concurrentMark.cpp 173.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "code/codeCache.hpp"
28
#include "gc_implementation/g1/concurrentMark.inline.hpp"
29 30 31
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
32
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
35
#include "gc_implementation/g1/g1RemSet.hpp"
36
#include "gc_implementation/g1/heapRegion.inline.hpp"
37
#include "gc_implementation/g1/heapRegionManager.inline.hpp"
38
#include "gc_implementation/g1/heapRegionRemSet.hpp"
39
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
40
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
41 42 43
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
44
#include "memory/allocation.hpp"
45 46 47 48 49 50
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
51
#include "runtime/prefetch.inline.hpp"
Z
zgu 已提交
52
#include "services/memTracker.hpp"
53

54
// Concurrent marking bit map wrapper
55

56 57
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
58
  _shifter(shifter) {
59 60
  _bmStartWord = 0;
  _bmWordSize = 0;
61 62
}

63 64
HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
                                               const HeapWord* limit) const {
65 66 67 68
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
69 70 71
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
72 73 74 75 76 77 78 79 80
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

81 82
HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
                                                 const HeapWord* limit) const {
83
  size_t addrOffset = heapWordToOffset(addr);
84 85 86
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
102
bool CMBitMapRO::covers(MemRegion heap_rs) const {
103
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
104
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
105
         "size inconsistency");
106 107
  return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
         _bmWordSize  == heap_rs.word_size();
108 109 110
}
#endif

111 112 113 114
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
size_t CMBitMap::compute_size(size_t heap_size) {
  return heap_size / mark_distance();
}

size_t CMBitMap::mark_distance() {
  return MinObjAlignmentInBytes * BitsPerByte;
}

void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
  _bmStartWord = heap.start();
  _bmWordSize = heap.word_size();

  _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
  _bm.set_size(_bmWordSize >> _shifter);

  storage->set_mapping_changed_listener(&_listener);
}

void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions) {
  // We need to clear the bitmap on commit, removing any existing information.
  MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
  _bm->clearRange(mr);
}

// Closure used for clearing the given mark bitmap.
class ClearBitmapHRClosure : public HeapRegionClosure {
 private:
  ConcurrentMark* _cm;
  CMBitMap* _bitmap;
  bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 public:
  ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
    assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
148
  }
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

  virtual bool doHeapRegion(HeapRegion* r) {
    size_t const chunk_size_in_words = M / HeapWordSize;

    HeapWord* cur = r->bottom();
    HeapWord* const end = r->end();

    while (cur < end) {
      MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
      _bitmap->clearRange(mr);

      cur += chunk_size_in_words;

      // Abort iteration if after yielding the marking has been aborted.
      if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
        return true;
      }
      // Repeat the asserts from before the start of the closure. We will do them
      // as asserts here to minimize their overhead on the product. However, we
      // will have them as guarantees at the beginning / end of the bitmap
      // clearing to get some checking in the product.
      assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
      assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
    }

174 175
    return false;
  }
176
};
177

178
void CMBitMap::clearAll() {
179 180 181
  ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
  G1CollectedHeap::heap()->heap_region_iterate(&cl);
  guarantee(cl.complete(), "Must have completed iteration.");
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

226 227 228 229 230 231
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
232
  }
233 234 235 236 237 238 239 240 241 242 243 244
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
245
  _saved_index = -1;
246
  _should_expand = false;
247
  NOT_PRODUCT(_max_depth = 0);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
294 295 296
}

CMMarkStack::~CMMarkStack() {
297
  if (_base != NULL) {
298 299
    _base = NULL;
    _virtual_space.release();
300
  }
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
340
        int  ind = index + i;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
363
    assert(ind < _capacity, "By overflow test above.");
364 365
    _base[ind] = ptr_arr[i];
  }
366
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
367 368 369 370 371 372 373 374 375 376
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
377
    jint  new_ind = index - k;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
403 404
      res = false;
      break;
405 406 407 408 409 410
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

428
void CMMarkStack::oops_do(OopClosure* f) {
429 430 431
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
432 433 434 435
    f->do_oop(&_base[i]);
  }
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

514 515 516 517
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

518 519
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
520 521
}

522
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
523
  _g1h(g1h),
524 525
  _markBitMap1(),
  _markBitMap2(),
526
  _parallel_marking_threads(0),
527
  _max_parallel_marking_threads(0),
528 529 530 531
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
532
  _cleanup_list("Cleanup List"),
533
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
534
  _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
535 536
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
537

538 539 540 541 542 543
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

544
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
545 546
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
547 548
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
549 550 551

  _has_overflown(false),
  _concurrent(false),
552
  _has_aborted(false),
553
  _aborted_gc_id(GCId::undefined()),
554 555
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
556 557 558 559 560 561 562 563

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
564 565 566 567

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
568 569
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
570 571
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
572
    verbose_level = no_verbose;
573 574
  }
  if (verbose_level > high_verbose) {
575
    verbose_level = high_verbose;
576
  }
577 578
  _verbose_level = verbose_level;

579
  if (verbose_low()) {
580
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
581
                           "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
582
  }
583

584 585
  _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
  _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
586 587

  // Create & start a ConcurrentMark thread.
588 589 590
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
591 592 593
  if (_cmThread->osthread() == NULL) {
      vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
  }
594

595
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
596 597
  assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
598 599

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
600
  satb_qs.set_buffer_size(G1SATBBufferSize);
601

602 603
  _root_regions.init(_g1h, this);

604
  if (ConcGCThreads > ParallelGCThreads) {
605 606
    warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
            "than ParallelGCThreads (" UINTX_FORMAT ").",
607 608
            ConcGCThreads, ParallelGCThreads);
    return;
609 610 611 612
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
613 614 615 616
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
617
  } else {
618 619
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
620 621 622
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
623
    } else if (G1MarkingOverheadPercent > 0) {
624 625
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
626
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
627
      double overall_cm_overhead =
J
johnc 已提交
628 629
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
630 631 632 633 634 635 636 637
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

638
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
639 640 641
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
642 643 644 645
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
646 647 648 649
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

650 651 652 653
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

654
    if (parallel_marking_threads() > 1) {
655
      _cleanup_task_overhead = 1.0;
656
    } else {
657
      _cleanup_task_overhead = marking_task_overhead();
658
    }
659 660 661 662 663 664 665 666 667 668 669
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

670
    guarantee(parallel_marking_threads() > 0, "peace of mind");
671
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
672
         _max_parallel_marking_threads, false, true);
673
    if (_parallel_workers == NULL) {
674
      vm_exit_during_initialization("Failed necessary allocation.");
675 676 677
    } else {
      _parallel_workers->initialize_workers();
    }
678 679
  }

680 681 682 683 684 685 686 687 688
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
689
              mark_stack_size, (uintx) 1, MarkStackSizeMax);
690 691 692 693 694 695 696 697 698 699
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
700
                  MarkStackSize, (uintx) 1, MarkStackSizeMax);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

756
  // so that the call below can read a sensible value
757
  _heap_start = g1h->reserved_region().start();
758
  set_non_marking_state();
759
  _completed_initialization = true;
760 761 762 763
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
764 765 766 767
  // phase.
  MemRegion reserved = _g1h->g1_reserved();
  _heap_start = reserved.start();
  _heap_end   = reserved.end();
768

