concurrentMark.cpp 174.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "code/codeCache.hpp"
28
#include "gc_implementation/g1/concurrentMark.inline.hpp"
29 30 31
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
32
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
35
#include "gc_implementation/g1/g1RemSet.hpp"
36
#include "gc_implementation/g1/heapRegion.inline.hpp"
37 38
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
39
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
40 41 42
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
43
#include "memory/allocation.hpp"
44 45 46 47 48 49
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
50
#include "runtime/prefetch.inline.hpp"
Z
zgu 已提交
51
#include "services/memTracker.hpp"
52

53
// Concurrent marking bit map wrapper
54

55 56
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
57
  _shifter(shifter) {
58 59
  _bmStartWord = 0;
  _bmWordSize = 0;
60 61
}

62 63
HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
                                               const HeapWord* limit) const {
64 65 66 67
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
68 69 70
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
71 72 73 74 75 76 77 78 79
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

80 81
HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
                                                 const HeapWord* limit) const {
82
  size_t addrOffset = heapWordToOffset(addr);
83 84 85
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
101
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
102
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
103
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
104
         "size inconsistency");
105 106
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
107 108 109
}
#endif

110 111 112 113
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
132
  _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
133 134 135 136 137 138
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

185 186 187 188 189 190
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
191
  }
192 193 194 195 196 197 198 199 200 201 202 203
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
204
  _saved_index = -1;
205
  _should_expand = false;
206
  NOT_PRODUCT(_max_depth = 0);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
253 254 255
}

CMMarkStack::~CMMarkStack() {
256
  if (_base != NULL) {
257 258
    _base = NULL;
    _virtual_space.release();
259
  }
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
299
        int  ind = index + i;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
322
    assert(ind < _capacity, "By overflow test above.");
323 324
    _base[ind] = ptr_arr[i];
  }
325
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
326 327 328 329 330 331 332 333 334 335
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
336
    jint  new_ind = index - k;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
362 363
      res = false;
      break;
364 365 366 367 368 369
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

387
void CMMarkStack::oops_do(OopClosure* f) {
388 389 390
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
391 392 393 394 395
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
396
  return _g1h->is_obj_ill(obj);
397 398
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

477 478 479 480
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

481 482
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
483 484
}

485 486
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
487 488
  _markBitMap1(log2_intptr(MinObjAlignment)),
  _markBitMap2(log2_intptr(MinObjAlignment)),
489
  _parallel_marking_threads(0),
490
  _max_parallel_marking_threads(0),
491 492 493 494
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
495
  _cleanup_list("Cleanup List"),
496 497 498 499
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
500

501 502 503 504 505 506
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

507
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
508 509
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
510 511
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
512 513 514

  _has_overflown(false),
  _concurrent(false),
515
  _has_aborted(false),
516
  _aborted_gc_id(GCId::undefined()),
517 518
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
519 520 521 522 523 524 525 526

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
527 528 529 530

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
531 532
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
533 534
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
535
    verbose_level = no_verbose;
536 537
  }
  if (verbose_level > high_verbose) {
538
    verbose_level = high_verbose;
539
  }
540 541
  _verbose_level = verbose_level;

542
  if (verbose_low()) {
543
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
544
                           "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
545
  }
546

547 548 549 550 551 552 553 554
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
555 556

  // Create & start a ConcurrentMark thread.
557 558 559
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
560 561 562
  if (_cmThread->osthread() == NULL) {
      vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
  }
563

564
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
565 566
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
567 568

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
569
  satb_qs.set_buffer_size(G1SATBBufferSize);
570

571 572
  _root_regions.init(_g1h, this);

573
  if (ConcGCThreads > ParallelGCThreads) {
574 575
    warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
            "than ParallelGCThreads (" UINTX_FORMAT ").",
576 577
            ConcGCThreads, ParallelGCThreads);
    return;
578 579 580 581
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
582 583 584 585
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
586
  } else {
587 588
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
589 590 591
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
592
    } else if (G1MarkingOverheadPercent > 0) {
593 594
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
595
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
596
      double overall_cm_overhead =
J
johnc 已提交
597 598
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
599 600 601 602 603 604 605 606
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

607
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
608 609 610
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
611 612 613 614
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
615 616 617 618
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

619 620 621 622
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

623
    if (parallel_marking_threads() > 1) {
624
      _cleanup_task_overhead = 1.0;
625
    } else {
626
      _cleanup_task_overhead = marking_task_overhead();
627
    }
628 629 630 631 632 633 634 635 636 637 638
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

639
    guarantee(parallel_marking_threads() > 0, "peace of mind");
640
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
641
         _max_parallel_marking_threads, false, true);
642
    if (_parallel_workers == NULL) {
643
      vm_exit_during_initialization("Failed necessary allocation.");
644 645 646
    } else {
      _parallel_workers->initialize_workers();
    }
647 648
  }

649 650 651 652 653 654 655 656 657
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
658
              mark_stack_size, (uintx) 1, MarkStackSizeMax);
659 660 661 662 663 664 665 666 667 668
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
669
                  MarkStackSize, (uintx) 1, MarkStackSizeMax);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

725
  // so that the call below can read a sensible value
726
  _heap_start = (HeapWord*) heap_rs.base();
727
  set_non_marking_state();
728
  _completed_initialization = true;
729 730 731 732
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
733
  // update _heap_end.
734
  if (!concurrent_marking_in_progress() && !force) return;
735 736

  MemRegion committed = _g1h->g1_committed();
737
  assert(committed.start() == _heap_start, "start shouldn't change");
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

759 760 761 762
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
763

764 765
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
766

767
  if (verbose_low()) {
768
    gclog_or_tty->print_cr("[global] resetting");
769
  }
770 771 772 773

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
774
  for (uint i = 0; i < _max_worker_id; ++i) {
775
    _tasks[i]->reset(_nextMarkBitMap);
776
  }
777 778 779 780 781 782

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

800
void ConcurrentMark::set_concurrency(uint active_tasks) {
801
  assert(active_tasks <= _max_worker_id, "we should not have more");
802 803 804 805 806 807 808

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
809 810 811 812
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
813 814 815

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
816
  for (uint i = 0; i < _max_worker_id; ++i)
817 818 819 820 821 822 823 824
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
825
    assert(!concurrent_marking_in_progress(), "invariant");
826
    assert(out_of_regions(),
827
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
828
                   p2i(_finger), p2i(_heap_end)));
829 830 831 832 833 834 835
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
836
  reset_marking_state();
837 838 839 840 841
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
842 843
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
844 845 846
}

void ConcurrentMark::clearNextBitmap() {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
869
    if (next > end) {
870
      next = end;
871
    }
872 873 874 875 876 877 878 879 880 881 882 883 884
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

