
		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
		rx_ring->wr_ptr_add = 0;
	}
}

/**
1217 1218
 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
 * @rx_ring:	RX ring structure
1219
 *
1220 1221
 * Warning: Do *not* call if ring buffers were never put on the FW freelist
 *	    (i.e. device was not enabled)!
1222
 */
1223
static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1224
{
1225
	unsigned int wr_idx, last_idx;
1226

1227
	/* Move the empty entry to the end of the list */
1228
	wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1229 1230
	last_idx = rx_ring->cnt - 1;
	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1231
	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1232
	rx_ring->rxbufs[last_idx].dma_addr = 0;
1233
	rx_ring->rxbufs[last_idx].frag = NULL;
1234

1235 1236 1237 1238 1239
	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
	rx_ring->wr_p = 0;
	rx_ring->rd_p = 0;
	rx_ring->wr_ptr_add = 0;
}
1240

1241 1242
/**
 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1243
 * @dp:		NFP Net data path struct
1244 1245 1246 1247 1248 1249 1250
 * @rx_ring:	RX ring to remove buffers from
 *
 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
 * to restore required ring geometry.
 */
static void
1251
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1252
			  struct nfp_net_rx_ring *rx_ring)
1253 1254
{
	unsigned int i;
1255

1256 1257 1258 1259 1260
	for (i = 0; i < rx_ring->cnt - 1; i++) {
		/* NULL skb can only happen when initial filling of the ring
		 * fails to allocate enough buffers and calls here to free
		 * already allocated ones.
		 */
1261
		if (!rx_ring->rxbufs[i].frag)
1262 1263
			continue;

1264
		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1265
		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1266
		rx_ring->rxbufs[i].dma_addr = 0;
1267
		rx_ring->rxbufs[i].frag = NULL;
1268 1269 1270 1271
	}
}

/**
1272
 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1273
 * @dp:		NFP Net data path struct
1274
 * @rx_ring:	RX ring to remove buffers from
1275
 */
1276
static int
1277
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1278
			   struct nfp_net_rx_ring *rx_ring)
1279
{
1280 1281 1282 1283
	struct nfp_net_rx_buf *rxbufs;
	unsigned int i;

	rxbufs = rx_ring->rxbufs;
1284

1285
	for (i = 0; i < rx_ring->cnt - 1; i++) {
1286
		rxbufs[i].frag =
1287
			nfp_net_rx_alloc_one(dp, rx_ring, &rxbufs[i].dma_addr);
1288
		if (!rxbufs[i].frag) {
1289
			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1290 1291 1292 1293 1294 1295 1296
			return -ENOMEM;
		}
	}

	return 0;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305
/**
 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
 * @rx_ring: RX ring to fill
 */
static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
{
	unsigned int i;

	for (i = 0; i < rx_ring->cnt - 1; i++)
1306
		nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1307 1308 1309
				    rx_ring->rxbufs[i].dma_addr);
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/**
 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
 * @flags: RX descriptor flags field in CPU byte order
 */
static int nfp_net_rx_csum_has_errors(u16 flags)
{
	u16 csum_all_checked, csum_all_ok;

	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;

	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
}

/**
 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1326
 * @dp:  NFP Net data path struct
1327 1328 1329 1330
 * @r_vec: per-ring structure
 * @rxd: Pointer to RX descriptor
 * @skb: Pointer to SKB
 */
1331 1332
static void nfp_net_rx_csum(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec,
1333 1334 1335 1336
			    struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

1337
	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		return;

	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_error++;
		u64_stats_update_end(&r_vec->rx_sync);
		return;
	}

	/* Assume that the firmware will never report inner CSUM_OK unless outer
	 * L4 headers were successfully parsed. FW will always report zero UDP
	 * checksum as CSUM_OK.
	 */
	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}

	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
		__skb_incr_checksum_unnecessary(skb);
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->hw_csum_rx_inner_ok++;
		u64_stats_update_end(&r_vec->rx_sync);
	}
}

static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1369
			     unsigned int type, __be32 *hash)
1370
{
1371
	if (!(netdev->features & NETIF_F_RXHASH))
1372 1373
		return;

1374
	switch (type) {
1375 1376 1377
	case NFP_NET_RSS_IPV4:
	case NFP_NET_RSS_IPV6:
	case NFP_NET_RSS_IPV6_EX:
1378
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1379 1380
		break;
	default:
1381
		skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1382 1383 1384 1385
		break;
	}
}

1386 1387
static void
nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
1388
		      void *data, struct nfp_net_rx_desc *rxd)
1389
{
1390
	struct nfp_net_rx_hash *rx_hash = data;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
		return;

	nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
			 &rx_hash->hash);
}

static void *
nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
1401
		   void *data, int meta_len)
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
{
	u32 meta_info;

	meta_info = get_unaligned_be32(data);
	data += 4;

	while (meta_info) {
		switch (meta_info & NFP_NET_META_FIELD_MASK) {
		case NFP_NET_META_HASH:
			meta_info >>= NFP_NET_META_FIELD_SIZE;
			nfp_net_set_hash(netdev, skb,
					 meta_info & NFP_NET_META_FIELD_MASK,
					 (__be32 *)data);
			data += 4;
			break;
		case NFP_NET_META_MARK:
			skb->mark = get_unaligned_be32(data);
			data += 4;
			break;
		default:
			return NULL;
		}

		meta_info >>= NFP_NET_META_FIELD_SIZE;
	}

	return data;
}

1431 1432 1433 1434 1435 1436 1437 1438
static void
nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
		struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
{
	u64_stats_update_begin(&r_vec->rx_sync);
	r_vec->rx_drops++;
	u64_stats_update_end(&r_vec->rx_sync);

1439 1440 1441 1442 1443
	/* skb is build based on the frag, free_skb() would free the frag
	 * so to be able to reuse it we need an extra ref.
	 */
	if (skb && rxbuf && skb->head == rxbuf->frag)
		page_ref_inc(virt_to_head_page(rxbuf->frag));
1444
	if (rxbuf)
1445
		nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1446 1447 1448 1449
	if (skb)
		dev_kfree_skb_any(skb);
}

1450
static bool
1451
nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1452
		   struct nfp_net_tx_ring *tx_ring,
1453
		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		   unsigned int pkt_len)
{
	struct nfp_net_tx_buf *txbuf;
	struct nfp_net_tx_desc *txd;
	dma_addr_t new_dma_addr;
	void *new_frag;
	int wr_idx;

	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1464
		return false;
1465 1466
	}

1467
	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1468 1469
	if (unlikely(!new_frag)) {
		nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1470
		return false;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	}
	nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

	wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);