769 770 771 772
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
773

774 775
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
776

777
  if (verbose_low()) {
778
    gclog_or_tty->print_cr("[global] resetting");
779
  }
780 781 782 783

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
784
  for (uint i = 0; i < _max_worker_id; ++i) {
785
    _tasks[i]->reset(_nextMarkBitMap);
786
  }
787 788 789 790 791 792

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

810
void ConcurrentMark::set_concurrency(uint active_tasks) {
811
  assert(active_tasks <= _max_worker_id, "we should not have more");
812 813 814 815 816 817 818

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
819 820 821 822
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
823 824 825

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
826
  for (uint i = 0; i < _max_worker_id; ++i)
827 828 829 830 831 832 833 834
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
835
    assert(!concurrent_marking_in_progress(), "invariant");
836
    assert(out_of_regions(),
837
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
838
                   p2i(_finger), p2i(_heap_end)));
839 840 841 842 843 844
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
845
  reset_marking_state();
846 847 848 849 850
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
851 852
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
853 854 855
}

void ConcurrentMark::clearNextBitmap() {
856 857 858 859 860 861 862 863 864 865 866 867
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

868 869
  ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
  g1h->heap_region_iterate(&cl);
870

871 872 873 874
  // Clear the liveness counting data. If the marking has been aborted, the abort()
  // call already did that.
  if (cl.complete()) {
    clear_all_count_data();
875 876 877 878 879
  }

  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
880 881
}

882 883 884 885 886 887 888 889
class CheckBitmapClearHRClosure : public HeapRegionClosure {
  CMBitMap* _bitmap;
  bool _error;
 public:
  CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
890 891 892 893 894 895 896 897 898 899
    // This closure can be called concurrently to the mutator, so we must make sure
    // that the result of the getNextMarkedWordAddress() call is compared to the
    // value passed to it as limit to detect any found bits.
    // We can use the region's orig_end() for the limit and the comparison value
    // as it always contains the "real" end of the region that never changes and
    // has no side effects.
    // Due to the latter, there can also be no problem with the compiler generating
    // reloads of the orig_end() call.
    HeapWord* end = r->orig_end();
    return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
900 901 902
  }
};

903
bool ConcurrentMark::nextMarkBitmapIsClear() {
904 905 906
  CheckBitmapClearHRClosure cl(_nextMarkBitMap);
  _g1h->heap_region_iterate(&cl);
  return cl.complete();
907 908
}

909 910 911 912
class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
913
      r->note_start_of_marking();
914 915 916 917 918 919 920 921 922 923 924
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

925
#ifndef PRODUCT
926
  if (G1PrintReachableAtInitialMark) {
927
    print_reachable("at-cycle-start",
928
                    VerifyOption_G1UsePrevMarking, true /* all */);
929
  }
930
#endif
931 932 933

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
934 935 936 937

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
938 939 940 941 942 943
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

944 945 946 947 948 949 950 951
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

952 953 954 955
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
956
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
957 958

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
959 960 961 962
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
963

964 965
  _root_regions.prepare_for_scan();

966 967 968 969 970 971 972
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
992

993
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
994
  if (verbose_low()) {
995
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
996
  }
997

998
  if (concurrent()) {
P
pliden 已提交
999
    SuspendibleThreadSet::leave();
1000
  }
1001 1002 1003

  bool barrier_aborted = !_first_overflow_barrier_sync.enter();

1004
  if (concurrent()) {
P
pliden 已提交
1005
    SuspendibleThreadSet::join();
1006
  }
1007 1008 1009
  // at this point everyone should have synced up and not be doing any
  // more work

1010
  if (verbose_low()) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
    }
  }

  if (barrier_aborted) {
    // If the barrier aborted we ignore the overflow condition and
    // just abort the whole marking phase as quickly as possible.
    return;
1022
  }
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
1042
        gclog_or_tty->gclog_stamp(concurrent_gc_id());
1043 1044
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1045 1046 1047 1048 1049 1050 1051
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1052
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1053
  if (verbose_low()) {
1054
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1055
  }
1056

1057
  if (concurrent()) {
P
pliden 已提交
1058
    SuspendibleThreadSet::leave();
1059
  }
1060 1061 1062

  bool barrier_aborted = !_second_overflow_barrier_sync.enter();

1063
  if (concurrent()) {
P
pliden 已提交
1064
    SuspendibleThreadSet::join();
1065
  }
1066
  // at this point everything should be re-initialized and ready to go
1067

1068
  if (verbose_low()) {
1069 1070 1071 1072 1073
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
    }
1074
  }
1075 1076
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1103 1104 1105 1106 1107 1108
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1109
  void work(uint worker_id) {
1110 1111
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1112
    ResourceMark rm;
1113 1114 1115

    double start_vtime = os::elapsedVTime();

P
pliden 已提交
1116
    SuspendibleThreadSet::join();
1117

1118 1119
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1120 1121 1122 1123
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
1124 1125 1126
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1127 1128
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1129

1130 1131 1132 1133
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        _cm->clear_has_overflown();

1134
        _cm->do_yield_check(worker_id);
1135 1136 1137 1138 1139

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
P
pliden 已提交
1140
          SuspendibleThreadSet::leave();
1141
          os::sleep(Thread::current(), sleep_time_ms, false);
P
pliden 已提交
1142
          SuspendibleThreadSet::join();
1143 1144 1145 1146
        }
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1147
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1148

P
pliden 已提交
1149
    SuspendibleThreadSet::leave();
1150 1151

    double end_vtime = os::elapsedVTime();
1152
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1153 1154 1155 1156 1157 1158 1159 1160 1161
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1162 1163
// Calculates the number of active workers for a concurrent
// phase.
1164
uint ConcurrentMark::calc_parallel_marking_threads() {
1165
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1166
    uint n_conc_workers = 0;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1181 1182
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1183
  }
1184 1185 1186 1187
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
1229 1230 1231
  // Start of concurrent marking.
  ClassLoaderDataGraph::clear_claimed_marks();

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1242
    if (use_parallel_marking_threads()) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1256 1257 1258 1259 1260 1261 1262 1263 1264
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1265
  force_overflow_conc()->init();
1266 1267 1268 1269 1270 1271

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1272
  uint active_workers = MAX2(1U, parallel_marking_threads());
1273

1274 1275
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1276 1277

  CMConcurrentMarkingTask markingTask(this, cmThread());
1278
  if (use_parallel_marking_threads()) {
1279
    _parallel_workers->set_active_workers((int)active_workers);
1280
    // Don't set _n_par_threads because it affects MT in process_roots()
1281 1282
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1283
    _parallel_workers->run_task(&markingTask);
1284
  } else {
1285
    markingTask.work(0);
1286
  }
1287 1288 1289 1290 1291 1292 1293
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1294

1295 1296 1297 1298 1299 1300 1301 1302
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1303 1304
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1305 1306 1307
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1308 1309
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1310
  }
1311
  g1h->check_bitmaps("Remark Start");
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1327
    if (G1TraceMarkStackOverflow) {
1328
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1329
    }
1330 1331 1332 1333 1334

