m25p80.c 37.3 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
44
#define	OPCODE_QUAD_READ        0x6b    /* Read data bytes */
45
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
46
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
47
#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
48
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
49
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
50
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
51
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
52
#define	OPCODE_RDCR             0x35    /* Read configuration register */
53

54 55 56
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
57
#define	OPCODE_QUAD_READ_4B	0x6c    /* Read data bytes */
58 59 60
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

61 62 63 64 65
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

66
/* Used for Macronix and Winbond flashes. */
67 68 69
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

70 71 72
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

73 74 75
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
76
/* meaning of other SR_* bits may differ between vendors */
77 78 79 80 81
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

82 83 84 85 86
#define SR_QUAD_EN_MX           0x40    /* Macronix Quad I/O */

/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN		0x2     /* Spansion Quad I/O */

87
/* Define max times to check status register before we give up. */
88
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
B
Brian Norris 已提交
89
#define	MAX_CMD_SIZE		6
90

91 92
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

93 94
/****************************************************************************/

95 96 97
enum read_type {
	M25P80_NORMAL = 0,
	M25P80_FAST,
98
	M25P80_QUAD,
99 100
};

101 102
struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
103
	struct mutex		lock;
104
	struct mtd_info		mtd;
105 106
	u16			page_size;
	u16			addr_width;
107
	u8			erase_opcode;
108 109
	u8			read_opcode;
	u8			program_opcode;
110
	u8			*command;
111
	enum read_type		flash_read;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct m25p *flash)
{
	u8 code = OPCODE_RDCR;
	int ret;
	u8 val;

	ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
	if (ret < 0) {
		dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

167 168 169 170 171 172 173 174 175 176 177
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
178 179 180 181 182 183 184 185 186

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

187
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
188 189
}

190 191 192 193 194 195 196 197 198
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
199

200 201 202
/*
 * Enable/disable 4-byte addressing mode.
 */
203
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
204
{
205 206 207
	int status;
	bool need_wren = false;

208
	switch (JEDEC_MFR(jedec_id)) {
209
	case CFI_MFR_ST: /* Micron, actually */
210 211 212
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
213
	case 0xEF /* winbond */:
214 215 216
		if (need_wren)
			write_enable(flash);

217
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
218 219 220 221 222 223
		status = spi_write(flash->spi, flash->command, 1);

		if (need_wren)
			write_disable(flash);

		return status;
224 225 226 227 228 229
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
230 231
}

232 233 234 235 236 237
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
238
	unsigned long deadline;
239 240
	int sr;

P
Peter Horton 已提交
241 242 243
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
244 245 246 247 248
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
249 250 251
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
252 253 254 255

	return 1;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct m25p *flash, u16 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val & 0xff;
	flash->command[2] = (val >> 8);

	return spi_write(flash->spi, flash->command, 3);
}

static int macronix_quad_enable(struct m25p *flash)
{
	int ret, val;
	u8 cmd[2];
	cmd[0] = OPCODE_WRSR;

	val = read_sr(flash);
	cmd[1] = val | SR_QUAD_EN_MX;
	write_enable(flash);

	spi_write(flash->spi, &cmd, 2);

	if (wait_till_ready(flash))
		return 1;

	ret = read_sr(flash);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spansion_quad_enable(struct m25p *flash)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(flash);

	ret = write_sr_cr(flash, quad_en);
	if (ret < 0) {
		dev_err(&flash->spi->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(flash);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int set_quad_mode(struct m25p *flash, u32 jedec_id)
{
	int status;

	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	default:
		status = spansion_quad_enable(flash);
		if (status) {
			dev_err(&flash->spi->dev,
				"Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

C
Chen Gong 已提交
343 344 345 346 347
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
348
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
349
{
350 351
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
352 353 354 355 356 357 358 359 360

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
361
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
362 363 364 365 366

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
367

368 369 370 371 372 373
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
374
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
375 376 377 378 379 380 381
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

382 383 384 385 386 387 388 389
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
390 391
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
392 393 394 395 396 397 398 399 400

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
401
	flash->command[0] = flash->erase_opcode;
402
	m25p_addr2cmd(flash, offset, flash->command);
403

404
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
423
	uint32_t rem;
424

425 426 427
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
428

429 430
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
431 432 433 434 435
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
436
	mutex_lock(&flash->lock);
437

438
	/* whole-chip erase? */
439 440 441 442 443 444
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
445 446 447 448 449 450 451