	/* Stash the soft descriptor of the head then initialize it */
	txbuf = &tx_ring->txbufs[wr_idx];
	txbuf->frag = rxbuf->frag;
	txbuf->dma_addr = rxbuf->dma_addr;
	txbuf->fidx = -1;
	txbuf->pkt_cnt = 1;
	txbuf->real_len = pkt_len;

1484
	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1485
				   pkt_len, DMA_BIDIRECTIONAL);
1486 1487 1488 1489 1490

	/* Build TX descriptor */
	txd = &tx_ring->txds[wr_idx];
	txd->offset_eop = PCIE_DESC_TX_EOP;
	txd->dma_len = cpu_to_le16(pkt_len);
1491
	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1492 1493 1494 1495 1496 1497 1498 1499
	txd->data_len = cpu_to_le16(pkt_len);

	txd->flags = 0;
	txd->mss = 0;
	txd->l4_offset = 0;

	tx_ring->wr_p++;
	tx_ring->wr_ptr_add++;
1500
	return true;
1501 1502 1503 1504 1505 1506 1507 1508 1509
}

static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
{
	struct xdp_buff xdp;

	xdp.data = data;
	xdp.data_end = data + len;

1510
	return bpf_prog_run_xdp(prog, &xdp);
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * nfp_net_rx() - receive up to @budget packets on @rx_ring
 * @rx_ring:   RX ring to receive from
 * @budget:    NAPI budget
 *
 * Note, this function is separated out from the napi poll function to
 * more cleanly separate packet receive code from other bookkeeping
 * functions performed in the napi poll function.
 *
 * Return: Number of packets received.
 */
static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1527
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1528 1529 1530
	struct nfp_net_tx_ring *tx_ring;
	struct bpf_prog *xdp_prog;
	unsigned int true_bufsz;
1531
	struct sk_buff *skb;
J
Jakub Kicinski 已提交
1532
	int pkts_polled = 0;
1533 1534
	int idx;

1535
	rcu_read_lock();
1536 1537
	xdp_prog = READ_ONCE(dp->xdp_prog);
	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1538 1539
	tx_ring = r_vec->xdp_ring;

J
Jakub Kicinski 已提交
1540
	while (pkts_polled < budget) {
1541
		unsigned int meta_len, data_len, data_off, pkt_len;
1542 1543 1544 1545
		struct nfp_net_rx_buf *rxbuf;
		struct nfp_net_rx_desc *rxd;
		dma_addr_t new_dma_addr;
		void *new_frag;
1546
		u8 *meta;
1547

1548
		idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1549 1550

		rxd = &rx_ring->rxds[idx];
J
Jakub Kicinski 已提交
1551
		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1552
			break;
J
Jakub Kicinski 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561
		/* Memory barrier to ensure that we won't do other reads
		 * before the DD bit.
		 */
		dma_rmb();

		rx_ring->rd_p++;
		pkts_polled++;

1562
		rxbuf =	&rx_ring->rxbufs[idx];
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		/*         < meta_len >
		 *  <-- [rx_offset] -->
		 *  ---------------------------------------------------------
		 * | [XX] |  metadata  |             packet           | XXXX |
		 *  ---------------------------------------------------------
		 *         <---------------- data_len --------------->
		 *
		 * The rx_offset is fixed for all packets, the meta_len can vary
		 * on a packet by packet basis. If rx_offset is set to zero
		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
		 * buffer and is immediately followed by the packet (no [XX]).
		 */
1575 1576
		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
		data_len = le16_to_cpu(rxd->rxd.data_len);
1577
		pkt_len = data_len - meta_len;
1578

1579
		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1580
			data_off = NFP_NET_RX_BUF_HEADROOM + meta_len;
1581
		else
1582
			data_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_offset;
1583 1584 1585 1586

		/* Stats update */
		u64_stats_update_begin(&r_vec->rx_sync);
		r_vec->rx_pkts++;
1587
		r_vec->rx_bytes += pkt_len;
1588 1589
		u64_stats_update_end(&r_vec->rx_sync);

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		/* Pointer to start of metadata */
		meta = rxbuf->frag + data_off - meta_len;

		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
			     (dp->rx_offset && meta_len > dp->rx_offset))) {
			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
				   meta_len);
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}

1601
		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1602
				  dp->bpf_offload_xdp)) {
1603
			unsigned int dma_off;
1604 1605
			int act;

1606
			dma_off = data_off - NFP_NET_RX_BUF_HEADROOM;
1607
			dma_sync_single_for_cpu(dp->dev,
1608
						rxbuf->dma_addr + dma_off,
1609
						pkt_len, DMA_BIDIRECTIONAL);
1610 1611 1612 1613 1614 1615
			act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
					      pkt_len);
			switch (act) {
			case XDP_PASS:
				break;
			case XDP_TX:
1616
				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1617
								 tx_ring, rxbuf,
1618
								 dma_off,
1619 1620 1621
								 pkt_len)))
					trace_xdp_exception(dp->netdev,
							    xdp_prog, act);
1622 1623 1624 1625
				continue;
			default:
				bpf_warn_invalid_xdp_action(act);
			case XDP_ABORTED:
1626
				trace_xdp_exception(dp->netdev, xdp_prog, act);
1627 1628 1629 1630 1631 1632 1633 1634
			case XDP_DROP:
				nfp_net_rx_give_one(rx_ring, rxbuf->frag,
						    rxbuf->dma_addr);
				continue;
			}
		}

		skb = build_skb(rxbuf->frag, true_bufsz);
1635 1636 1637 1638
		if (unlikely(!skb)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
			continue;
		}
1639
		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1640 1641 1642 1643 1644
		if (unlikely(!new_frag)) {
			nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
			continue;
		}

1645
		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1646 1647 1648 1649 1650 1651

		nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);

		skb_reserve(skb, data_off);
		skb_put(skb, pkt_len);

1652
		if (!dp->chained_metadata_format) {
1653
			nfp_net_set_hash_desc(dp->netdev, skb, meta, rxd);
1654 1655 1656
		} else if (meta_len) {
			void *end;

1657 1658 1659
			end = nfp_net_parse_meta(dp->netdev, skb, meta,
						 meta_len);
			if (unlikely(end != meta + meta_len)) {
1660
				nn_dp_warn(dp, "invalid RX packet metadata\n");
1661
				nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1662 1663 1664 1665
				continue;
			}
		}

1666
		skb_record_rx_queue(skb, rx_ring->idx);
1667
		skb->protocol = eth_type_trans(skb, dp->netdev);
1668

1669
		nfp_net_rx_csum(dp, r_vec, rxd, skb);
1670 1671 1672 1673 1674 1675 1676 1677