885 886 887
  // Clear the liveness counting data
  clear_all_count_data();

888 889 890
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
891 892
}

893 894 895 896
bool ConcurrentMark::nextMarkBitmapIsClear() {
  return _nextMarkBitMap->getNextMarkedWordAddress(_heap_start, _heap_end) == _heap_end;
}

897 898 899 900
class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
901
      r->note_start_of_marking();
902 903 904 905 906 907 908 909 910 911 912
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

913
#ifndef PRODUCT
914
  if (G1PrintReachableAtInitialMark) {
915
    print_reachable("at-cycle-start",
916
                    VerifyOption_G1UsePrevMarking, true /* all */);
917
  }
918
#endif
919 920 921

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
922 923 924 925

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
926 927 928 929 930 931
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

932 933 934 935 936 937 938 939
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

940 941 942 943
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
944
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
945 946

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
947 948 949 950
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
951

952 953
  _root_regions.prepare_for_scan();

954 955 956 957 958 959 960
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
980

981
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
982
  if (verbose_low()) {
983
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
984
  }
985

986
  if (concurrent()) {
P
pliden 已提交
987
    SuspendibleThreadSet::leave();
988
  }
989 990 991

  bool barrier_aborted = !_first_overflow_barrier_sync.enter();

992
  if (concurrent()) {
P
pliden 已提交
993
    SuspendibleThreadSet::join();
994
  }
995 996 997
  // at this point everyone should have synced up and not be doing any
  // more work

998
  if (verbose_low()) {
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
    }
  }

  if (barrier_aborted) {
    // If the barrier aborted we ignore the overflow condition and
    // just abort the whole marking phase as quickly as possible.
    return;
1010
  }
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
1030
        gclog_or_tty->gclog_stamp(concurrent_gc_id());
1031 1032
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1033 1034 1035 1036 1037 1038 1039
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1040
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1041
  if (verbose_low()) {
1042
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1043
  }
1044

1045
  if (concurrent()) {
P
pliden 已提交
1046
    SuspendibleThreadSet::leave();
1047
  }
1048 1049 1050

  bool barrier_aborted = !_second_overflow_barrier_sync.enter();

1051
  if (concurrent()) {
P
pliden 已提交
1052
    SuspendibleThreadSet::join();
1053
  }
1054
  // at this point everything should be re-initialized and ready to go
1055

1056
  if (verbose_low()) {
1057 1058 1059 1060 1061
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
    }
1062
  }
1063 1064
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1091 1092 1093 1094 1095 1096
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1097
  void work(uint worker_id) {
1098 1099
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1100
    ResourceMark rm;
1101 1102 1103

    double start_vtime = os::elapsedVTime();

P
pliden 已提交
1104
    SuspendibleThreadSet::join();
1105

1106 1107
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1108 1109 1110 1111 1112
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1113 1114 1115
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1116 1117
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1118

1119 1120 1121 1122 1123 1124
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1125
        bool ret = _cm->do_yield_check(worker_id);
1126 1127 1128 1129 1130

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
P
pliden 已提交
1131
          SuspendibleThreadSet::leave();
1132
          os::sleep(Thread::current(), sleep_time_ms, false);
P
pliden 已提交
1133
          SuspendibleThreadSet::join();
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1149
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1150

P
pliden 已提交
1151
    SuspendibleThreadSet::leave();
1152 1153

    double end_vtime = os::elapsedVTime();
1154
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1155 1156 1157 1158 1159 1160 1161 1162 1163
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1164 1165
// Calculates the number of active workers for a concurrent
// phase.
1166
uint ConcurrentMark::calc_parallel_marking_threads() {
1167
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1168
    uint n_conc_workers = 0;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1183 1184
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1185
  }
1186 1187 1188 1189
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
1231 1232 1233
  // Start of concurrent marking.
  ClassLoaderDataGraph::clear_claimed_marks();

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1244
    if (use_parallel_marking_threads()) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1258 1259 1260 1261 1262 1263 1264 1265 1266
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1267
  force_overflow_conc()->init();
1268 1269 1270 1271 1272 1273

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1274
  uint active_workers = MAX2(1U, parallel_marking_threads());
1275

1276 1277
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1278 1279

  CMConcurrentMarkingTask markingTask(this, cmThread());
1280
  if (use_parallel_marking_threads()) {
1281
    _parallel_workers->set_active_workers((int)active_workers);
1282
    // Don't set _n_par_threads because it affects MT in process_roots()
1283 1284
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1285
    _parallel_workers->run_task(&markingTask);
1286
  } else {
1287
    markingTask.work(0);
1288
  }
1289 1290 1291 1292 1293 1294 1295
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1296

1297 1298 1299 1300 1301 1302 1303 1304
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1305 1306
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1307 1308 1309
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1310 1311
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1312
  }
1313
  g1h->check_bitmaps("Remark Start");
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1329
    if (G1TraceMarkStackOverflow) {
1330
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1331
    }
1332 1333 1334 1335 1336

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1337 1338
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1339 1340 1341 1342 1343
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1344
  } else {
1345 1346 1347 1348
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1349
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1350
    // We're done with marking.
1351 1352
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1353 1354
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1355 1356

    if (VerifyDuringGC) {
1357 1358
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1359 1360
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1361
    }
1362
    g1h->check_bitmaps("Remark End");
1363
    assert(!restart_for_overflow(), "sanity");
1364 1365
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1366 1367
  }

1368 1369 1370 1371 1372
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1373 1374 1375 1376 1377 1378 1379
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1380 1381 1382

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1383 1384
}

1385 1386 1387 1388
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1389
  G1CollectedHeap* _g1h;
1390
  ConcurrentMark* _cm;
1391 1392
  CardTableModRefBS* _ct_bs;

1393 1394 1395
  BitMap* _region_bm;
  BitMap* _card_bm;

1396
  // Takes a region that's not empty (i.e., it has at least one
1397 1398 1399 1400 1401 1402 1403
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1404
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1405 1406
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1407
      _region_bm->par_at_put(index, true);
1408 1409
    } else {
      // Starts humongous case: calculate how many regions are part of
1410
      // this humongous region and then set the bit range.
1411
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1412
      _region_bm->par_at_put_range(index, end_index, true);
1413 1414 1415
    }
  }

1416
public:
1417
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1418
                         BitMap* region_bm, BitMap* card_bm):
1419 1420 1421
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1422 1423 1424 1425 1426 1427 1428 1429 1430
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1431
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1432
                         BitMap* region_bm, BitMap* card_bm) :
1433
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1434 1435
    _bm(bm), _region_marked_bytes(0) { }