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
452 453 454 455 456 457 458 459 460 461
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
462 463 464
		}
	}

D
David Brownell 已提交
465
	mutex_unlock(&flash->lock);
466 467 468 469 470 471 472

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

473 474 475 476 477 478 479 480 481
/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int m25p80_dummy_cycles_read(struct m25p *flash)
{
	switch (flash->flash_read) {
	case M25P80_FAST:
482
	case M25P80_QUAD:
483 484 485 486 487 488 489 490 491
		return 1;
	case M25P80_NORMAL:
		return 0;
	default:
		dev_err(&flash->spi->dev, "No valid read type supported\n");
		return -1;
	}
}

492 493 494 495 496 497 498 499 500 501
/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
502
	uint8_t opcode;
503
	int dummy;
504

505 506
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
507

508 509 510
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

511 512 513 514 515 516
	dummy =  m25p80_dummy_cycles_read(flash);
	if (dummy < 0) {
		dev_err(&flash->spi->dev, "No valid read command supported\n");
		return -EINVAL;
	}

517
	t[0].tx_buf = flash->command;
518
	t[0].len = m25p_cmdsz(flash) + dummy;
519 520 521 522 523 524
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
525
	mutex_lock(&flash->lock);
526 527 528 529

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
530
		mutex_unlock(&flash->lock);
531 532 533 534
		return 1;
	}

	/* Set up the write data buffer. */
535
	opcode = flash->read_opcode;
536
	flash->command[0] = opcode;
537
	m25p_addr2cmd(flash, from, flash->command);
538 539 540

	spi_sync(flash->spi, &m);

541
	*retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
542

D
David Brownell 已提交
543
	mutex_unlock(&flash->lock);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

561 562
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
563

564 565 566 567
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
568
	t[0].len = m25p_cmdsz(flash);
569 570 571 572 573
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
574
	mutex_lock(&flash->lock);
575 576

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
577 578
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
579
		return 1;
C
Chen Gong 已提交
580
	}
581 582 583 584

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
585
	flash->command[0] = flash->program_opcode;
586
	m25p_addr2cmd(flash, to, flash->command);
587

588
	page_offset = to & (flash->page_size - 1);
589 590

	/* do all the bytes fit onto one page? */
591
	if (page_offset + len <= flash->page_size) {
592 593 594 595
		t[1].len = len;

		spi_sync(flash->spi, &m);

596
		*retlen = m.actual_length - m25p_cmdsz(flash);
597 598 599 600
	} else {
		u32 i;

		/* the size of data remaining on the first page */
601
		page_size = flash->page_size - page_offset;
602 603 604 605

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

606
		*retlen = m.actual_length - m25p_cmdsz(flash);
607

608
		/* write everything in flash->page_size chunks */
609 610
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
611 612
			if (page_size > flash->page_size)
				page_size = flash->page_size;
613 614

			/* write the next page to flash */
615
			m25p_addr2cmd(flash, to + i, flash->command);
616 617 618 619 620 621 622 623 624 625

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
626
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
627 628
		}
	}
629

D
David Brownell 已提交
630
	mutex_unlock(&flash->lock);
631 632 633 634

	return 0;
}

635 636 637 638 639 640 641 642 643
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

644 645
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
646

647 648 649 650
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
651
	t[0].len = m25p_cmdsz(flash);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
670
		m25p_addr2cmd(flash, to, flash->command);
671 672 673 674 675 676 677

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
678
		*retlen += m.actual_length - m25p_cmdsz(flash);
679 680 681 682
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
683
	m25p_addr2cmd(flash, to, flash->command);
684 685

	/* Write out most of the data here. */
686
	cmd_sz = m25p_cmdsz(flash);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
710 711
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
712 713 714 715 716 717 718
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
719
		*retlen += m.actual_length - m25p_cmdsz(flash);
720 721 722 723 724 725 726
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

818 819 820 821 822 823 824
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
825 826 827 828 829
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
830
	u16             ext_id;
831 832 833 834

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
835
	unsigned	sector_size;
836 837
	u16		n_sectors;

838 839 840
	u16		page_size;
	u16		addr_width;

841 842
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
843
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
844
#define	SST_WRITE	0x04		/* use SST byte programming */
845
#define	M25P_NO_FR	0x08		/* Can't do fastread */
846
#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
847
#define	M25P80_QUAD_READ	0x20    /* Flash supports Quad Read */
848 849
};

850 851 852 853 854 855
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
856
		.page_size = 256,					\
857 858
		.flags = (_flags),					\
	})
859