		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
					       le16_to_cpu(rxd->rxd.vlan));

		napi_gro_receive(&rx_ring->r_vec->napi, skb);
	}

1678 1679 1680 1681
	if (xdp_prog && tx_ring->wr_ptr_add)
		nfp_net_tx_xmit_more_flush(tx_ring);
	rcu_read_unlock();

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	return pkts_polled;
}

/**
 * nfp_net_poll() - napi poll function
 * @napi:    NAPI structure
 * @budget:  NAPI budget
 *
 * Return: number of packets polled.
 */
static int nfp_net_poll(struct napi_struct *napi, int budget)
{
	struct nfp_net_r_vector *r_vec =
		container_of(napi, struct nfp_net_r_vector, napi);
1696
	unsigned int pkts_polled = 0;
1697

1698 1699
	if (r_vec->tx_ring)
		nfp_net_tx_complete(r_vec->tx_ring);
1700
	if (r_vec->rx_ring) {
1701
		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1702 1703 1704
		if (r_vec->xdp_ring)
			nfp_net_xdp_complete(r_vec->xdp_ring);
	}
1705

1706 1707 1708
	if (pkts_polled < budget)
		if (napi_complete_done(napi, pkts_polled))
			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	return pkts_polled;
}

/* Setup and Configuration
 */

/**
 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
 * @tx_ring:   TX ring to free
 */
static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1723
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1724 1725 1726 1727

	kfree(tx_ring->txbufs);

	if (tx_ring->txds)
1728
		dma_free_coherent(dp->dev, tx_ring->size,
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
				  tx_ring->txds, tx_ring->dma);

	tx_ring->cnt = 0;
	tx_ring->txbufs = NULL;
	tx_ring->txds = NULL;
	tx_ring->dma = 0;
	tx_ring->size = 0;
}

/**
 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1740
 * @dp:        NFP Net data path struct
1741
 * @tx_ring:   TX Ring structure to allocate
1742
 * @is_xdp:    True if ring will be used for XDP
1743 1744 1745
 *
 * Return: 0 on success, negative errno otherwise.
 */
1746
static int
1747 1748
nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring,
		      bool is_xdp)
1749 1750 1751 1752
{
	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
	int sz;

1753
	tx_ring->cnt = dp->txd_cnt;
1754 1755

	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1756
	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
1757 1758 1759 1760 1761 1762 1763 1764 1765
					    &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->txds)
		goto err_alloc;

	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
	if (!tx_ring->txbufs)
		goto err_alloc;

1766
	if (!is_xdp)
1767
		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
1768
				    tx_ring->idx);
1769 1770 1771 1772 1773 1774 1775 1776

	return 0;

err_alloc:
	nfp_net_tx_ring_free(tx_ring);
	return -ENOMEM;
}

1777
static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1778 1779 1780
{
	unsigned int r;

1781 1782 1783 1784
	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
			       GFP_KERNEL);
	if (!dp->tx_rings)
		return -ENOMEM;
1785

1786
	for (r = 0; r < dp->num_tx_rings; r++) {
1787 1788
		int bias = 0;

1789 1790
		if (r >= dp->num_stack_tx_rings)
			bias = dp->num_stack_tx_rings;
1791

1792 1793
		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
				     r);
1794

1795
		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r], bias))
1796 1797 1798
			goto err_free_prev;
	}

1799
	return 0;
1800 1801 1802

err_free_prev:
	while (r--)
1803 1804 1805
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
	kfree(dp->tx_rings);
	return -ENOMEM;
1806 1807
}

1808
static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
1809 1810 1811
{
	unsigned int r;

1812 1813
	for (r = 0; r < dp->num_tx_rings; r++)
		nfp_net_tx_ring_free(&dp->tx_rings[r]);
1814

1815
	kfree(dp->tx_rings);
1816 1817
}

1818 1819 1820 1821 1822 1823 1824
/**
 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
 * @rx_ring:  RX ring to free
 */
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1825
	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1826 1827 1828 1829

	kfree(rx_ring->rxbufs);

	if (rx_ring->rxds)
1830
		dma_free_coherent(dp->dev, rx_ring->size,
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
				  rx_ring->rxds, rx_ring->dma);

	rx_ring->cnt = 0;
	rx_ring->rxbufs = NULL;
	rx_ring->rxds = NULL;
	rx_ring->dma = 0;
	rx_ring->size = 0;
}

/**
 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1842
 * @dp:	      NFP Net data path struct
1843 1844 1845 1846
 * @rx_ring:  RX ring to allocate
 *
 * Return: 0 on success, negative errno otherwise.
 */
1847
static int
1848
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
1849 1850 1851
{
	int sz;

1852
	rx_ring->cnt = dp->rxd_cnt;
1853
	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1854
	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
					    &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->rxds)
		goto err_alloc;

	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
	if (!rx_ring->rxbufs)
		goto err_alloc;

	return 0;

err_alloc:
	nfp_net_rx_ring_free(rx_ring);
	return -ENOMEM;
}

1871
static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
1872 1873 1874
{
	unsigned int r;

1875 1876 1877 1878
	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
			       GFP_KERNEL);
	if (!dp->rx_rings)
		return -ENOMEM;
1879

1880 1881
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
1882

1883
		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
1884 1885
			goto err_free_prev;

1886
		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
1887 1888 1889
			goto err_free_ring;
	}

1890
	return 0;
1891 1892 1893

err_free_prev:
	while (r--) {
1894
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
1895
err_free_ring:
1896
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1897
	}
1898 1899
	kfree(dp->rx_rings);
	return -ENOMEM;
1900 1901
}

1902
static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
1903 1904 1905
{
	unsigned int r;

1906 1907 1908
	for (r = 0; r < dp->num_rx_rings; r++) {
		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
		nfp_net_rx_ring_free(&dp->rx_rings[r]);
1909 1910
	}

1911
	kfree(dp->rx_rings);
1912 1913
}

1914
static void
1915 1916
nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
			    struct nfp_net_r_vector *r_vec, int idx)
1917
{
1918
	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
1919
	r_vec->tx_ring =
1920
		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
1921

1922 1923
	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
1924 1925
}

1926 1927 1928
static int
nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
		       int idx)
1929
{
1930
	int err;
1931

1932
	/* Setup NAPI */
1933
	netif_napi_add(nn->dp.netdev, &r_vec->napi,
1934 1935
		       nfp_net_poll, NAPI_POLL_WEIGHT);

1936
	snprintf(r_vec->name, sizeof(r_vec->name),
1937
		 "%s-rxtx-%d", nn->dp.netdev->name, idx);
1938 1939
	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
			  r_vec);
1940
	if (err) {
1941
		netif_napi_del(&r_vec->napi);
1942
		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
1943 1944
		return err;
	}
1945
	disable_irq(r_vec->irq_vector);
1946