1436 1437
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1438
    if (hr->continuesHumongous()) {
1439 1440 1441 1442 1443 1444 1445
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1446 1447
      return false;
    }
1448

1449 1450
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1451

1452
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1453
           err_msg("Preconditions not met - "
1454
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1455
                   p2i(start), p2i(ntams), p2i(hr->end())));
1456

1457
    // Find the first marked object at or after "start".
1458
    start = _bm->getNextMarkedWordAddress(start, ntams);
1459

1460 1461
    size_t marked_bytes = 0;

1462
    while (start < ntams) {
1463 1464
      oop obj = oop(start);
      int obj_sz = obj->size();
1465
      HeapWord* obj_end = start + obj_sz;
1466

1467
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1479

1480 1481
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1482 1483

      // Add the size of this object to the number of marked bytes.
1484
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1485

1486
      // Find the next marked object after this one.
1487
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1488
    }
1489 1490 1491

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1506 1507 1508

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1509 1510 1511 1512
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1513
      set_bit_for_region(hr);
1514
    }
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1532
  G1CollectedHeap* _g1h;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1545
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1546 1547 1548 1549 1550
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1551 1552
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1590
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1601
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1602 1603 1604 1605 1606

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1607 1608 1609 1610
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1628 1629 1630 1631
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1632
        }
1633
        failures += 1;
1634 1635 1636
      }
    }

1637 1638 1639
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1640
                             HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1641 1642 1643 1644 1645 1646
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1647
    // find the first violating region by returning true.
1648 1649
    return false;
  }
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
};

class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1698
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1715

1716
  int failures() const { return _failures; }
1717 1718
};

1719 1720 1721 1722 1723 1724
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1725

1726
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1727
 public:
1728
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1729 1730
                              BitMap* region_bm,
                              BitMap* card_bm) :
1731
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1749
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1750 1751 1752 1753 1754 1755

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1778
    }
1779 1780 1781 1782 1783 1784 1785 1786 1787

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1788 1789 1790 1791

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1792 1793 1794 1795
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1796
  uint    _n_workers;
1797

1798
public:
1799 1800 1801 1802 1803
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1804
    // Use the value already set as the number of active threads
1805
    // in the call to run_task().
1806 1807 1808 1809
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1810
    } else {
1811
      _n_workers = 1;
1812
    }
1813 1814
  }

1815
  void work(uint worker_id) {
1816 1817
    assert(worker_id < _n_workers, "invariant");

1818
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1819 1820 1821
                                                _actual_region_bm,
                                                _actual_card_bm);

1822
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1823 1824 1825
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1826
                                            HeapRegion::FinalCountClaimValue);
1827
    } else {
1828
      _g1h->heap_region_iterate(&final_update_cl);
1829 1830 1831 1832 1833 1834 1835 1836 1837
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  size_t _max_live_bytes;
1838
  uint _regions_claimed;
1839
  size_t _freed_bytes;
T
tonyp 已提交
1840
  FreeRegionList* _local_cleanup_list;
1841 1842
  HeapRegionSetCount _old_regions_removed;
  HeapRegionSetCount _humongous_regions_removed;
T
tonyp 已提交
1843
  HRRSCleanupTask* _hrrs_cleanup_task;
1844 1845 1846 1847 1848
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1849
                             FreeRegionList* local_cleanup_list,
1850
                             HRRSCleanupTask* hrrs_cleanup_task) :
1851
    _g1(g1),
1852 1853 1854 1855
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
1856 1857
    _old_regions_removed(),
    _humongous_regions_removed(),
1858 1859
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1860
  size_t freed_bytes() { return _freed_bytes; }
1861 1862
  const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1863

1864
  bool doHeapRegion(HeapRegion *hr) {
1865 1866 1867
    if (hr->continuesHumongous()) {
      return false;
    }
1868 1869
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1870 1871 1872 1873 1874
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

    if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
      _freed_bytes += hr->used();
      hr->set_containing_set(NULL);
      if (hr->isHumongous()) {
        assert(hr->startsHumongous(), "we should only see starts humongous");
        _humongous_regions_removed.increment(1u, hr->capacity());
        _g1->free_humongous_region(hr, _local_cleanup_list, true);
      } else {
        _old_regions_removed.increment(1u, hr->capacity());
        _g1->free_region(hr, _local_cleanup_list, true);
      }
    } else {
      hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
    }

1891 1892 1893 1894
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1895 1896 1897
    }
    return false;
  }
1898 1899

  size_t max_live_bytes() { return _max_live_bytes; }
1900
  uint regions_claimed() { return _regions_claimed; }
1901 1902 1903 1904 1905 1906
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1907

1908 1909 1910 1911
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1912 1913
  FreeRegionList* _cleanup_list;

1914 1915
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1916
                   FreeRegionList* cleanup_list) :
1917
    AbstractGangTask("G1 note end"), _g1h(g1h),
1918
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1919

1920
  void work(uint worker_id) {
1921
    double start = os::elapsedTime();
T
tonyp 已提交
1922 1923
    FreeRegionList local_cleanup_list("Local Cleanup List");
    HRRSCleanupTask hrrs_cleanup_task;
1924
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
T
tonyp 已提交
1925
                                           &hrrs_cleanup_task);
1926
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1927
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1928
                                            _g1h->workers()->active_workers(),
1929
                                            HeapRegion::NoteEndClaimValue);
1930 1931 1932 1933 1934
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1935
    // Now update the lists
1936
    _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1937 1938
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1939
      _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1940 1941
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
1953
        FreeRegionListIterator iter(&local_cleanup_list);
1954 1955 1956 1957 1958 1959
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

1960
      _cleanup_list->add_ordered(&local_cleanup_list);
T
tonyp 已提交
1961 1962 1963
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1979
    _region_bm(region_bm), _card_bm(card_bm) { }
1980

1981
  void work(uint worker_id) {
1982
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1983
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1984
                       HeapRegion::ScrubRemSetClaimValue);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

2004 2005
  g1h->verify_region_sets_optional();

2006 2007 2008
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2009 2010
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
2011
  }
2012
  g1h->check_bitmaps("Cleanup Start");
2013

2014 2015 2016 2017 2018
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
2019 2020
  HeapRegionRemSet::reset_for_cleanup_tasks();

2021
  uint n_workers;
2022

2023
  // Do counting once more with the world stopped for good measure.
2024 2025
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

2026
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2027
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2028 2029
           "sanity check");

2030 2031
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2032
    assert(g1h->n_par_threads() == n_workers,
2033
           "Should not have been reset");
2034
    g1h->workers()->run_task(&g1_par_count_task);
2035
    // Done with the parallel phase so reset to 0.
2036
    g1h->set_par_threads(0);
2037