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1335 1336
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1337 1338 1339 1340 1341
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1342
  } else {
1343 1344 1345 1346
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1347
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1348
    // We're done with marking.
1349 1350
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1351 1352
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1353 1354

    if (VerifyDuringGC) {
1355 1356
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1357 1358
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1359
    }
1360
    g1h->check_bitmaps("Remark End");
1361
    assert(!restart_for_overflow(), "sanity");
1362 1363
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1364 1365
  }

1366 1367 1368 1369 1370
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1371 1372 1373 1374 1375 1376 1377
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1378 1379 1380

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1381 1382
}

1383 1384 1385 1386
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1387
  G1CollectedHeap* _g1h;
1388
  ConcurrentMark* _cm;
1389 1390
  CardTableModRefBS* _ct_bs;

1391 1392 1393
  BitMap* _region_bm;
  BitMap* _card_bm;

1394
  // Takes a region that's not empty (i.e., it has at least one
1395 1396 1397 1398 1399 1400 1401
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1402
    BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1403 1404
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1405
      _region_bm->par_at_put(index, true);
1406 1407
    } else {
      // Starts humongous case: calculate how many regions are part of
1408
      // this humongous region and then set the bit range.
1409
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1410
      _region_bm->par_at_put_range(index, end_index, true);
1411 1412 1413
    }
  }

1414
public:
1415
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1416
                         BitMap* region_bm, BitMap* card_bm):
1417 1418 1419
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1420 1421 1422 1423 1424 1425 1426 1427 1428
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1429
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1430
                         BitMap* region_bm, BitMap* card_bm) :
1431
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1432 1433
    _bm(bm), _region_marked_bytes(0) { }

1434 1435
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1436
    if (hr->continuesHumongous()) {
1437 1438 1439 1440 1441 1442 1443
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1444 1445
      return false;
    }
1446

1447 1448
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1449

1450
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1451
           err_msg("Preconditions not met - "
1452
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1453
                   p2i(start), p2i(ntams), p2i(hr->end())));
1454

1455
    // Find the first marked object at or after "start".
1456
    start = _bm->getNextMarkedWordAddress(start, ntams);
1457

1458 1459
    size_t marked_bytes = 0;

1460
    while (start < ntams) {
1461 1462
      oop obj = oop(start);
      int obj_sz = obj->size();
1463
      HeapWord* obj_end = start + obj_sz;
1464

1465
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1477

1478 1479
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1480 1481

      // Add the size of this object to the number of marked bytes.
1482
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1483

1484
      // Find the next marked object after this one.
1485
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1486
    }
1487 1488 1489

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1504 1505 1506

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1507 1508 1509 1510
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1511
      set_bit_for_region(hr);
1512
    }
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1530
  G1CollectedHeap* _g1h;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1543
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1544 1545 1546 1547 1548
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1549 1550
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1588
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1589
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1590
                               hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1591 1592 1593 1594 1595 1596 1597 1598
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1599
    BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1600 1601 1602 1603 1604

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1605 1606
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
1607
                               hr->hrm_index(),
1608
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1626 1627
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
1628
                                 hr->hrm_index(), i,
1629
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1630
        }
1631
        failures += 1;
1632 1633 1634
      }
    }

1635 1636 1637
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1638
                             HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1639 1640 1641 1642 1643 1644
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1645
    // find the first violating region by returning true.
1646 1647
    return false;
  }
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
};

class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1696
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1713

1714
  int failures() const { return _failures; }
1715 1716
};

1717 1718 1719 1720 1721 1722
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1723

1724
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1725
 public:
1726
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1727 1728
                              BitMap* region_bm,
                              BitMap* card_bm) :
1729
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1747
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1748 1749 1750 1751 1752 1753

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1776
    }
1777 1778 1779 1780 1781 1782 1783 1784 1785

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1786 1787 1788 1789

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1790 1791 1792 1793
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1794
  uint    _n_workers;
1795

1796
public:
1797 1798 1799 1800 1801
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1802
    // Use the value already set as the number of active threads
1803
    // in the call to run_task().
1804 1805 1806 1807
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1808
    } else {
1809
      _n_workers = 1;
1810
    }
1811 1812
  }

1813
  void work(uint worker_id) {
1814 1815
    assert(worker_id < _n_workers, "invariant");

1816
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1817 1818 1819
                                                _actual_region_bm,
                                                _actual_card_bm);

1820
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1821 1822 1823
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1824
                                            HeapRegion::FinalCountClaimValue);
1825
    } else {
1826
      _g1h->heap_region_iterate(&final_update_cl);
1827 1828 1829 1830 1831 1832 1833 1834 1835
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  size_t _max_live_bytes;
1836
  uint _regions_claimed;
1837
  size_t _freed_bytes;
T
tonyp 已提交
1838
  FreeRegionList* _local_cleanup_list;
1839 1840
  HeapRegionSetCount _old_regions_removed;
  HeapRegionSetCount _humongous_regions_removed;
T
tonyp 已提交
1841
  HRRSCleanupTask* _hrrs_cleanup_task;
1842 1843 1844 1845 1846
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1847
                             FreeRegionList* local_cleanup_list,
1848
                             HRRSCleanupTask* hrrs_cleanup_task) :
1849
    _g1(g1),
1850 1851 1852 1853
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
1854 1855
    _old_regions_removed(),
    _humongous_regions_removed(),
1856 1857
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1858
  size_t freed_bytes() { return _freed_bytes; }
1859 1860
  const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1861

1862
  bool doHeapRegion(HeapRegion *hr) {
1863 1864 1865
    if (hr->continuesHumongous()) {
      return false;
    }
1866 1867
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1868 1869 1870 1871 1872
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

    if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
      _freed_bytes += hr->used();
      hr->set_containing_set(NULL);
      if (hr->isHumongous()) {
        assert(hr->startsHumongous(), "we should only see starts humongous");
        _humongous_regions_removed.increment(1u, hr->capacity());
        _g1->free_humongous_region(hr, _local_cleanup_list, true);
      } else {
        _old_regions_removed.increment(1u, hr->capacity());
        _g1->free_region(hr, _local_cleanup_list, true);
      }
    } else {
      hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
    }

1889 1890 1891 1892
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1893 1894 1895
    }
    return false;
  }
1896 1897

  size_t max_live_bytes() { return _max_live_bytes; }
1898
  uint regions_claimed() { return _regions_claimed; }
1899 1900 1901 1902 1903 1904
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1905

1906 1907 1908 1909
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1910 1911
  FreeRegionList* _cleanup_list;

1912 1913
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1914
                   FreeRegionList* cleanup_list) :
1915
    AbstractGangTask("G1 note end"), _g1h(g1h),
1916
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1917

1918
  void work(uint worker_id) {
1919
    double start = os::elapsedTime();
T
tonyp 已提交
1920 1921
    FreeRegionList local_cleanup_list("Local Cleanup List");
    HRRSCleanupTask hrrs_cleanup_task;
1922
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
T
tonyp 已提交
1923
                                           &hrrs_cleanup_task);
1924
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1925
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1926
                                            _g1h->workers()->active_workers(),
1927
                                            HeapRegion::NoteEndClaimValue);
1928 1929 1930 1931 1932
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1933
    // Now update the lists
1934
    _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1935 1936
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1937
      _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1938 1939
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
1951
        FreeRegionListIterator iter(&local_cleanup_list);
1952 1953 1954 1955 1956 1957
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