1947
	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
1948

1949 1950
	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
	       r_vec->irq_entry);
1951

1952
	return 0;
1953 1954
}

1955 1956
static void
nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
1957
{
1958
	irq_set_affinity_hint(r_vec->irq_vector, NULL);
1959
	netif_napi_del(&r_vec->napi);
1960
	free_irq(r_vec->irq_vector, r_vec);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
}

/**
 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
			  get_unaligned_le32(nn->rss_itbl + i));
}

/**
 * nfp_net_rss_write_key() - Write RSS hash key to device
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_rss_write_key(struct nfp_net *nn)
{
	int i;

1984
	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
			  get_unaligned_le32(nn->rss_key + i));
}

/**
 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
{
	u8 i;
	u32 factor;
	u32 value;

	/* Compute factor used to convert coalesce '_usecs' parameters to
	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
	 * count.
	 */
	factor = nn->me_freq_mhz / 16;

	/* copy RX interrupt coalesce parameters */
	value = (nn->rx_coalesce_max_frames << 16) |
		(factor * nn->rx_coalesce_usecs);
2008
	for (i = 0; i < nn->dp.num_rx_rings; i++)
2009 2010 2011 2012 2013
		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);

	/* copy TX interrupt coalesce parameters */
	value = (nn->tx_coalesce_max_frames << 16) |
		(factor * nn->tx_coalesce_usecs);
2014
	for (i = 0; i < nn->dp.num_tx_rings; i++)
2015 2016 2017 2018
		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
}

/**
2019
 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2020 2021
 * @nn:      NFP Net device to reconfigure
 *
2022 2023 2024
 * Writes the MAC address from the netdev to the device control BAR.  Does not
 * perform the required reconfig.  We do a bit of byte swapping dance because
 * firmware is LE.
2025
 */
2026
static void nfp_net_write_mac_addr(struct nfp_net *nn)
2027 2028
{
	nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2029
		  get_unaligned_be32(nn->dp.netdev->dev_addr));
J
Jakub Kicinski 已提交
2030
	nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2031
		  get_unaligned_be16(nn->dp.netdev->dev_addr + 4));
2032 2033
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);

	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}

2045 2046 2047 2048 2049 2050 2051
/**
 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
{
	u32 new_ctrl, update;
2052
	unsigned int r;
2053 2054
	int err;

2055
	new_ctrl = nn->dp.ctrl;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
	update = NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;

	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;

	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);
2069
	if (err)
2070 2071
		nn_err(nn, "Could not disable device: %d\n", err);

2072 2073 2074 2075 2076
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2077 2078
		nfp_net_vec_clear_ring_data(nn, r);

2079
	nn->dp.ctrl = new_ctrl;
2080 2081
}

2082
static void
2083 2084
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2085 2086
{
	/* Write the DMA address, size and MSI-X info to the device */
2087 2088
	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2089
	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2090
}
2091

2092 2093 2094 2095 2096 2097
static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2098
	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2099 2100
}

2101 2102 2103 2104 2105 2106
static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	u32 new_ctrl, update = 0;
	unsigned int r;
	int err;

2107
	new_ctrl = nn->dp.ctrl;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		nfp_net_rss_write_key(nn);
		nfp_net_rss_write_itbl(nn);
		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
		update |= NFP_NET_CFG_UPDATE_RSS;
	}

	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_coalesce_write_cfg(nn);

		new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
		update |= NFP_NET_CFG_UPDATE_IRQMOD;
	}

2123 2124 2125 2126
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2127

2128 2129
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2130

2131 2132
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2133

2134
	nfp_net_write_mac_addr(nn);
2135

2136
	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu);
2137
	nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2138
		  nn->dp.fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	/* Enable device */
	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
	update |= NFP_NET_CFG_UPDATE_GEN;
	update |= NFP_NET_CFG_UPDATE_MSIX;
	update |= NFP_NET_CFG_UPDATE_RING;
	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, update);

2151
	nn->dp.ctrl = new_ctrl;
2152

2153 2154
	for (r = 0; r < nn->dp.num_rx_rings; r++)
		nfp_net_rx_ring_fill_freelist(&nn->dp.rx_rings[r]);
2155

2156 2157 2158
	/* Since reconfiguration requests while NFP is down are ignored we
	 * have to wipe the entire VXLAN configuration and reinitialize it.
	 */
2159
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2160 2161
		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2162
		udp_tunnel_get_rx_info(nn->dp.netdev);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	}

	return err;
}

/**
 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
 * @nn:      NFP Net device to reconfigure
 */
static int nfp_net_set_config_and_enable(struct nfp_net *nn)
{
	int err;

	err = __nfp_net_set_config_and_enable(nn);
	if (err)
		nfp_net_clear_config_and_disable(nn);

	return err;
}

/**
 * nfp_net_open_stack() - Start the device from stack's perspective
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_open_stack(struct nfp_net *nn)
{
	unsigned int r;

2191
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2192
		napi_enable(&nn->r_vecs[r].napi);
2193
		enable_irq(nn->r_vecs[r].irq_vector);
2194
	}
2195

2196
	netif_tx_wake_all_queues(nn->dp.netdev);
2197

2198
	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2199 2200 2201
	nfp_net_read_link_status(nn);
}

2202 2203 2204 2205 2206
static int nfp_net_netdev_open(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err, r;

2207 2208
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE) {
		nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->dp.ctrl);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		return -EBUSY;
	}

	/* Step 1: Allocate resources for rings and the like
	 * - Request interrupts
	 * - Allocate RX and TX ring resources
	 * - Setup initial RSS table
	 */
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
				      nn->exn_name, sizeof(nn->exn_name),
				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
	if (err)
		return err;
2222 2223 2224 2225 2226
	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
				      nn->lsc_name, sizeof(nn->lsc_name),
				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
	if (err)
		goto err_free_exn;
2227
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2228

2229
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2230 2231
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err)
2232 2233
			goto err_cleanup_vec_p;
	}
2234

2235 2236
	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
	if (err)
2237
		goto err_cleanup_vec;
2238

2239 2240
	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
	if (err)
2241
		goto err_free_rx_rings;
2242

2243
	for (r = 0; r < nn->max_r_vecs; r++)
2244
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2245

2246
	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2247 2248 2249
	if (err)
		goto err_free_rings;

2250
	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	if (err)
		goto err_free_rings;