2038
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2039
           "sanity check");
2040
  } else {
2041
    n_workers = 1;
2042 2043 2044
    g1_par_count_task.work(0);
  }

2045 2046 2047 2048 2049
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
2050 2051
    BitMap expected_region_bm(_region_bm.size(), true);
    BitMap expected_card_bm(_card_bm.size(), true);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2074 2075 2076 2077 2078 2079 2080
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2081 2082 2083 2084 2085
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2086 2087 2088 2089 2090 2091
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2092
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2093
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2094
    g1h->set_par_threads((int)n_workers);
2095 2096
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2097 2098 2099

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2100 2101 2102
  } else {
    g1_par_note_end_task.work(0);
  }
2103
  g1h->check_gc_time_stamps();
2104 2105 2106 2107 2108 2109 2110

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2111 2112 2113 2114 2115 2116

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2117
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2118
      g1h->set_par_threads((int)n_workers);
2119 2120
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2121 2122 2123 2124

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2136
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2137 2138 2139 2140 2141

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2142
  if (G1Log::fine()) {
2143 2144 2145 2146 2147 2148
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2149 2150 2151 2152
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

J
johnc 已提交
2153
  if (VerifyDuringGC) {
2154 2155
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2156 2157
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2158
  }
2159
  g1h->check_bitmaps("Cleanup End");
2160 2161

  g1h->verify_region_sets_optional();
2162 2163 2164 2165 2166 2167

  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

  // Clean out dead classes and update Metaspace sizes.
2168 2169 2170
  if (ClassUnloadingWithConcurrentMark) {
    ClassLoaderDataGraph::purge();
  }
2171 2172 2173 2174 2175 2176
  MetaspaceGC::compute_new_size();

  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

S
sla 已提交
2177
  g1h->trace_heap_after_concurrent_cycle();
2178 2179 2180 2181 2182
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2183 2184
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2185
  _cleanup_list.verify_optional();
T
tonyp 已提交
2186
  FreeRegionList tmp_free_list("Tmp Free List");
2187 2188 2189

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2190
                           "cleanup list has %u entries",
2191 2192 2193 2194 2195 2196 2197
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
2198
    assert(hr != NULL, "Got NULL from a non-empty list");
2199
    hr->par_clear();
2200
    tmp_free_list.add_ordered(hr);
2201 2202 2203 2204 2205 2206 2207

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2208
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2209 2210 2211
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2212 2213
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2214
                               tmp_free_list.length(),
2215 2216 2217 2218 2219
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2220
        g1h->secondary_free_list_add(&tmp_free_list);
2221 2222 2223 2224 2225 2226 2227
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2228 2229 2230
      }
    }
  }
T
tonyp 已提交
2231
  assert(tmp_free_list.is_empty(), "post-condition");
2232 2233
}

2234 2235
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2236

2237 2238 2239 2240 2241
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2242

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2256 2257 2258 2259 2260
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2261
 public:
2262 2263 2264
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2265
    assert(_ref_counter_limit > 0, "sanity");
2266
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2267 2268 2269 2270 2271 2272 2273 2274 2275
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2276
      if (_cm->verbose_high()) {
2277
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2278
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2279
                               _task->worker_id(), p2i(p), p2i((void*) obj));
2280
      }
2281 2282 2283 2284 2285

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2302 2303 2304
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2305 2306
                                 false      /* do_termination */,
                                 _is_serial);
2307 2308 2309 2310
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2311
      if (_cm->verbose_high()) {
2312
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2313
      }
2314 2315 2316 2317
    }
  }
};

2318 2319 2320 2321 2322 2323 2324 2325
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2326
  ConcurrentMark* _cm;
2327
  CMTask*         _task;
2328
  bool            _is_serial;
2329
 public:
2330 2331 2332
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2333
  }
2334 2335 2336

  void do_void() {
    do {
2337
      if (_cm->verbose_high()) {
2338 2339
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2340
      }
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2358 2359

      _task->do_marking_step(1000000000.0 /* something very large */,
2360 2361
                             true         /* do_termination */,
                             _is_serial);
2362 2363 2364 2365
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2366 2367 2368 2369
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2370 2371 2372 2373 2374 2375 2376
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2377
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2378 2379 2380
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2381 2382
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2383 2384 2385 2386 2387 2388

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2389
class G1CMRefProcTaskProxy: public AbstractGangTask {
2390 2391 2392 2393 2394 2395
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2396
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2397
                     G1CollectedHeap* g1h,
2398
                     ConcurrentMark* cm) :
2399
    AbstractGangTask("Process reference objects in parallel"),
2400
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2401 2402 2403
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2404

2405
  virtual void work(uint worker_id) {
2406 2407
    ResourceMark rm;
    HandleMark hm;
2408
    CMTask* task = _cm->task(worker_id);
2409
    G1CMIsAliveClosure g1_is_alive(_g1h);
2410 2411
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2412

2413
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2414 2415 2416
  }
};

2417
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2418
  assert(_workers != NULL, "Need parallel worker threads.");
2419
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2420

2421
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2422

2423 2424 2425 2426 2427
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2428 2429 2430 2431 2432
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2433
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2434 2435 2436 2437
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2438
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2439
    AbstractGangTask("Enqueue reference objects in parallel"),
2440
    _enq_task(enq_task) { }
2441

2442 2443
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2444 2445 2446
  }
};

2447
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2448
  assert(_workers != NULL, "Need parallel worker threads.");
2449
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2450

2451
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2452

2453 2454 2455 2456 2457 2458 2459
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2460 2461 2462 2463 2464
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
}

// Helper class to get rid of some boilerplate code.
class G1RemarkGCTraceTime : public GCTraceTime {
  static bool doit_and_prepend(bool doit) {
    if (doit) {
      gclog_or_tty->put(' ');
    }
    return doit;
  }

 public:
  G1RemarkGCTraceTime(const char* title, bool doit)
    : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
        G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  }
};

2485
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2496 2497 2498
  ResourceMark rm;
  HandleMark   hm;

2499 2500 2501 2502 2503 2504 2505 2506
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2507
    if (G1Log::finer()) {
2508 2509
      gclog_or_tty->put(' ');
    }
2510
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2511

2512
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2513

2514 2515
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2516

2517
    // Set the soft reference policy
2518 2519
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2520

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2544
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2545

2546
    // Parallel processing task executor.
2547
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2548
                                              g1h->workers(), active_workers);
2549
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2550

2551 2552 2553 2554
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2555 2556 2557 2558 2559 2560 2561
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2562 2563 2564 2565 2566
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
2567 2568
                                          g1h->gc_timer_cm(),
                                          concurrent_gc_id());
S
sla 已提交
2569
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2570