1958
      _cleanup_list->add_ordered(&local_cleanup_list);
T
tonyp 已提交
1959 1960 1961
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1977
    _region_bm(region_bm), _card_bm(card_bm) { }
1978

1979
  void work(uint worker_id) {
1980
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1981
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1982
                       HeapRegion::ScrubRemSetClaimValue);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

2002 2003
  g1h->verify_region_sets_optional();

2004 2005 2006
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2007 2008
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
2009
  }
2010
  g1h->check_bitmaps("Cleanup Start");
2011

2012 2013 2014 2015 2016
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
2017 2018
  HeapRegionRemSet::reset_for_cleanup_tasks();

2019
  uint n_workers;
2020

2021
  // Do counting once more with the world stopped for good measure.
2022 2023
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

2024
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2025
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2026 2027
           "sanity check");

2028 2029
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2030
    assert(g1h->n_par_threads() == n_workers,
2031
           "Should not have been reset");
2032
    g1h->workers()->run_task(&g1_par_count_task);
2033
    // Done with the parallel phase so reset to 0.
2034
    g1h->set_par_threads(0);
2035

2036
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2037
           "sanity check");
2038
  } else {
2039
    n_workers = 1;
2040 2041 2042
    g1_par_count_task.work(0);
  }

2043 2044 2045 2046 2047
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
2048 2049
    BitMap expected_region_bm(_region_bm.size(), true);
    BitMap expected_card_bm(_card_bm.size(), true);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2072 2073 2074 2075 2076 2077 2078
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2079 2080 2081 2082 2083
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2084 2085 2086 2087 2088 2089
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2090
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2091
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2092
    g1h->set_par_threads((int)n_workers);
2093 2094
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2095 2096 2097

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2098 2099 2100
  } else {
    g1_par_note_end_task.work(0);
  }
2101
  g1h->check_gc_time_stamps();
2102 2103 2104 2105 2106 2107 2108

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2109 2110 2111 2112 2113 2114

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2115
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2116
      g1h->set_par_threads((int)n_workers);
2117 2118
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2119 2120 2121 2122

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2134
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2135 2136 2137 2138 2139

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2140
  if (G1Log::fine()) {
2141 2142 2143 2144 2145 2146
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2147 2148 2149 2150
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

J
johnc 已提交
2151
  if (VerifyDuringGC) {
2152 2153
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2154 2155
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2156
  }
2157
  g1h->check_bitmaps("Cleanup End");
2158 2159

  g1h->verify_region_sets_optional();
2160 2161 2162 2163 2164 2165

  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

  // Clean out dead classes and update Metaspace sizes.
2166 2167 2168
  if (ClassUnloadingWithConcurrentMark) {
    ClassLoaderDataGraph::purge();
  }
2169 2170 2171 2172 2173 2174
  MetaspaceGC::compute_new_size();

  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

S
sla 已提交
2175
  g1h->trace_heap_after_concurrent_cycle();
2176 2177 2178 2179 2180
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2181 2182
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2183
  _cleanup_list.verify_optional();
T
tonyp 已提交
2184
  FreeRegionList tmp_free_list("Tmp Free List");
2185 2186 2187

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2188
                           "cleanup list has %u entries",
2189 2190 2191
                           _cleanup_list.length());
  }

2192 2193
  // No one else should be accessing the _cleanup_list at this point,
  // so it is not necessary to take any locks
2194
  while (!_cleanup_list.is_empty()) {
2195
    HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2196
    assert(hr != NULL, "Got NULL from a non-empty list");
2197
    hr->par_clear();
2198
    tmp_free_list.add_ordered(hr);
2199 2200 2201 2202 2203 2204 2205

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2206
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2207 2208 2209
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2210 2211
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2212
                               tmp_free_list.length(),
2213 2214 2215 2216 2217
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2218
        g1h->secondary_free_list_add(&tmp_free_list);
2219 2220 2221 2222 2223 2224 2225
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2226 2227 2228
      }
    }
  }
T
tonyp 已提交
2229
  assert(tmp_free_list.is_empty(), "post-condition");
2230 2231
}

2232 2233
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2234

2235 2236 2237 2238 2239
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2240

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2254 2255 2256 2257 2258
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2259
 public:
2260 2261 2262
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2263
    assert(_ref_counter_limit > 0, "sanity");
2264
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2265 2266 2267 2268 2269 2270 2271 2272 2273
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2274
      if (_cm->verbose_high()) {
2275
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2276
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2277
                               _task->worker_id(), p2i(p), p2i((void*) obj));
2278
      }
2279 2280 2281 2282 2283

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2300 2301 2302
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2303 2304
                                 false      /* do_termination */,
                                 _is_serial);
2305 2306 2307 2308
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2309
      if (_cm->verbose_high()) {
2310
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2311
      }
2312 2313 2314 2315
    }
  }
};

2316 2317 2318 2319 2320 2321 2322 2323
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2324
  ConcurrentMark* _cm;
2325
  CMTask*         _task;
2326
  bool            _is_serial;
2327
 public:
2328 2329 2330
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2331
  }
2332 2333 2334

  void do_void() {
    do {
2335
      if (_cm->verbose_high()) {
2336 2337
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2338
      }
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2356 2357

      _task->do_marking_step(1000000000.0 /* something very large */,
2358 2359
                             true         /* do_termination */,
                             _is_serial);
2360 2361 2362 2363
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2364 2365 2366 2367
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2368 2369 2370 2371 2372 2373 2374
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2375
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2376 2377 2378
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2379 2380
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2381 2382 2383 2384 2385 2386

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2387
class G1CMRefProcTaskProxy: public AbstractGangTask {
2388 2389 2390 2391 2392 2393
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2394
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2395
                     G1CollectedHeap* g1h,
2396
                     ConcurrentMark* cm) :
2397
    AbstractGangTask("Process reference objects in parallel"),
2398
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2399 2400 2401
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2402

2403
  virtual void work(uint worker_id) {
2404 2405
    ResourceMark rm;
    HandleMark hm;
2406
    CMTask* task = _cm->task(worker_id);
2407
    G1CMIsAliveClosure g1_is_alive(_g1h);
2408 2409
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2410

2411
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2412 2413 2414
  }
};

2415
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2416
  assert(_workers != NULL, "Need parallel worker threads.");
2417
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2418

2419
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2420

2421 2422 2423 2424 2425
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2426 2427 2428 2429 2430
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2431
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2432 2433 2434 2435
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2436
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2437
    AbstractGangTask("Enqueue reference objects in parallel"),
2438
    _enq_task(enq_task) { }
2439

2440 2441
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2442 2443 2444
  }
};

2445
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2446
  assert(_workers != NULL, "Need parallel worker threads.");
2447
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2448

2449
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2450

2451 2452 2453 2454 2455 2456 2457
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2458 2459 2460 2461 2462
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
}

// Helper class to get rid of some boilerplate code.
class G1RemarkGCTraceTime : public GCTraceTime {
  static bool doit_and_prepend(bool doit) {
    if (doit) {
      gclog_or_tty->put(' ');
    }
    return doit;
  }

 public:
  G1RemarkGCTraceTime(const char* title, bool doit)
    : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
        G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  }
};