	/* Step 2: Configure the NFP
	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
	 * - Write MAC address (in case it changed)
	 * - Set the MTU
	 * - Set the Freelist buffer size
	 * - Enable the FW
	 */
2261
	err = nfp_net_set_config_and_enable(nn);
2262
	if (err)
2263
		goto err_free_rings;
2264 2265 2266 2267 2268 2269 2270

	/* Step 3: Enable for kernel
	 * - put some freelist descriptors on each RX ring
	 * - enable NAPI on each ring
	 * - enable all TX queues
	 * - set link state
	 */
2271
	nfp_net_open_stack(nn);
2272 2273 2274 2275

	return 0;

err_free_rings:
2276
	nfp_net_tx_rings_free(&nn->dp);
2277
err_free_rx_rings:
2278
	nfp_net_rx_rings_free(&nn->dp);
2279
err_cleanup_vec:
2280
	r = nn->dp.num_r_vecs;
2281
err_cleanup_vec_p:
2282
	while (r--)
2283
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2284
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2285 2286 2287 2288 2289 2290
err_free_exn:
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
	return err;
}

/**
2291 2292
 * nfp_net_close_stack() - Quiescent the stack (part of close)
 * @nn:	     NFP Net device to reconfigure
2293
 */
2294
static void nfp_net_close_stack(struct nfp_net *nn)
2295
{
2296
	unsigned int r;
2297

2298
	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2299
	netif_carrier_off(nn->dp.netdev);
2300 2301
	nn->link_up = false;

2302
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2303
		disable_irq(nn->r_vecs[r].irq_vector);
2304
		napi_disable(&nn->r_vecs[r].napi);
2305
	}
2306

2307
	netif_tx_disable(nn->dp.netdev);
2308
}
2309

2310 2311 2312 2313 2314 2315 2316
/**
 * nfp_net_close_free_all() - Free all runtime resources
 * @nn:      NFP Net device to reconfigure
 */
static void nfp_net_close_free_all(struct nfp_net *nn)
{
	unsigned int r;
2317

2318
	for (r = 0; r < nn->dp.num_rx_rings; r++) {
2319
		nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]);
2320
		nfp_net_rx_ring_free(&nn->dp.rx_rings[r]);
2321
	}
2322 2323 2324
	for (r = 0; r < nn->dp.num_tx_rings; r++)
		nfp_net_tx_ring_free(&nn->dp.tx_rings[r]);
	for (r = 0; r < nn->dp.num_r_vecs; r++)
2325
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2326

2327 2328
	kfree(nn->dp.rx_rings);
	kfree(nn->dp.tx_rings);
2329

2330
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2331
	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
}

/**
 * nfp_net_netdev_close() - Called when the device is downed
 * @netdev:      netdev structure
 */
static int nfp_net_netdev_close(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);

2342 2343
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
		nn_err(nn, "Dev is not up: 0x%08x\n", nn->dp.ctrl);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		return 0;
	}

	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
	 */
	nfp_net_close_stack(nn);

	/* Step 2: Tell NFP
	 */
	nfp_net_clear_config_and_disable(nn);

	/* Step 3: Free resources
	 */
	nfp_net_close_free_all(nn);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	nn_dbg(nn, "%s down", netdev->name);
	return 0;
}

static void nfp_net_set_rx_mode(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;

2368
	new_ctrl = nn->dp.ctrl;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

	if (netdev->flags & IFF_PROMISC) {
		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
		else
			nn_warn(nn, "FW does not support promiscuous mode\n");
	} else {
		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
	}

2379
	if (new_ctrl == nn->dp.ctrl)
2380 2381 2382
		return;

	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2383
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2384

2385
	nn->dp.ctrl = new_ctrl;
2386 2387
}

2388 2389 2390 2391 2392 2393
static void nfp_net_rss_init_itbl(struct nfp_net *nn)
{
	int i;

	for (i = 0; i < sizeof(nn->rss_itbl); i++)
		nn->rss_itbl[i] =
2394
			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2395 2396
}

2397 2398 2399 2400 2401 2402
static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
{
	struct nfp_net_dp new_dp = *dp;

	*dp = nn->dp;
	nn->dp = new_dp;
2403 2404

	nn->dp.netdev->mtu = new_dp.mtu;
2405 2406 2407

	if (!netif_is_rxfh_configured(nn->dp.netdev))
		nfp_net_rss_init_itbl(nn);
2408 2409
}

2410
static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2411
{
2412
	unsigned int r;
2413
	int err;
2414

2415
	nfp_net_dp_swap(nn, dp);
2416

2417
	for (r = 0; r <	nn->max_r_vecs; r++)
2418
		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2419

2420
	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2421 2422
	if (err)
		return err;
2423

2424 2425 2426
	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
		err = netif_set_real_num_tx_queues(nn->dp.netdev,
						   nn->dp.num_stack_tx_rings);
2427 2428 2429 2430
		if (err)
			return err;
	}

2431 2432
	return __nfp_net_set_config_and_enable(nn);
}
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
{
	struct nfp_net_dp *new;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return NULL;

	*new = nn->dp;

	/* Clear things which need to be recomputed */
	new->fl_bufsz = 0;
	new->tx_rings = NULL;
	new->rx_rings = NULL;
	new->num_r_vecs = 0;
	new->num_stack_tx_rings = 0;

	return new;
}

2454
static int nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp)
2455 2456
{
	/* XDP-enabled tests */
2457
	if (!dp->xdp_prog)
2458
		return 0;
2459
	if (dp->fl_bufsz > PAGE_SIZE) {
2460 2461 2462
		nn_warn(nn, "MTU too large w/ XDP enabled\n");
		return -EINVAL;
	}
2463
	if (dp->num_tx_rings > nn->max_tx_rings) {
2464 2465 2466 2467 2468 2469 2470
		nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
		return -EINVAL;
	}

	return 0;
}

2471
int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp)
2472
{
2473
	int r, err;
2474

2475
	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2476

2477
	dp->num_stack_tx_rings = dp->num_tx_rings;
2478
	if (dp->xdp_prog)
2479
		dp->num_stack_tx_rings -= dp->num_rx_rings;
2480

2481
	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2482

2483
	err = nfp_net_check_config(nn, dp);
2484
	if (err)
2485
		goto exit_free_dp;
2486

2487
	if (!netif_running(dp->netdev)) {
2488
		nfp_net_dp_swap(nn, dp);
2489 2490
		err = 0;
		goto exit_free_dp;
2491 2492 2493
	}

	/* Prepare new rings */
2494
	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2495 2496
		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
		if (err) {
2497
			dp->num_r_vecs = r;
2498 2499 2500
			goto err_cleanup_vecs;
		}
	}
2501 2502 2503 2504 2505 2506 2507 2508

	err = nfp_net_rx_rings_prepare(nn, dp);
	if (err)
		goto err_cleanup_vecs;

	err = nfp_net_tx_rings_prepare(nn, dp);
	if (err)
		goto err_free_rx;
2509 2510 2511 2512 2513