2571 2572 2573
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2574

2575 2576
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2577

2578
    if (_markStack.overflow()) {
2579
      // This should have been done already when we tried to push an
2580 2581 2582
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2583

2584 2585 2586
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2587

2588
    rp->verify_no_references_recorded();
2589
    assert(!rp->discovery_enabled(), "Post condition");
2590 2591
  }

2592 2593 2594 2595 2596
  if (has_overflown()) {
    // We can not trust g1_is_alive if the marking stack overflowed
    return;
  }

2597 2598 2599
  assert(_markStack.isEmpty(), "Marking should have completed");

  // Unload Klasses, String, Symbols, Code Cache, etc.
2600 2601
  {
    G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2602

2603 2604
    if (ClassUnloadingWithConcurrentMark) {
      bool purged_classes;
2605

2606 2607 2608 2609
      {
        G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
        purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
      }
2610

2611 2612 2613 2614 2615
      {
        G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
        weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
      }
    }
2616

2617 2618 2619 2620
    if (G1StringDedup::is_enabled()) {
      G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
      G1StringDedup::unlink(&g1_is_alive);
    }
2621
  }
2622 2623 2624 2625 2626 2627 2628 2629
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
class CMObjectClosure;

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

class G1RemarkThreadsClosure : public ThreadClosure {
  CMObjectClosure _cm_obj;
  G1CMOopClosure _cm_cl;
  MarkingCodeBlobClosure _code_cl;
  int _thread_parity;
  bool _is_par;

 public:
  G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
    _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
    _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}

  void do_thread(Thread* thread) {
    if (thread->is_Java_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread* jt = (JavaThread*)thread;

        // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
        // however the liveness of oops reachable from nmethods have very complex lifecycles:
        // * Alive if on the stack of an executing method
        // * Weakly reachable otherwise
        // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
        // live by the SATB invariant but other oops recorded in nmethods may behave differently.
        jt->nmethods_do(&_code_cl);

        jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
      }
    } else if (thread->is_VM_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
      }
    }
  }
};

2681 2682
class CMRemarkTask: public AbstractGangTask {
private:
2683 2684
  ConcurrentMark* _cm;
  bool            _is_serial;
2685
public:
2686
  void work(uint worker_id) {
2687 2688
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2689 2690
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2691
      task->record_start_time();
2692 2693 2694 2695 2696 2697 2698 2699
      {
        ResourceMark rm;
        HandleMark hm;

        G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
        Threads::threads_do(&threads_f);
      }

2700
      do {
2701
        task->do_marking_step(1000000000.0 /* something very large */,
2702 2703
                              true         /* do_termination       */,
                              _is_serial);
2704 2705 2706 2707 2708 2709 2710
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2711 2712
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2713
    _cm->terminator()->reset_for_reuse(active_workers);
2714
  }
2715 2716 2717 2718 2719 2720 2721
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2722 2723
  G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());

2724 2725
  g1h->ensure_parsability(false);

2726
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2727
    G1CollectedHeap::StrongRootsScope srs(g1h);
2728
    // this is remark, so we'll use up all active threads
2729
    uint active_workers = g1h->workers()->active_workers();
2730 2731
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2732
      active_workers = (uint) ParallelGCThreads;
2733 2734
      g1h->workers()->set_active_workers(active_workers);
    }
2735
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2736 2737 2738 2739
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2740

2741 2742 2743 2744
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2745
    g1h->set_par_threads(active_workers);
2746 2747 2748
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2749
    G1CollectedHeap::StrongRootsScope srs(g1h);
2750
    uint active_workers = 1;
2751
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2752

2753 2754 2755 2756 2757 2758 2759 2760
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2761 2762
    remarkTask.work(0);
  }
2763
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2764 2765 2766 2767 2768
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2769 2770 2771 2772

  print_stats();
}

2773 2774
#ifndef PRODUCT

2775
class PrintReachableOopClosure: public OopClosure {
2776 2777 2778
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2779
  VerifyOption     _vo;
2780
  bool             _all;
2781 2782

public:
2783 2784
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2785
                           bool          all) :
2786
    _g1h(G1CollectedHeap::heap()),
2787
    _out(out), _vo(vo), _all(all) { }
2788

2789 2790
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2791

2792 2793
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2794 2795 2796
    const char* str = NULL;
    const char* str2 = "";

2797 2798 2799 2800 2801
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2802
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2803
      guarantee(hr != NULL, "invariant");
2804 2805
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2806 2807

      if (over_tams) {
2808 2809
        str = " >";
        if (marked) {
2810
          str2 = " AND MARKED";
2811
        }
2812 2813
      } else if (marked) {
        str = " M";
2814
      } else {
2815
        str = " NOT";
2816
      }
2817 2818
    }

2819
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2820
                   p2i(p), p2i((void*) obj), str, str2);
2821 2822 2823
  }
};

2824
class PrintReachableObjectClosure : public ObjectClosure {
2825
private:
2826 2827 2828 2829 2830
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2831 2832

public:
2833 2834
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2835 2836
                              bool          all,
                              HeapRegion*   hr) :
2837 2838
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2839

2840
  void do_object(oop o) {
2841 2842
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2843 2844 2845 2846
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
2847
                     p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2848
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2849
      o->oop_iterate_no_header(&oopCl);
2850
    }
2851 2852 2853
  }
};

2854
class PrintReachableRegionClosure : public HeapRegionClosure {
2855
private:
2856 2857 2858 2859
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2860 2861 2862 2863 2864 2865

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2866
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2867
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2868
                   "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2869 2870 2871 2872 2873 2874
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
2875
      _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2876
      _out->cr();
2877
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2878 2879 2880
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2881 2882 2883 2884

    return false;
  }

2885 2886
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2887
                              bool          all) :
2888
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2889 2890
};

2891
void ConcurrentMark::print_reachable(const char* str,
2892
                                     VerifyOption vo,
2893 2894 2895
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2919
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2920 2921
  out->cr();

2922
  out->print_cr("--- ITERATING OVER REGIONS");
2923
  out->cr();
2924
  PrintReachableRegionClosure rcl(out, vo, all);
2925
  _g1h->heap_region_iterate(&rcl);
2926
  out->cr();
2927

2928
  gclog_or_tty->print_cr("  done");
2929
  gclog_or_tty->flush();
2930 2931
}

2932 2933
#endif // PRODUCT

2934
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2935 2936 2937
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2938 2939 2940
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2941 2942 2943
  _nextMarkBitMap->clearRange(mr);
}

2944 2945 2946 2947 2948
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2949
HeapRegion*
2950
ConcurrentMark::claim_region(uint worker_id) {
2951 2952 2953 2954 2955 2956
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2957
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2983 2984 2985 2986
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2987
    if (verbose_low()) {
2988
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2989 2990
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2991
                             worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2992
    }
2993