2483
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2494 2495 2496
  ResourceMark rm;
  HandleMark   hm;

2497 2498 2499 2500 2501 2502 2503 2504
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2505
    if (G1Log::finer()) {
2506 2507
      gclog_or_tty->put(' ');
    }
2508
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2509

2510
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2511

2512 2513
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2514

2515
    // Set the soft reference policy
2516 2517
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2542
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2543

2544
    // Parallel processing task executor.
2545
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2546
                                              g1h->workers(), active_workers);
2547
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2548

2549 2550 2551 2552
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2553 2554 2555 2556 2557 2558 2559
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2560 2561 2562 2563 2564
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
2565 2566
                                          g1h->gc_timer_cm(),
                                          concurrent_gc_id());
S
sla 已提交
2567
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2568

2569 2570 2571
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2572

2573 2574
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2575

2576
    if (_markStack.overflow()) {
2577
      // This should have been done already when we tried to push an
2578 2579 2580
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2581

2582 2583 2584
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2585

2586
    rp->verify_no_references_recorded();
2587
    assert(!rp->discovery_enabled(), "Post condition");
2588 2589
  }

2590 2591 2592 2593 2594
  if (has_overflown()) {
    // We can not trust g1_is_alive if the marking stack overflowed
    return;
  }

2595 2596 2597
  assert(_markStack.isEmpty(), "Marking should have completed");

  // Unload Klasses, String, Symbols, Code Cache, etc.
2598 2599
  {
    G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2600

2601 2602
    if (ClassUnloadingWithConcurrentMark) {
      bool purged_classes;
2603

2604 2605 2606 2607
      {
        G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
        purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
      }
2608

2609 2610 2611 2612 2613
      {
        G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
        weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
      }
    }
2614

2615 2616 2617 2618
    if (G1StringDedup::is_enabled()) {
      G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
      G1StringDedup::unlink(&g1_is_alive);
    }
2619
  }
2620 2621 2622 2623 2624 2625 2626 2627
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
class CMObjectClosure;

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

class G1RemarkThreadsClosure : public ThreadClosure {
  CMObjectClosure _cm_obj;
  G1CMOopClosure _cm_cl;
  MarkingCodeBlobClosure _code_cl;
  int _thread_parity;
  bool _is_par;

 public:
  G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
    _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
    _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}

  void do_thread(Thread* thread) {
    if (thread->is_Java_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread* jt = (JavaThread*)thread;

        // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
        // however the liveness of oops reachable from nmethods have very complex lifecycles:
        // * Alive if on the stack of an executing method
        // * Weakly reachable otherwise
        // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
        // live by the SATB invariant but other oops recorded in nmethods may behave differently.
        jt->nmethods_do(&_code_cl);

        jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
      }
    } else if (thread->is_VM_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
      }
    }
  }
};

2679 2680
class CMRemarkTask: public AbstractGangTask {
private:
2681 2682
  ConcurrentMark* _cm;
  bool            _is_serial;
2683
public:
2684
  void work(uint worker_id) {
2685 2686
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2687 2688
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2689
      task->record_start_time();
2690 2691 2692 2693 2694 2695 2696 2697
      {
        ResourceMark rm;
        HandleMark hm;

        G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
        Threads::threads_do(&threads_f);
      }

2698
      do {
2699
        task->do_marking_step(1000000000.0 /* something very large */,
2700 2701
                              true         /* do_termination       */,
                              _is_serial);
2702 2703 2704 2705 2706 2707 2708
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2709 2710
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2711
    _cm->terminator()->reset_for_reuse(active_workers);
2712
  }
2713 2714 2715 2716 2717 2718 2719
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2720 2721
  G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());

2722 2723
  g1h->ensure_parsability(false);

2724
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2725
    G1CollectedHeap::StrongRootsScope srs(g1h);
2726
    // this is remark, so we'll use up all active threads
2727
    uint active_workers = g1h->workers()->active_workers();
2728 2729
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2730
      active_workers = (uint) ParallelGCThreads;
2731 2732
      g1h->workers()->set_active_workers(active_workers);
    }
2733
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2734 2735 2736 2737
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2738

2739 2740 2741 2742
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2743
    g1h->set_par_threads(active_workers);
2744 2745 2746
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2747
    G1CollectedHeap::StrongRootsScope srs(g1h);
2748
    uint active_workers = 1;
2749
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2750

2751 2752 2753 2754 2755 2756 2757 2758
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2759 2760
    remarkTask.work(0);
  }
2761
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2762 2763 2764 2765 2766
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2767 2768 2769 2770

  print_stats();
}

2771 2772
#ifndef PRODUCT

2773
class PrintReachableOopClosure: public OopClosure {
2774 2775 2776
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2777
  VerifyOption     _vo;
2778
  bool             _all;
2779 2780

public:
2781 2782
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2783
                           bool          all) :
2784
    _g1h(G1CollectedHeap::heap()),
2785
    _out(out), _vo(vo), _all(all) { }
2786

2787 2788
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2789

2790 2791
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2792 2793 2794
    const char* str = NULL;
    const char* str2 = "";

2795 2796 2797 2798 2799
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2800
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2801 2802
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2803 2804

      if (over_tams) {
2805 2806
        str = " >";
        if (marked) {
2807
          str2 = " AND MARKED";
2808
        }
2809 2810
      } else if (marked) {
        str = " M";
2811
      } else {
2812
        str = " NOT";
2813
      }
2814 2815
    }

2816
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2817
                   p2i(p), p2i((void*) obj), str, str2);
2818 2819 2820
  }
};

2821
class PrintReachableObjectClosure : public ObjectClosure {
2822
private:
2823 2824 2825 2826 2827
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2828 2829

public:
2830 2831
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2832 2833
                              bool          all,
                              HeapRegion*   hr) :
2834 2835
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2836

2837
  void do_object(oop o) {
2838 2839
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2840 2841 2842 2843
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
2844
                     p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2845
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2846
      o->oop_iterate_no_header(&oopCl);
2847
    }
2848 2849 2850
  }
};

2851
class PrintReachableRegionClosure : public HeapRegionClosure {
2852
private:
2853 2854 2855 2856
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2857 2858 2859 2860 2861 2862

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2863
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2864
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2865
                   "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2866 2867 2868 2869 2870 2871
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
2872
      _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2873
      _out->cr();
2874
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2875 2876 2877
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2878 2879 2880 2881

    return false;
  }

2882 2883
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2884
                              bool          all) :
2885
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2886 2887
};

2888
void ConcurrentMark::print_reachable(const char* str,
2889
                                     VerifyOption vo,
2890 2891 2892
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2916
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2917 2918
  out->cr();

2919
  out->print_cr("--- ITERATING OVER REGIONS");
2920
  out->cr();
2921
  PrintReachableRegionClosure rcl(out, vo, all);
2922
  _g1h->heap_region_iterate(&rcl);
2923
  out->cr();
2924

2925
  gclog_or_tty->print_cr("  done");
2926
  gclog_or_tty->flush();
2927 2928
}