	/* Stop device, swap in new rings, try to start the firmware */
	nfp_net_close_stack(nn);
	nfp_net_clear_config_and_disable(nn);

2514
	err = nfp_net_dp_swap_enable(nn, dp);
2515
	if (err) {
2516
		int err2;
2517

2518
		nfp_net_clear_config_and_disable(nn);
2519

2520
		/* Try with old configuration and old rings */
2521
		err2 = nfp_net_dp_swap_enable(nn, dp);
2522
		if (err2)
2523
			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2524
			       err, err2);
2525
	}
2526
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2527
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2528

2529 2530
	nfp_net_rx_rings_free(dp);
	nfp_net_tx_rings_free(dp);
2531 2532

	nfp_net_open_stack(nn);
2533 2534
exit_free_dp:
	kfree(dp);
2535 2536

	return err;
2537 2538

err_free_rx:
2539
	nfp_net_rx_rings_free(dp);
2540
err_cleanup_vecs:
2541
	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
2542
		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2543
	kfree(dp);
2544 2545 2546 2547 2548 2549
	return err;
}

static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct nfp_net *nn = netdev_priv(netdev);
2550 2551 2552 2553 2554
	struct nfp_net_dp *dp;

	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;
2555

2556 2557
	dp->mtu = new_mtu;

2558
	return nfp_net_ring_reconfig(nn, dp);
2559 2560
}

2561 2562
static void nfp_net_stat64(struct net_device *netdev,
			   struct rtnl_link_stats64 *stats)
2563 2564 2565 2566
{
	struct nfp_net *nn = netdev_priv(netdev);
	int r;

2567
	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
		u64 data[3];
		unsigned int start;

		do {
			start = u64_stats_fetch_begin(&r_vec->rx_sync);
			data[0] = r_vec->rx_pkts;
			data[1] = r_vec->rx_bytes;
			data[2] = r_vec->rx_drops;
		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
		stats->rx_packets += data[0];
		stats->rx_bytes += data[1];
		stats->rx_dropped += data[2];

		do {
			start = u64_stats_fetch_begin(&r_vec->tx_sync);
			data[0] = r_vec->tx_pkts;
			data[1] = r_vec->tx_bytes;
			data[2] = r_vec->tx_errors;
		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
		stats->tx_packets += data[0];
		stats->tx_bytes += data[1];
		stats->tx_errors += data[2];
	}
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static bool nfp_net_ebpf_capable(struct nfp_net *nn)
{
	if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
	    nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
		return true;
	return false;
}

static int
nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
		 struct tc_to_netdev *tc)
{
	struct nfp_net *nn = netdev_priv(netdev);

	if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
		return -ENOTSUPP;
	if (proto != htons(ETH_P_ALL))
		return -ENOTSUPP;

2613
	if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2614
		if (!nn->dp.bpf_offload_xdp)
2615 2616 2617 2618
			return nfp_net_bpf_offload(nn, tc->cls_bpf);
		else
			return -EBUSY;
	}
2619 2620 2621 2622

	return -EINVAL;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
static int nfp_net_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct nfp_net *nn = netdev_priv(netdev);
	u32 new_ctrl;
	int err;

	/* Assume this is not called with features we have not advertised */

2633
	new_ctrl = nn->dp.ctrl;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

	if (changed & NETIF_F_RXCSUM) {
		if (features & NETIF_F_RXCSUM)
			new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
	}

	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
	}

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			new_ctrl |= NFP_NET_CFG_CTRL_LSO;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		if (features & NETIF_F_HW_VLAN_CTAG_RX)
			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
	}

	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
		if (features & NETIF_F_HW_VLAN_CTAG_TX)
			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
	}

	if (changed & NETIF_F_SG) {
		if (features & NETIF_F_SG)
			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
		else
			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
	}

2677
	if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
2678 2679 2680 2681
		nn_err(nn, "Cannot disable HW TC offload while in use\n");
		return -EBUSY;
	}

2682 2683 2684
	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
	       netdev->features, features, changed);

2685
	if (new_ctrl == nn->dp.ctrl)
2686 2687
		return 0;

2688
	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
2689 2690 2691 2692 2693
	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

2694
	nn->dp.ctrl = new_ctrl;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	return 0;
}

static netdev_features_t
nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
		       netdev_features_t features)
{
	u8 l4_hdr;

	/* We can't do TSO over double tagged packets (802.1AD) */
	features &= vlan_features_check(skb, features);

	if (!skb->encapsulation)
		return features;

	/* Ensure that inner L4 header offset fits into TX descriptor field */
	if (skb_is_gso(skb)) {
		u32 hdrlen;

		hdrlen = skb_inner_transport_header(skb) - skb->data +
			inner_tcp_hdrlen(skb);

		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
			features &= ~NETIF_F_GSO_MASK;
	}

	/* VXLAN/GRE check */
	switch (vlan_get_protocol(skb)) {
	case htons(ETH_P_IP):
		l4_hdr = ip_hdr(skb)->protocol;
		break;
	case htons(ETH_P_IPV6):
		l4_hdr = ipv6_hdr(skb)->nexthdr;
		break;
	default:
2731
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2732 2733 2734 2735 2736 2737 2738 2739
	}

	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
	    skb->inner_protocol != htons(ETH_P_TEB) ||
	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
	    (l4_hdr == IPPROTO_UDP &&
	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2740
		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2741 2742 2743 2744

	return features;
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
static int
nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

	if (!nn->eth_port)
		return -EOPNOTSUPP;

	if (!nn->eth_port->is_split)
		err = snprintf(name, len, "p%d", nn->eth_port->label_port);
	else
		err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port,
			       nn->eth_port->label_subport);
	if (err >= len)
		return -EINVAL;

	return 0;
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
/**
 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
 * @nn:   NFP Net device to reconfigure
 * @idx:  Index into the port table where new port should be written
 * @port: UDP port to configure (pass zero to remove VXLAN port)
 */
static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
{
	int i;

	nn->vxlan_ports[idx] = port;

2777
	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
2778 2779 2780 2781 2782 2783 2784 2785
		return;

	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
			  be16_to_cpu(nn->vxlan_ports[i]));

2786
	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
}

/**
 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
 * @nn:   NFP Network structure
 * @port: UDP port to look for
 *
 * Return: if the port is already in the table -- it's position;
 *	   if the port is not in the table -- free position to use;
 *	   if the table is full -- -ENOSPC.
 */
static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
{
	int i, free_idx = -ENOSPC;