860
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
861 862 863 864 865
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
866
		.flags = (_flags),					\
867
	})
868 869 870 871 872

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
873
static const struct spi_device_id m25p_ids[] = {
874
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
875 876
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
877

878
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
879
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
880
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
881

882 883 884
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
885
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
886

887 888
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

889
	/* EON -- en25xxx */
B
Brian Norris 已提交
890 891 892 893 894 895
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
896

897 898 899
	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

900
	/* Everspin */
B
Brian Norris 已提交
901 902
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
903

904 905 906 907
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

908 909 910 911 912
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

913
	/* Macronix */
J
John Crispin 已提交
914
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
915
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
916
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
917
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
918
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
919
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
920 921 922
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
923
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
924
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
925
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
926

927
	/* Micron */
B
Brian Norris 已提交
928 929 930 931 932
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
933

934
	/* PMC */
B
Brian Norris 已提交
935 936 937
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
938

939 940 941
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
942 943
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
944
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
945
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, M25P80_QUAD_READ) },
946 947
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
948 949 950 951
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
952 953 954 955 956
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
957 958
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
959 960

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
961 962 963 964
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
965
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
966 967 968 969
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
970 971

	/* ST Microelectronics -- newer production may have feature updates */
972 973 974 975 976 977 978 979 980
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
981
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
982

983 984 985 986 987 988 989 990 991 992
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

993 994 995 996
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

997
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
998 999
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
1000

1001
	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
1002 1003 1004 1005
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1006

1007
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1008 1009 1010 1011 1012 1013
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1014
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1015
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
1016
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1017
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1018
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1019
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
1020
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
1021
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1022
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1023 1024

	/* Catalyst / On Semiconductor -- non-JEDEC */
1025 1026 1027 1028 1029
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
1030
	{ },
1031
};
1032
MODULE_DEVICE_TABLE(spi, m25p_ids);
1033

B
Bill Pemberton 已提交
1034
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
1035 1036 1037
{
	int			tmp;
	u8			code = OPCODE_RDID;
1038
	u8			id[5];
1039
	u32			jedec;
1040
	u16                     ext_jedec;
1041 1042 1043 1044 1045 1046
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
1047
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
1048
	if (tmp < 0) {
1049
		pr_debug("%s: error %d reading JEDEC ID\n",
1050
				dev_name(&spi->dev), tmp);
1051
		return ERR_PTR(tmp);
1052 1053 1054 1055 1056 1057 1058
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

1059 1060
	ext_jedec = id[3] << 8 | id[4];

1061 1062
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
1063
		if (info->jedec_id == jedec) {
1064
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
1065
				continue;
1066
			return &m25p_ids[tmp];
1067
		}
1068
	}
1069
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
1070
	return ERR_PTR(-ENODEV);
1071 1072 1073
}


1074 1075 1076 1077 1078
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
1079
static int m25p_probe(struct spi_device *spi)
1080
{
1081
	const struct spi_device_id	*id = spi_get_device_id(spi);
1082 1083 1084 1085
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
1086
	struct mtd_part_parser_data	ppdata;
1087
	struct device_node *np = spi->dev.of_node;
1088
	int ret;
1089

1090
	/* Platform data helps sort out which chip type we have, as
1091 1092 1093
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
1094
	 */
1095
	data = dev_get_platdata(&spi->dev);
1096
	if (data && data->type) {
1097
		const struct spi_device_id *plat_id;
1098

1099
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
1100 1101
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
1102 1103
				continue;
			break;
1104 1105
		}

1106
		if (i < ARRAY_SIZE(m25p_ids) - 1)
1107 1108 1109
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
1110
	}
1111

1112 1113 1114 1115 1116 1117
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
1118 1119
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
1134

B
Brian Norris 已提交
1135
	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
1136 1137
	if (!flash)
		return -ENOMEM;
B
Brian Norris 已提交
1138 1139 1140

	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
	if (!flash->command)
1141
		return -ENOMEM;
1142 1143

	flash->spi = spi;
D
David Brownell 已提交
1144
	mutex_init(&flash->lock);
1145
	spi_set_drvdata(spi, flash);
1146

1147
	/*
1148
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1149
	 * up with the software protection bits set
1150 1151
	 */

1152 1153 1154
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1155 1156 1157 1158
		write_enable(flash);
		write_sr(flash, 0);
	}