2929 2930
#endif // PRODUCT

2931
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2932 2933 2934
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2935 2936 2937
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2938 2939 2940 2941
  _nextMarkBitMap->clearRange(mr);
}

HeapRegion*
2942
ConcurrentMark::claim_region(uint worker_id) {
2943 2944 2945 2946 2947 2948
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2949
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2950

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
2974 2975 2976 2977 2978
    HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);

    // Above heap_region_containing_raw may return NULL as we always scan claim
    // until the end of the heap. In this case, just jump to the next region.
    HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2979

2980 2981
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2982
    if (res == finger && curr_region != NULL) {
2983
      // we succeeded
2984 2985 2986 2987 2988 2989 2990 2991 2992
      HeapWord*   bottom        = curr_region->bottom();
      HeapWord*   limit         = curr_region->next_top_at_mark_start();

      if (verbose_low()) {
        gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
                               "["PTR_FORMAT", "PTR_FORMAT"), "
                               "limit = "PTR_FORMAT,
                               worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
      }
2993 2994 2995

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2996
      assert(_finger >= end, "the finger should have moved forward");
2997

2998
      if (verbose_low()) {
2999
        gclog_or_tty->print_cr("[%u] we were successful with region = "
3000
                               PTR_FORMAT, worker_id, p2i(curr_region));
3001
      }
3002 3003

      if (limit > bottom) {
3004
        if (verbose_low()) {
3005
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3006
                                 "returning it ", worker_id, p2i(curr_region));
3007
        }
3008 3009
        return curr_region;
      } else {
3010 3011
        assert(limit == bottom,
               "the region limit should be at bottom");
3012
        if (verbose_low()) {
3013
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3014
                                 "returning NULL", worker_id, p2i(curr_region));
3015
        }
3016 3017 3018 3019 3020
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
3021
      assert(_finger > finger, "the finger should have moved forward");
3022
      if (verbose_low()) {
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
        if (curr_region == NULL) {
          gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
                                 "global finger = "PTR_FORMAT", "
                                 "our finger = "PTR_FORMAT,
                                 worker_id, p2i(_finger), p2i(finger));
        } else {
          gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
                                 "global finger = "PTR_FORMAT", "
                                 "our finger = "PTR_FORMAT,
                                 worker_id, p2i(_finger), p2i(finger));
        }
3034
      }
3035 3036 3037 3038 3039 3040 3041 3042 3043

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3072
                      p2i((void*) obj), phase_str(), _info));
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
3093

3094 3095
  virtual void do_object(oop obj) {
    do_object_work(obj);
3096
  }
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
3109

3110 3111 3112 3113 3114 3115
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
3116
    for (uint i = 0; i < _max_worker_id; i += 1) {
3117
      cl.set_phase(VerifyNoCSetOopsQueues, i);
3118
      CMTaskQueue* queue = _task_queues->queue(i);
3119 3120
      queue->oops_do(&cl);
    }
3121 3122
  }

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
3148 3149
      // Since we always iterate over all regions, we might get a NULL HeapRegion
      // here.
3150
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3151
      guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3152
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3153
                        p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3154 3155 3156
    }

    // Verify the task fingers
3157
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3158 3159 3160 3161 3162 3163
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3164
        guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3165 3166
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3167
                          p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3168 3169 3170
      }
    }
  }
3171
}
3172
#endif // PRODUCT
3173

3174 3175 3176
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3177
  G1CollectedHeap* _g1h;
3178
  ConcurrentMark* _cm;
3179
  CardTableModRefBS* _ct_bs;
3180
  BitMap* _cm_card_bm;
3181
  uint _max_worker_id;
3182 3183

 public:
3184
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3185
                              BitMap* cm_card_bm,
3186
                              uint max_worker_id) :
3187 3188
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3189
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
3211
                   p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3212 3213 3214 3215 3216 3217 3218 3219

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3220 3221 3222 3223
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3224 3225 3226 3227 3228

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3229 3230 3231 3232 3233 3234 3235 3236
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3237 3238 3239 3240 3241 3242
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3243
    uint hrm_index = hr->hrm_index();
3244 3245
    size_t marked_bytes = 0;

3246
    for (uint i = 0; i < _max_worker_id; i += 1) {
3247 3248 3249 3250 3251
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
3252
      marked_bytes += marked_bytes_array[hrm_index];
3253

3254
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3265
        // parameter. It does, however, have an early exit if
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3286
  uint _max_worker_id;
3287 3288 3289 3290 3291 3292
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3293
                           uint max_worker_id,
3294 3295 3296
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3297
    _max_worker_id(max_worker_id),
3298 3299 3300
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3301
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3320
                                           _max_worker_id, n_workers);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
3335
  _g1h->allocation_context_stats().update_at_remark();
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3349
  uint max_regions = _g1h->max_regions();
3350
  assert(_max_worker_id > 0, "uninitialized");
3351

3352
  for (uint i = 0; i < _max_worker_id; i += 1) {
3353 3354 3355 3356 3357 3358
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3359
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3360 3361 3362 3363
    task_card_bm->clear();
  }
}

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
3376 3377
  // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  // concurrent bitmap clearing.
3378
  _nextMarkBitMap->clearAll();
3379 3380 3381 3382 3383

  // Note we cannot clear the previous marking bitmap here
  // since VerifyDuringGC verifies the objects marked during
  // a full GC against the previous bitmap.

3384 3385
  // Clear the liveness counting data
  clear_all_count_data();
3386
  // Empty mark stack
3387
  reset_marking_state();
3388
  for (uint i = 0; i < _max_worker_id; ++i) {
3389
    _tasks[i]->clear_region_fields();
3390
  }
3391 3392
  _first_overflow_barrier_sync.abort();
  _second_overflow_barrier_sync.abort();
3393 3394 3395 3396 3397 3398
  const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  if (!gc_id.is_undefined()) {
    // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
    // to detect that it was aborted. Only keep track of the first GC id that we aborted.
    _aborted_gc_id = gc_id;
   }
3399 3400 3401 3402
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3403 3404 3405 3406 3407
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3408 3409 3410

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3411 3412
}

3413 3414 3415 3416 3417 3418 3419
const GCId& ConcurrentMark::concurrent_gc_id() {
  if (has_aborted()) {
    return _aborted_gc_id;
  }
  return _g1h->gc_tracer_cm()->gc_id();
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3456
                "(%8.2f s marking).",
3457
                cmThread()->vtime_accum(),
3458
                cmThread()->vtime_mark_accum());
3459 3460
}

T
tonyp 已提交
3461
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3462 3463 3464
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3465 3466
}

3467 3468
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3469
      p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3470 3471 3472 3473
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3474
// We take a break if someone is trying to stop the world.
3475
bool ConcurrentMark::do_yield_check(uint worker_id) {
P
pliden 已提交
3476
  if (SuspendibleThreadSet::should_yield()) {
3477
    if (worker_id == 0) {
3478
      _g1h->g1_policy()->record_concurrent_pause();
3479
    }
P
pliden 已提交
3480
    SuspendibleThreadSet::yield();
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
    return true;
  } else {
    return false;
  }
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3491
                         p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3492
  for (uint i = 0; i < _max_worker_id; ++i) {
3493
    gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3494
  }
3495
  gclog_or_tty->cr();
3496 3497 3498
}
#endif