	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
		if (nn->vxlan_ports[i] == port)
			return i;
		if (!nn->vxlan_usecnt[i])
			free_idx = i;
	}

	return free_idx;
}

static void nfp_net_add_vxlan_port(struct net_device *netdev,
2813
				   struct udp_tunnel_info *ti)
2814 2815 2816 2817
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2818 2819 2820 2821
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2822 2823 2824 2825
	if (idx == -ENOSPC)
		return;

	if (!nn->vxlan_usecnt[idx]++)
2826
		nfp_net_set_vxlan_port(nn, idx, ti->port);
2827 2828 2829
}

static void nfp_net_del_vxlan_port(struct net_device *netdev,
2830
				   struct udp_tunnel_info *ti)
2831 2832 2833 2834
{
	struct nfp_net *nn = netdev_priv(netdev);
	int idx;

2835 2836 2837 2838
	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
		return;

	idx = nfp_net_find_vxlan_idx(nn, ti->port);
2839
	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2840 2841 2842 2843 2844 2845
		return;

	if (!--nn->vxlan_usecnt[idx])
		nfp_net_set_vxlan_port(nn, idx, 0);
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
{
	struct tc_cls_bpf_offload cmd = {
		.prog = prog,
	};
	int ret;

	if (!nfp_net_ebpf_capable(nn))
		return -EINVAL;

2856 2857
	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) {
		if (!nn->dp.bpf_offload_xdp)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
			return prog ? -EBUSY : 0;
		cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
	} else {
		if (!prog)
			return 0;
		cmd.command = TC_CLSBPF_ADD;
	}

	ret = nfp_net_bpf_offload(nn, &cmd);
	/* Stop offload if replace not possible */
	if (ret && cmd.command == TC_CLSBPF_REPLACE)
		nfp_net_xdp_offload(nn, NULL);
2870
	nn->dp.bpf_offload_xdp = prog && !ret;
2871 2872 2873
	return ret;
}

2874 2875
static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
{
2876
	struct bpf_prog *old_prog = nn->dp.xdp_prog;
2877
	struct nfp_net_dp *dp;
2878 2879
	int err;

2880 2881 2882 2883
	if (prog && prog->xdp_adjust_head) {
		nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
		return -EOPNOTSUPP;
	}
2884
	if (!prog && !nn->dp.xdp_prog)
2885
		return 0;
2886 2887
	if (prog && nn->dp.xdp_prog) {
		prog = xchg(&nn->dp.xdp_prog, prog);
2888
		bpf_prog_put(prog);
2889
		nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2890 2891 2892
		return 0;
	}

2893 2894 2895 2896
	dp = nfp_net_clone_dp(nn);
	if (!dp)
		return -ENOMEM;

2897
	dp->xdp_prog = prog;
2898
	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
2899
	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2900 2901

	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2902
	err = nfp_net_ring_reconfig(nn, dp);
2903 2904 2905
	if (err)
		return err;

2906 2907
	if (old_prog)
		bpf_prog_put(old_prog);
2908

2909
	nfp_net_xdp_offload(nn, nn->dp.xdp_prog);
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	return 0;
}

static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
	struct nfp_net *nn = netdev_priv(netdev);

	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return nfp_net_xdp_setup(nn, xdp->prog);
	case XDP_QUERY_PROG:
2922
		xdp->prog_attached = !!nn->dp.xdp_prog;
2923 2924 2925 2926 2927 2928
		return 0;
	default:
		return -EINVAL;
	}
}

2929 2930 2931 2932 2933
static const struct net_device_ops nfp_net_netdev_ops = {
	.ndo_open		= nfp_net_netdev_open,
	.ndo_stop		= nfp_net_netdev_close,
	.ndo_start_xmit		= nfp_net_tx,
	.ndo_get_stats64	= nfp_net_stat64,
2934
	.ndo_setup_tc		= nfp_net_setup_tc,
2935 2936 2937 2938 2939 2940
	.ndo_tx_timeout		= nfp_net_tx_timeout,
	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
	.ndo_change_mtu		= nfp_net_change_mtu,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_set_features	= nfp_net_set_features,
	.ndo_features_check	= nfp_net_features_check,
2941
	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
2942 2943
	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
2944
	.ndo_xdp		= nfp_net_xdp,
2945 2946 2947 2948 2949 2950 2951 2952
};

/**
 * nfp_net_info() - Print general info about the NIC
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_info(struct nfp_net *nn)
{
J
Jakub Kicinski 已提交
2953
	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
2954 2955 2956
		nn->dp.is_vf ? "VF " : "",
		nn->dp.num_tx_rings, nn->max_tx_rings,
		nn->dp.num_rx_rings, nn->max_rx_rings);
2957 2958 2959 2960
	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
		nn->fw_ver.resv, nn->fw_ver.class,
		nn->fw_ver.major, nn->fw_ver.minor,
		nn->max_mtu);
2961
	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		nn->cap,
		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO "      : "",
		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS "      : "",
		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
2978 2979
		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
		nfp_net_ebpf_capable(nn)            ? "BPF "	  : "");
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
}

/**
 * nfp_net_netdev_alloc() - Allocate netdev and related structure
 * @pdev:         PCI device
 * @max_tx_rings: Maximum number of TX rings supported by device
 * @max_rx_rings: Maximum number of RX rings supported by device
 *
 * This function allocates a netdev device and fills in the initial
 * part of the @struct nfp_net structure.
 *
 * Return: NFP Net device structure, or ERR_PTR on error.
 */
struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
2994 2995
				     unsigned int max_tx_rings,
				     unsigned int max_rx_rings)
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
{
	struct net_device *netdev;
	struct nfp_net *nn;

	netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
				    max_tx_rings, max_rx_rings);
	if (!netdev)
		return ERR_PTR(-ENOMEM);

	SET_NETDEV_DEV(netdev, &pdev->dev);
	nn = netdev_priv(netdev);

3008 3009
	nn->dp.netdev = netdev;
	nn->dp.dev = &pdev->dev;
3010 3011 3012 3013 3014
	nn->pdev = pdev;

	nn->max_tx_rings = max_tx_rings;
	nn->max_rx_rings = max_rx_rings;

3015 3016 3017
	nn->dp.num_tx_rings = min_t(unsigned int,
				    max_tx_rings, num_online_cpus());
	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3018
				 netif_get_num_default_rss_queues());
3019

3020 3021 3022
	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
	nn->dp.num_r_vecs = min_t(unsigned int,
				  nn->dp.num_r_vecs, num_online_cpus());
J
Jakub Kicinski 已提交
3023