1159
	if (data && data->name)
1160 1161
		flash->mtd.name = data->name;
	else
1162
		flash->mtd.name = dev_name(&spi->dev);
1163 1164

	flash->mtd.type = MTD_NORFLASH;
1165
	flash->mtd.writesize = 1;
1166 1167
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1168 1169
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1170

1171 1172 1173 1174 1175 1176
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1177
	/* sst flash chips use AAI word program */
1178
	if (info->flags & SST_WRITE)
1179
		flash->mtd._write = sst_write;
1180
	else
1181
		flash->mtd._write = m25p80_write;
1182

1183 1184 1185 1186
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
1187 1188 1189
	} else if (info->flags & SECT_4K_PMC) {
		flash->erase_opcode = OPCODE_BE_4K_PMC;
		flash->mtd.erasesize = 4096;
1190 1191 1192 1193 1194
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1195 1196 1197
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1198
	ppdata.of_node = spi->dev.of_node;
1199
	flash->mtd.dev.parent = &spi->dev;
1200
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1201
	flash->mtd.writebufsize = flash->page_size;
1202

1203
	if (np) {
1204
		/* If we were instantiated by DT, use it */
1205 1206
		if (of_property_read_bool(np, "m25p,fast-read"))
			flash->flash_read = M25P80_FAST;
1207 1208
		else
			flash->flash_read = M25P80_NORMAL;
1209
	} else {
1210
		/* If we weren't instantiated by DT, default to fast-read */
1211 1212
		flash->flash_read = M25P80_FAST;
	}
1213

1214
	/* Some devices cannot do fast-read, no matter what DT tells us */
1215
	if (info->flags & M25P_NO_FR)
1216
		flash->flash_read = M25P80_NORMAL;
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	/* Quad-read mode takes precedence over fast/normal */
	if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) {
		ret = set_quad_mode(flash, info->jedec_id);
		if (ret) {
			dev_err(&flash->spi->dev, "quad mode not supported\n");
			return ret;
		}
		flash->flash_read = M25P80_QUAD;
	}

1228
	/* Default commands */
1229
	switch (flash->flash_read) {
1230 1231 1232
	case M25P80_QUAD:
		flash->read_opcode = OPCODE_QUAD_READ;
		break;
1233
	case M25P80_FAST:
1234
		flash->read_opcode = OPCODE_FAST_READ;
1235 1236
		break;
	case M25P80_NORMAL:
1237
		flash->read_opcode = OPCODE_NORM_READ;
1238 1239 1240 1241 1242
		break;
	default:
		dev_err(&flash->spi->dev, "No Read opcode defined\n");
		return -EINVAL;
	}
1243 1244 1245

	flash->program_opcode = OPCODE_PP;

1246 1247
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1248
	else if (flash->mtd.size > 0x1000000) {
1249
		/* enable 4-byte addressing if the device exceeds 16MiB */
1250 1251 1252
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
1253
			switch (flash->flash_read) {
1254
			case M25P80_QUAD:
1255
				flash->read_opcode = OPCODE_QUAD_READ_4B;
1256
				break;
1257 1258 1259 1260 1261 1262 1263
			case M25P80_FAST:
				flash->read_opcode = OPCODE_FAST_READ_4B;
				break;
			case M25P80_NORMAL:
				flash->read_opcode = OPCODE_NORM_READ_4B;
				break;
			}
1264 1265 1266 1267
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1268
		} else
1269 1270 1271
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1272
	}
1273

1274
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1275
			(long long)flash->mtd.size >> 10);
1276

1277
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1278
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1279
		flash->mtd.name,
1280
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1281 1282 1283 1284 1285
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1286
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1287
				".erasesize = 0x%.8x (%uKiB), "
1288
				".numblocks = %d }\n",
1289
				i, (long long)flash->mtd.eraseregions[i].offset,
1290 1291 1292 1293 1294 1295 1296 1297
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1298 1299 1300
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1301 1302 1303
}


B
Bill Pemberton 已提交
1304
static int m25p_remove(struct spi_device *spi)
1305
{
1306
	struct m25p	*flash = spi_get_drvdata(spi);
1307 1308

	/* Clean up MTD stuff. */
1309
	return mtd_device_unregister(&flash->mtd);
1310 1311 1312 1313 1314 1315 1316 1317
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1318
	.id_table	= m25p_ids,
1319
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1320
	.remove	= m25p_remove,
1321 1322 1323 1324 1325

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1326 1327
};

1328
module_spi_driver(m25p80_driver);
1329 1330 1331 1332

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");