3499 3500 3501 3502
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3503
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3504
                           _worker_id, p2i((void*) obj));
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3515 3516 3517 3518 3519 3520 3521 3522 3523
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3524 3525
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3526 3527 3528

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3529 3530
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3531

3532 3533 3534 3535 3536
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

3549 3550 3551 3552 3553
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3554

3555
  if (G1UseConcMarkReferenceProcessing) {
3556
    _ref_processor = g1h->ref_processor_cm();
3557
    assert(_ref_processor != NULL, "should not be NULL");
3558
  }
3559
}
3560 3561

void CMTask::setup_for_region(HeapRegion* hr) {
3562
  assert(hr != NULL,
3563
        "claim_region() should have filtered out NULL regions");
3564 3565
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3566

3567
  if (_cm->verbose_low()) {
3568
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3569
                           _worker_id, p2i(hr));
3570
  }
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3583
    if (_cm->verbose_low()) {
3584
      gclog_or_tty->print_cr("[%u] found an empty region "
3585
                             "["PTR_FORMAT", "PTR_FORMAT")",
3586
                             _worker_id, p2i(bottom), p2i(limit));
3587
    }
3588 3589 3590 3591 3592 3593 3594
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3595
    assert(limit >= _finger, "peace of mind");
3596
  } else {
3597
    assert(limit < _region_limit, "only way to get here");
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3615
  assert(_curr_region != NULL, "invariant");
3616
  if (_cm->verbose_low()) {
3617
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3618
                           _worker_id, p2i(_curr_region));
3619
  }
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3631 3632 3633 3634 3635 3636 3637 3638 3639
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3640
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3641
  guarantee(nextMarkBitMap != NULL, "invariant");
3642

3643
  if (_cm->verbose_low()) {
3644
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3645
  }
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3689 3690 3691
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3692 3693 3694 3695
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3696
  if (has_aborted()) return;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3713
  if (!concurrent()) return;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3726
  if (_words_scanned >= _words_scanned_limit) {
3727
    ++_clock_due_to_scanning;
3728 3729
  }
  if (_refs_reached >= _refs_reached_limit) {
3730
    ++_clock_due_to_marking;
3731
  }
3732 3733 3734 3735 3736 3737

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3738
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3739
                        "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3740
                        _worker_id, last_interval_ms,
3741 3742 3743 3744
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3745 3746 3747 3748
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
P
pliden 已提交
3749
  if (SuspendibleThreadSet::should_yield()) {
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3762
    _has_timed_out = true;
3763 3764 3765 3766 3767 3768 3769 3770
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3771
    if (_cm->verbose_low()) {
3772 3773
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3774
    }
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3797
  if (_cm->verbose_medium()) {
3798
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3799
  }
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3825
      if (_cm->verbose_low()) {
3826 3827
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3828
      }
3829 3830 3831 3832
      set_has_aborted();
    } else {
      // the transfer was successful

3833
      if (_cm->verbose_medium()) {
3834 3835
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3836
      }
3837
      statsOnly( int tmp_size = _cm->mark_stack_size();
3838
                 if (tmp_size > _global_max_size) {
3839
                   _global_max_size = tmp_size;
3840
                 }
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3855 3856
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3857 3858 3859 3860
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3861
    if (_cm->verbose_medium()) {
3862 3863
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3864
    }
3865 3866 3867 3868
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3869
      assert(success, "invariant");
3870 3871 3872
    }

    statsOnly( int tmp_size = _task_queue->size();
3873
               if (tmp_size > _local_max_size) {
3874
                 _local_max_size = tmp_size;
3875
               }
3876 3877 3878 3879 3880 3881 3882 3883
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3884
  if (has_aborted()) return;
3885 3886 3887 3888 3889

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3890
  if (partially) {
3891
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3892
  } else {
3893
    target_size = 0;
3894
  }
3895 3896

  if (_task_queue->size() > target_size) {
3897
    if (_cm->verbose_high()) {
3898
      gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3899
                             _worker_id, target_size);
3900
    }
3901 3902 3903 3904 3905 3906

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3907
      if (_cm->verbose_high()) {
3908
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3909
                               p2i((void*) obj));
3910
      }
3911

3912
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3913
      assert(!_g1h->is_on_master_free_list(
3914
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3915 3916 3917

      scan_object(obj);

3918
      if (_task_queue->size() <= target_size || has_aborted()) {
3919
        ret = false;
3920
      } else {
3921
        ret = _task_queue->pop_local(obj);
3922
      }
3923 3924
    }

3925
    if (_cm->verbose_high()) {
3926 3927
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3928
    }
3929 3930 3931 3932
  }
}

void CMTask::drain_global_stack(bool partially) {
3933
  if (has_aborted()) return;
3934 3935 3936

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3937
  assert(partially || _task_queue->size() == 0, "invariant");
3938 3939 3940 3941 3942 3943 3944 3945

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3946
  if (partially) {
3947
    target_size = _cm->partial_mark_stack_size_target();
3948
  } else {
3949
    target_size = 0;
3950
  }
3951 3952

  if (_cm->mark_stack_size() > target_size) {
3953
    if (_cm->verbose_low()) {
3954
      gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3955
                             _worker_id, target_size);
3956
    }
3957 3958 3959 3960 3961 3962

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3963
    if (_cm->verbose_low()) {
3964
      gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3965
                             _worker_id, _cm->mark_stack_size());
3966
    }
3967 3968 3969 3970 3971 3972 3973 3974
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3975
  if (has_aborted()) return;
3976 3977 3978 3979 3980 3981 3982 3983 3984

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3985
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3986
    satb_mq_set.set_par_closure(_worker_id, &oc);
3987
  } else {
3988
    satb_mq_set.set_closure(&oc);
3989
  }
3990 3991 3992

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3993
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3994
    while (!has_aborted() &&
3995
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3996
      if (_cm->verbose_medium()) {
3997
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3998
      }
3999 4000 4001 4002 4003 4004
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
4005
      if (_cm->verbose_medium()) {
4006
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4007
      }
4008 4009 4010 4011 4012 4013 4014
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  _draining_satb_buffers = false;

4015 4016 4017
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
4018

4019
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4020
    satb_mq_set.set_par_closure(_worker_id, NULL);
4021
  } else {
4022
    satb_mq_set.set_closure(NULL);
4023
  }
4024 4025 4026 4027 4028 4029 4030

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
4031 4032
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
4058
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

4072 4073
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
4074 4075 4076 4077 4078 4079 4080 4081 4082
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

4083
    The data structures that it uses to do marking work are the
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

4117
      (4) SATB Buffer Queue. This is where completed SATB buffers are
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

4129 4130 4131
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
4132
      (local queues, stacks, fingers etc.)  are re-initialized so that
4133 4134
      when do_marking_step() completes, the marking phase can
      immediately restart.
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4183 4184
 *****************************************************************************/

4185
void CMTask::do_marking_step(double time_target_ms,
4186 4187
                             bool do_termination,
                             bool is_serial) {
4188 4189
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4190 4191

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4192 4193
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4194
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4195