2994 2995
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2996 2997 2998 2999 3000
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
3001
      assert(_finger >= end, "the finger should have moved forward");
3002

3003
      if (verbose_low()) {
3004
        gclog_or_tty->print_cr("[%u] we were successful with region = "
3005
                               PTR_FORMAT, worker_id, p2i(curr_region));
3006
      }
3007 3008

      if (limit > bottom) {
3009
        if (verbose_low()) {
3010
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3011
                                 "returning it ", worker_id, p2i(curr_region));
3012
        }
3013 3014
        return curr_region;
      } else {
3015 3016
        assert(limit == bottom,
               "the region limit should be at bottom");
3017
        if (verbose_low()) {
3018
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3019
                                 "returning NULL", worker_id, p2i(curr_region));
3020
        }
3021 3022 3023 3024 3025
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
3026
      assert(_finger > finger, "the finger should have moved forward");
3027
      if (verbose_low()) {
3028
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3029 3030
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
3031
                               worker_id, p2i(_finger), p2i(finger));
3032
      }
3033 3034 3035 3036 3037 3038 3039 3040 3041

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3070
                      p2i((void*) obj), phase_str(), _info));
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
3091

3092 3093
  virtual void do_object(oop obj) {
    do_object_work(obj);
3094
  }
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
3107

3108 3109 3110 3111 3112 3113
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
3114
    for (uint i = 0; i < _max_worker_id; i += 1) {
3115
      cl.set_phase(VerifyNoCSetOopsQueues, i);
3116
      CMTaskQueue* queue = _task_queues->queue(i);
3117 3118
      queue->oops_do(&cl);
    }
3119 3120
  }

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3149
                        p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3150 3151 3152
    }

    // Verify the task fingers
3153
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3154 3155 3156 3157 3158 3159 3160 3161 3162
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3163
                          p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3164 3165 3166
      }
    }
  }
3167
}
3168
#endif // PRODUCT
3169

3170 3171 3172
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3173
  G1CollectedHeap* _g1h;
3174
  ConcurrentMark* _cm;
3175
  CardTableModRefBS* _ct_bs;
3176
  BitMap* _cm_card_bm;
3177
  uint _max_worker_id;
3178 3179

 public:
3180
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3181
                              BitMap* cm_card_bm,
3182
                              uint max_worker_id) :
3183 3184
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3185
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
3207
                   p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3208 3209 3210 3211 3212 3213 3214 3215

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3216 3217 3218 3219
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3220 3221 3222 3223 3224

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3225 3226 3227 3228 3229 3230 3231 3232
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3233 3234 3235 3236 3237 3238
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3239
    uint hrs_index = hr->hrs_index();
3240 3241
    size_t marked_bytes = 0;

3242
    for (uint i = 0; i < _max_worker_id; i += 1) {
3243 3244 3245 3246 3247 3248 3249
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3250
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3261
        // parameter. It does, however, have an early exit if
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3282
  uint _max_worker_id;
3283 3284 3285 3286 3287 3288
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3289
                           uint max_worker_id,
3290 3291 3292
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3293
    _max_worker_id(max_worker_id),
3294 3295 3296
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3297
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3316
                                           _max_worker_id, n_workers);
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3344
  uint max_regions = _g1h->max_regions();
3345
  assert(_max_worker_id > 0, "uninitialized");
3346

3347
  for (uint i = 0; i < _max_worker_id; i += 1) {
3348 3349 3350 3351 3352 3353
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3354
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3355 3356 3357 3358
    task_card_bm->clear();
  }
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
3371 3372
  // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  // concurrent bitmap clearing.
3373
  _nextMarkBitMap->clearAll();
3374 3375 3376 3377 3378

  // Note we cannot clear the previous marking bitmap here
  // since VerifyDuringGC verifies the objects marked during
  // a full GC against the previous bitmap.

3379 3380
  // Clear the liveness counting data
  clear_all_count_data();
3381
  // Empty mark stack
3382
  reset_marking_state();
3383
  for (uint i = 0; i < _max_worker_id; ++i) {
3384
    _tasks[i]->clear_region_fields();
3385
  }
3386 3387
  _first_overflow_barrier_sync.abort();
  _second_overflow_barrier_sync.abort();
3388 3389 3390 3391 3392 3393
  const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  if (!gc_id.is_undefined()) {
    // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
    // to detect that it was aborted. Only keep track of the first GC id that we aborted.
    _aborted_gc_id = gc_id;
   }
3394 3395 3396 3397
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3398 3399 3400 3401 3402
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3403 3404 3405

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3406 3407
}

3408 3409 3410 3411 3412 3413 3414
const GCId& ConcurrentMark::concurrent_gc_id() {
  if (has_aborted()) {
    return _aborted_gc_id;
  }
  return _g1h->gc_tracer_cm()->gc_id();
}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3451
                "(%8.2f s marking).",
3452
                cmThread()->vtime_accum(),
3453
                cmThread()->vtime_mark_accum());
3454 3455
}

T
tonyp 已提交
3456
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3457 3458 3459
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3460 3461
}

3462 3463
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3464
      p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3465 3466 3467 3468
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3469
// We take a break if someone is trying to stop the world.
3470
bool ConcurrentMark::do_yield_check(uint worker_id) {
P
pliden 已提交
3471
  if (SuspendibleThreadSet::should_yield()) {
3472
    if (worker_id == 0) {
3473
      _g1h->g1_policy()->record_concurrent_pause();
3474
    }
P
pliden 已提交
3475
    SuspendibleThreadSet::yield();
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3489 3490
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3491 3492 3493 3494 3495 3496
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3497
                         p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3498
  for (uint i = 0; i < _max_worker_id; ++i) {
3499
    gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3500
  }
3501
  gclog_or_tty->cr();
3502 3503 3504
}
#endif

3505 3506 3507 3508
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3509
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3510
                           _worker_id, p2i((void*) obj));
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3521 3522 3523 3524 3525 3526 3527 3528 3529
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3530 3531
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3532 3533 3534

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3535 3536
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3537

3538 3539 3540 3541 3542
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

3555 3556 3557 3558 3559
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3560

3561
  if (G1UseConcMarkReferenceProcessing) {
3562
    _ref_processor = g1h->ref_processor_cm();
3563
    assert(_ref_processor != NULL, "should not be NULL");
3564
  }
3565
}
3566 3567

void CMTask::setup_for_region(HeapRegion* hr) {
3568 3569 3570 3571 3572
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3573