3024 3025
	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3026 3027

	spin_lock_init(&nn->reconfig_lock);
3028
	spin_lock_init(&nn->rx_filter_lock);
3029 3030
	spin_lock_init(&nn->link_status_lock);

3031 3032
	setup_timer(&nn->reconfig_timer,
		    nfp_net_reconfig_timer, (unsigned long)nn);
3033 3034
	setup_timer(&nn->rx_filter_stats_timer,
		    nfp_net_filter_stats_timer, (unsigned long)nn);
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044
	return nn;
}

/**
 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
 * @nn:      NFP Net device to reconfigure
 */
void nfp_net_netdev_free(struct nfp_net *nn)
{
3045
	free_netdev(nn->dp.netdev);
3046 3047
}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
/**
 * nfp_net_rss_key_sz() - Get current size of the RSS key
 * @nn:		NFP Net device instance
 *
 * Return: size of the RSS key for currently selected hash function.
 */
unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
{
	switch (nn->rss_hfunc) {
	case ETH_RSS_HASH_TOP:
		return NFP_NET_CFG_RSS_KEY_SZ;
	case ETH_RSS_HASH_XOR:
		return 0;
	case ETH_RSS_HASH_CRC32:
		return 4;
	}

	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
	return 0;
}

3069 3070 3071 3072 3073 3074
/**
 * nfp_net_rss_init() - Set the initial RSS parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_rss_init(struct nfp_net *nn)
{
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	unsigned long func_bit, rss_cap_hfunc;
	u32 reg;

	/* Read the RSS function capability and select first supported func */
	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
	if (!rss_cap_hfunc)
		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
					  NFP_NET_CFG_RSS_TOEPLITZ);

	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3087
		dev_warn(nn->dp.dev,
3088 3089 3090 3091 3092 3093
			 "Bad RSS config, defaulting to Toeplitz hash\n");
		func_bit = ETH_RSS_HASH_TOP_BIT;
	}
	nn->rss_hfunc = 1 << func_bit;

	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3094

3095
	nfp_net_rss_init_itbl(nn);
3096 3097 3098 3099

	/* Enable IPv4/IPv6 TCP by default */
	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
		      NFP_NET_CFG_RSS_IPV6_TCP |
3100
		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		      NFP_NET_CFG_RSS_MASK;
}

/**
 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
 * @nn:	     NFP Net device to reconfigure
 */
static void nfp_net_irqmod_init(struct nfp_net *nn)
{
	nn->rx_coalesce_usecs      = 50;
	nn->rx_coalesce_max_frames = 64;
	nn->tx_coalesce_usecs      = 50;
	nn->tx_coalesce_max_frames = 64;
}

/**
 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
 * @netdev:      netdev structure
 *
 * Return: 0 on success or negative errno on error.
 */
int nfp_net_netdev_init(struct net_device *netdev)
{
	struct nfp_net *nn = netdev_priv(netdev);
	int err;

3127
	nn->dp.chained_metadata_format = nn->fw_ver.major > 3;
J
Jakub Kicinski 已提交
3128

3129 3130
	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;

3131 3132 3133 3134
	/* Get some of the read-only fields from the BAR */
	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);

3135
	nfp_net_write_mac_addr(nn);
3136

3137
	/* Determine RX packet/metadata boundary offset */
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (nn->fw_ver.major >= 2) {
		u32 reg;

		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
		if (reg > NFP_NET_MAX_PREPEND) {
			nn_err(nn, "Invalid rx offset: %d\n", reg);
			return -EINVAL;
		}
		nn->dp.rx_offset = reg;
	} else {
3148
		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3149
	}
3150

3151 3152 3153 3154 3155
	/* Set default MTU and Freelist buffer size */
	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
		netdev->mtu = nn->max_mtu;
	else
		netdev->mtu = NFP_NET_DEFAULT_MTU;
3156 3157
	nn->dp.mtu = netdev->mtu;
	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

	/* Advertise/enable offloads based on capabilities
	 *
	 * Note: netdev->features show the currently enabled features
	 * and netdev->hw_features advertises which features are
	 * supported.  By default we enable most features.
	 */
	netdev->hw_features = NETIF_F_HIGHDMA;
	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
		netdev->hw_features |= NETIF_F_RXCSUM;
3168
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3169 3170 3171
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3172
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3173 3174 3175
	}
	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
		netdev->hw_features |= NETIF_F_SG;
3176
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3177 3178 3179
	}
	if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3180
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO;
3181 3182 3183 3184
	}
	if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
		netdev->hw_features |= NETIF_F_RXHASH;
		nfp_net_rss_init(nn);
3185
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS;
3186 3187 3188 3189 3190 3191
	}
	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
			netdev->hw_features |= NETIF_F_GSO_GRE |
					       NETIF_F_GSO_UDP_TUNNEL;
3192
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3193 3194 3195 3196 3197 3198 3199 3200

		netdev->hw_enc_features = netdev->hw_features;
	}

	netdev->vlan_features = netdev->hw_features;

	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3201
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3202 3203 3204
	}
	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3205
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3206 3207 3208 3209
	}

	netdev->features = netdev->hw_features;

3210 3211 3212
	if (nfp_net_ebpf_capable(nn))
		netdev->hw_features |= NETIF_F_HW_TC;

3213 3214 3215 3216 3217
	/* Advertise but disable TSO by default. */
	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);

	/* Allow L2 Broadcast and Multicast through by default, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3218
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3219
	if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3220
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3221 3222 3223 3224

	/* Allow IRQ moderation, if supported */
	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
		nfp_net_irqmod_init(nn);
3225
		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	}

	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;

	/* Make sure the FW knows the netdev is supposed to be disabled here */
	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
				   NFP_NET_CFG_UPDATE_GEN);
	if (err)
		return err;

	/* Finalise the netdev setup */
	netdev->netdev_ops = &nfp_net_netdev_ops;
	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3243 3244 3245 3246 3247

	/* MTU range: 68 - hw-specific max */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = nn->max_mtu;

3248
	netif_carrier_off(netdev);
3249 3250

	nfp_net_set_ethtool_ops(netdev);
3251
	nfp_net_vecs_init(netdev);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	return register_netdev(netdev);
}

/**
 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
 * @netdev:      netdev structure
 */
void nfp_net_netdev_clean(struct net_device *netdev)
{
3262 3263
	struct nfp_net *nn = netdev_priv(netdev);

3264 3265 3266
	if (nn->dp.xdp_prog)
		bpf_prog_put(nn->dp.xdp_prog);
	if (nn->dp.bpf_offload_xdp)
3267
		nfp_net_xdp_offload(nn, NULL);
3268
	unregister_netdev(nn->dp.netdev);
3269
}