4196 4197
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4208 4209 4210 4211 4212 4213
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4226
  _has_timed_out = false;
4227 4228 4229 4230
  _draining_satb_buffers = false;

  ++_calls;

4231
  if (_cm->verbose_low()) {
4232
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4233
                           "target = %1.2lfms >>>>>>>>>>",
4234
                           _worker_id, _calls, _time_target_ms);
4235
  }
4236 4237 4238 4239 4240

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4241 4242
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4243 4244

  if (_cm->has_overflown()) {
4245 4246 4247 4248
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4264 4265
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4281
      if (_cm->verbose_low()) {
4282
        gclog_or_tty->print_cr("[%u] we're scanning part "
4283
                               "["PTR_FORMAT", "PTR_FORMAT") "
4284
                               "of region "HR_FORMAT,
4285
                               _worker_id, p2i(_finger), p2i(_region_limit),
4286
                               HR_FORMAT_PARAMS(_curr_region));
4287
      }
4288

4289 4290
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4291

4292 4293 4294 4295 4296 4297 4298
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4299
      // If the iteration is successful, give up the region.
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4314 4315 4316
        giveup_current_region();
        regular_clock_call();
      } else {
4317
        assert(has_aborted(), "currently the only way to do so");
4318 4319 4320 4321 4322
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4323
        assert(_finger != NULL, "invariant");
4324 4325 4326 4327 4328 4329 4330 4331

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4332
        assert(_finger < _region_limit, "invariant");
4333
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4334 4335
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4336
          giveup_current_region();
4337
        } else {
4338
          move_finger_to(new_finger);
4339
        }
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4357 4358 4359 4360
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4361
      if (_cm->verbose_low()) {
4362
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4363
      }
4364
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4365 4366 4367 4368
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4369
        if (_cm->verbose_low()) {
4370
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4371
                                 "region "PTR_FORMAT,
4372
                                 _worker_id, p2i(claimed_region));
4373
        }
4374 4375

        setup_for_region(claimed_region);
4376
        assert(_curr_region == claimed_region, "invariant");
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4387 4388
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4389 4390 4391 4392 4393
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4394
    // tasks might be pushing objects to it concurrently.
4395 4396
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4397

4398
    if (_cm->verbose_low()) {
4399
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4400
    }
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4413
  if (do_stealing && !has_aborted()) {
4414 4415 4416 4417
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4418
    // tasks might be pushing objects to it concurrently.
4419 4420
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4421

4422
    if (_cm->verbose_low()) {
4423
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4424
    }
4425 4426 4427 4428 4429

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4430
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4431
        if (_cm->verbose_medium()) {
4432
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4433
                                 _worker_id, p2i((void*) obj));
4434
        }
4435 4436 4437

        statsOnly( ++_steals );

4438 4439
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4452 4453 4454 4455 4456 4457 4458 4459 4460
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4461 4462
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4463
  if (do_termination && !has_aborted()) {
4464
    // We cannot check whether the global stack is empty, since other
4465
    // tasks might be concurrently pushing objects on it.
4466 4467 4468
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4469

4470
    if (_cm->verbose_low()) {
4471
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4472
    }
4473 4474

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4475

4476 4477 4478
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4479 4480
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4481 4482 4483 4484 4485 4486 4487
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4488
      if (_worker_id == 0) {
4489 4490
        // let's allow task 0 to do this
        if (concurrent()) {
4491
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4492 4493 4494 4495 4496 4497 4498 4499
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4500 4501 4502 4503 4504 4505 4506 4507
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4508

4509
      if (_cm->verbose_low()) {
4510
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4511
      }
4512 4513 4514 4515
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4516
      if (_cm->verbose_low()) {
4517 4518
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4519
      }
4520 4521 4522 4523 4524 4525 4526 4527 4528

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4529
  set_cm_oop_closure(NULL);
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4540
    if (_has_timed_out) {
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4556
      if (_cm->verbose_low()) {
4557
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4558
      }
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4570 4571 4572 4573 4574 4575

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4576 4577 4578 4579
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4580 4581
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4582 4583 4584 4585
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4586
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4587
                             "elapsed = %1.2lfms <<<<<<<<<<",
4588
                             _worker_id, _time_target_ms, elapsed_time_ms);
4589
      if (_cm->has_aborted()) {
4590 4591
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4592
      }
4593 4594
    }
  } else {
4595
    if (_cm->verbose_low()) {
4596
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4597
                             "elapsed = %1.2lfms <<<<<<<<<<",
4598
                             _worker_id, _time_target_ms, elapsed_time_ms);
4599
    }
4600 4601 4602 4603 4604
  }

  _claimed = false;
}

4605
CMTask::CMTask(uint worker_id,
4606
               ConcurrentMark* cm,
4607 4608
               size_t* marked_bytes,
               BitMap* card_bm,
4609 4610 4611
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4612
    _worker_id(worker_id), _cm(cm),
4613 4614 4615 4616
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4617
    _cm_oop_closure(NULL),
4618 4619
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4620 4621
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4622 4623 4624 4625 4626 4627

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4667
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
J
johnc 已提交
4668
    _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
4679
                 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4680
                 HeapRegion::GrainBytes);
4681 4682
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4683 4684 4685 4686 4687 4688
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4689
                G1PPRL_BYTE_H_FORMAT
4690 4691
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
J
johnc 已提交
4692 4693
                "used", "prev-live", "next-live", "gc-eff",
                "remset", "code-roots");
4694
  _out->print_cr(G1PPRL_LINE_PREFIX
4695 4696 4697 4698 4699 4700
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4701
                G1PPRL_BYTE_H_FORMAT
4702 4703
                G1PPRL_BYTE_H_FORMAT,
                "", "",
J
johnc 已提交
4704 4705
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
                "(bytes)", "(bytes)");
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4717
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4739
  const char* type       = r->get_type_str();
4740 4741 4742 4743 4744 4745 4746
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4747
  size_t remset_bytes    = r->rem_set()->mem_size();
J
johnc 已提交
4748 4749
  size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();

4750
  if (r->startsHumongous()) {
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4772
  _total_remset_bytes    += remset_bytes;
J
johnc 已提交
4773
  _total_strong_code_roots_bytes += strong_code_roots_bytes;
4774 4775 4776 4777 4778 4779 4780 4781

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4782
                 G1PPRL_DOUBLE_FORMAT
J
johnc 已提交
4783
                 G1PPRL_BYTE_FORMAT
4784
                 G1PPRL_BYTE_FORMAT,
4785
                 type, p2i(bottom), p2i(end),
J
johnc 已提交
4786 4787
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
                 remset_bytes, strong_code_roots_bytes);
4788 4789 4790 4791 4792

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4793 4794
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4795 4796 4797 4798 4799 4800 4801
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4802
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
J
johnc 已提交
4803 4804
                 G1PPRL_SUM_MB_FORMAT("remset")
                 G1PPRL_SUM_MB_FORMAT("code-roots"),
4805 4806 4807 4808 4809 4810
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4811
                 perc(_total_next_live_bytes, _total_capacity_bytes),
J
johnc 已提交
4812 4813
                 bytes_to_mb(_total_remset_bytes),
                 bytes_to_mb(_total_strong_code_roots_bytes));
4814 4815
  _out->cr();
}