3574
  if (_cm->verbose_low()) {
3575
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3576
                           _worker_id, p2i(hr));
3577
  }
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3590
    if (_cm->verbose_low()) {
3591
      gclog_or_tty->print_cr("[%u] found an empty region "
3592
                             "["PTR_FORMAT", "PTR_FORMAT")",
3593
                             _worker_id, p2i(bottom), p2i(limit));
3594
    }
3595 3596 3597 3598 3599 3600 3601
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3602
    assert(limit >= _finger, "peace of mind");
3603
  } else {
3604
    assert(limit < _region_limit, "only way to get here");
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3622
  assert(_curr_region != NULL, "invariant");
3623
  if (_cm->verbose_low()) {
3624
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3625
                           _worker_id, p2i(_curr_region));
3626
  }
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3638 3639 3640 3641 3642 3643 3644 3645 3646
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3647
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3648
  guarantee(nextMarkBitMap != NULL, "invariant");
3649

3650
  if (_cm->verbose_low()) {
3651
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3652
  }
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3696 3697 3698
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3699 3700 3701 3702
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3703
  if (has_aborted()) return;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3720
  if (!concurrent()) return;
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3733
  if (_words_scanned >= _words_scanned_limit) {
3734
    ++_clock_due_to_scanning;
3735 3736
  }
  if (_refs_reached >= _refs_reached_limit) {
3737
    ++_clock_due_to_marking;
3738
  }
3739 3740 3741 3742 3743 3744

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3745
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3746
                        "scanned = %d%s, refs reached = %d%s",
3747
                        _worker_id, last_interval_ms,
3748 3749 3750 3751
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3752 3753 3754 3755
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
P
pliden 已提交
3756
  if (SuspendibleThreadSet::should_yield()) {
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3769
    _has_timed_out = true;
3770 3771 3772 3773 3774 3775 3776 3777
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3778
    if (_cm->verbose_low()) {
3779 3780
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3781
    }
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3804
  if (_cm->verbose_medium()) {
3805
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3806
  }
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3832
      if (_cm->verbose_low()) {
3833 3834
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3835
      }
3836 3837 3838 3839
      set_has_aborted();
    } else {
      // the transfer was successful

3840
      if (_cm->verbose_medium()) {
3841 3842
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3843
      }
3844
      statsOnly( int tmp_size = _cm->mark_stack_size();
3845
                 if (tmp_size > _global_max_size) {
3846
                   _global_max_size = tmp_size;
3847
                 }
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3862 3863
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3864 3865 3866 3867
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3868
    if (_cm->verbose_medium()) {
3869 3870
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3871
    }
3872 3873 3874 3875
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3876
      assert(success, "invariant");
3877 3878 3879
    }

    statsOnly( int tmp_size = _task_queue->size();
3880
               if (tmp_size > _local_max_size) {
3881
                 _local_max_size = tmp_size;
3882
               }
3883 3884 3885 3886 3887 3888 3889 3890
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3891
  if (has_aborted()) return;
3892 3893 3894 3895 3896

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3897
  if (partially) {
3898
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3899
  } else {
3900
    target_size = 0;
3901
  }
3902 3903

  if (_task_queue->size() > target_size) {
3904
    if (_cm->verbose_high()) {
3905
      gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3906
                             _worker_id, target_size);
3907
    }
3908 3909 3910 3911 3912 3913

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3914
      if (_cm->verbose_high()) {
3915
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3916
                               p2i((void*) obj));
3917
      }
3918

3919
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3920
      assert(!_g1h->is_on_master_free_list(
3921
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3922 3923 3924

      scan_object(obj);

3925
      if (_task_queue->size() <= target_size || has_aborted()) {
3926
        ret = false;
3927
      } else {
3928
        ret = _task_queue->pop_local(obj);
3929
      }
3930 3931
    }

3932
    if (_cm->verbose_high()) {
3933 3934
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3935
    }
3936 3937 3938 3939
  }
}

void CMTask::drain_global_stack(bool partially) {
3940
  if (has_aborted()) return;
3941 3942 3943

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3944
  assert(partially || _task_queue->size() == 0, "invariant");
3945 3946 3947 3948 3949 3950 3951 3952

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3953
  if (partially) {
3954
    target_size = _cm->partial_mark_stack_size_target();
3955
  } else {
3956
    target_size = 0;
3957
  }
3958 3959

  if (_cm->mark_stack_size() > target_size) {
3960
    if (_cm->verbose_low()) {
3961
      gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3962
                             _worker_id, target_size);
3963
    }
3964 3965 3966 3967 3968 3969

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3970
    if (_cm->verbose_low()) {
3971
      gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3972
                             _worker_id, _cm->mark_stack_size());
3973
    }
3974 3975 3976 3977 3978 3979 3980 3981
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3982
  if (has_aborted()) return;
3983 3984 3985 3986 3987 3988 3989 3990 3991

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3992
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3993
    satb_mq_set.set_par_closure(_worker_id, &oc);
3994
  } else {
3995
    satb_mq_set.set_closure(&oc);
3996
  }
3997 3998 3999

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
4000
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4001
    while (!has_aborted() &&
4002
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
4003
      if (_cm->verbose_medium()) {
4004
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4005
      }
4006 4007 4008 4009 4010 4011
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
4012
      if (_cm->verbose_medium()) {
4013
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4014
      }
4015 4016 4017 4018 4019 4020 4021
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  _draining_satb_buffers = false;

4022 4023 4024
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
4025

4026
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4027
    satb_mq_set.set_par_closure(_worker_id, NULL);
4028
  } else {
4029
    satb_mq_set.set_closure(NULL);
4030
  }
4031 4032 4033 4034 4035 4036 4037

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
4038 4039
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
4065
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

4079 4080
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
4081 4082 4083 4084 4085 4086 4087 4088 4089
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

4090
    The data structures that it uses to do marking work are the
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

4124
      (4) SATB Buffer Queue. This is where completed SATB buffers are
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

4136 4137 4138
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
4139
      (local queues, stacks, fingers etc.)  are re-initialized so that
4140 4141
      when do_marking_step() completes, the marking phase can
      immediately restart.
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4190 4191
 *****************************************************************************/

4192
void CMTask::do_marking_step(double time_target_ms,
4193 4194
                             bool do_termination,
                             bool is_serial) {
4195 4196
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4197 4198

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4199 4200
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4201
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4202

4203 4204
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4215 4216 4217 4218 4219 4220
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4233
  _has_timed_out = false;
4234 4235 4236 4237
  _draining_satb_buffers = false;

  ++_calls;

4238
  if (_cm->verbose_low()) {
4239
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4240
                           "target = %1.2lfms >>>>>>>>>>",
4241
                           _worker_id, _calls, _time_target_ms);
4242
  }
4243 4244 4245 4246 4247

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4248 4249
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4250 4251

  if (_cm->has_overflown()) {
4252 4253 4254 4255
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4271 4272
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4288
      if (_cm->verbose_low()) {
4289
        gclog_or_tty->print_cr("[%u] we're scanning part "
4290
                               "["PTR_FORMAT", "PTR_FORMAT") "
4291
                               "of region "HR_FORMAT,
4292
                               _worker_id, p2i(_finger), p2i(_region_limit),
4293
                               HR_FORMAT_PARAMS(_curr_region));
4294
      }
4295

4296 4297
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4298

4299 4300 4301 4302 4303 4304 4305
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4306
      // If the iteration is successful, give up the region.
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4321 4322 4323
        giveup_current_region();
        regular_clock_call();
      } else {
4324
        assert(has_aborted(), "currently the only way to do so");
4325 4326 4327 4328 4329
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4330
        assert(_finger != NULL, "invariant");
4331 4332 4333 4334 4335 4336 4337 4338

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4339
        assert(_finger < _region_limit, "invariant");
4340
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4341 4342
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4343
          giveup_current_region();
4344
        } else {
4345
          move_finger_to(new_finger);
4346
        }
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4364 4365 4366 4367
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4368
      if (_cm->verbose_low()) {
4369
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4370
      }
4371
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4372 4373 4374 4375
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4376
        if (_cm->verbose_low()) {
4377
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4378
                                 "region "PTR_FORMAT,
4379
                                 _worker_id, p2i(claimed_region));
4380
        }
4381 4382

        setup_for_region(claimed_region);
4383
        assert(_curr_region == claimed_region, "invariant");
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4394 4395
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4396 4397 4398 4399 4400
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4401
    // tasks might be pushing objects to it concurrently.
4402 4403
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4404

4405
    if (_cm->verbose_low()) {
4406
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4407
    }
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4420
  if (do_stealing && !has_aborted()) {
4421 4422 4423 4424
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4425
    // tasks might be pushing objects to it concurrently.
4426 4427
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4428

4429
    if (_cm->verbose_low()) {
4430
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4431
    }
4432 4433 4434 4435 4436

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4437
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4438
        if (_cm->verbose_medium()) {
4439
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4440
                                 _worker_id, p2i((void*) obj));
4441
        }
4442 4443 4444

        statsOnly( ++_steals );

4445 4446
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4459 4460 4461 4462 4463 4464 4465 4466 4467
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4468 4469
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4470
  if (do_termination && !has_aborted()) {
4471
    // We cannot check whether the global stack is empty, since other
4472
    // tasks might be concurrently pushing objects on it.
4473 4474 4475
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4476

4477
    if (_cm->verbose_low()) {
4478
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4479
    }
4480 4481

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4482

4483 4484 4485
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4486 4487
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4488 4489 4490 4491 4492 4493 4494
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4495
      if (_worker_id == 0) {
4496 4497
        // let's allow task 0 to do this
        if (concurrent()) {
4498
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4499 4500 4501 4502 4503 4504 4505 4506
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4507 4508 4509 4510 4511 4512 4513 4514
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4515

4516
      if (_cm->verbose_low()) {
4517
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4518
      }
4519 4520 4521 4522
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4523
      if (_cm->verbose_low()) {
4524 4525
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4526
      }
4527 4528 4529 4530 4531 4532 4533 4534 4535

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4536
  set_cm_oop_closure(NULL);
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4547
    if (_has_timed_out) {
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4563
      if (_cm->verbose_low()) {
4564
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4565
      }
4566

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4577 4578 4579 4580 4581 4582

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4583 4584 4585 4586
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4587 4588
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4589 4590 4591 4592
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4593
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4594
                             "elapsed = %1.2lfms <<<<<<<<<<",
4595
                             _worker_id, _time_target_ms, elapsed_time_ms);
4596
      if (_cm->has_aborted()) {
4597 4598
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4599
      }
4600 4601
    }
  } else {
4602
    if (_cm->verbose_low()) {
4603
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4604
                             "elapsed = %1.2lfms <<<<<<<<<<",
4605
                             _worker_id, _time_target_ms, elapsed_time_ms);
4606
    }
4607 4608 4609 4610 4611
  }

  _claimed = false;
}

4612
CMTask::CMTask(uint worker_id,
4613
               ConcurrentMark* cm,
4614 4615
               size_t* marked_bytes,
               BitMap* card_bm,
4616 4617 4618
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4619
    _worker_id(worker_id), _cm(cm),
4620 4621 4622 4623
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4624
    _cm_oop_closure(NULL),
4625 4626
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4627 4628
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4629 4630 4631 4632 4633 4634

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4674
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
J
johnc 已提交
4675
    _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
4688 4689
                 p2i(g1_committed.start()), p2i(g1_committed.end()),
                 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4690
                 HeapRegion::GrainBytes);
4691 4692
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4693 4694 4695 4696 4697 4698
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4699
                G1PPRL_BYTE_H_FORMAT
4700 4701
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
J
johnc 已提交
4702 4703
                "used", "prev-live", "next-live", "gc-eff",
                "remset", "code-roots");
4704
  _out->print_cr(G1PPRL_LINE_PREFIX
4705 4706 4707 4708 4709 4710
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4711
                G1PPRL_BYTE_H_FORMAT
4712 4713
                G1PPRL_BYTE_H_FORMAT,
                "", "",
J
johnc 已提交
4714 4715
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
                "(bytes)", "(bytes)");
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4727
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4757
  size_t remset_bytes    = r->rem_set()->mem_size();
J
johnc 已提交
4758 4759
  size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4793
  _total_remset_bytes    += remset_bytes;
J
johnc 已提交
4794
  _total_strong_code_roots_bytes += strong_code_roots_bytes;
4795 4796 4797 4798 4799 4800 4801 4802

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4803
                 G1PPRL_DOUBLE_FORMAT
J
johnc 已提交
4804
                 G1PPRL_BYTE_FORMAT
4805
                 G1PPRL_BYTE_FORMAT,
4806
                 type, p2i(bottom), p2i(end),
J
johnc 已提交
4807 4808
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
                 remset_bytes, strong_code_roots_bytes);
4809 4810 4811 4812 4813

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4814 4815
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4816 4817 4818 4819 4820 4821 4822
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4823
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
J
johnc 已提交
4824 4825
                 G1PPRL_SUM_MB_FORMAT("remset")
                 G1PPRL_SUM_MB_FORMAT("code-roots"),
4826 4827 4828 4829 4830 4831
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4832
                 perc(_total_next_live_bytes, _total_capacity_bytes),
J
johnc 已提交
4833 4834
                 bytes_to_mb(_total_remset_bytes),
                 bytes_to_mb(_total_strong_code_roots_bytes));
4835 4836
  _out->cr();
}