concurrentMark.cpp 167.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
39 40 41 42 43 44
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
45
#include "services/memTracker.hpp"
46

47
// Concurrent marking bit map wrapper
48

49 50
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
51
  _shifter(shifter) {
52 53
  _bmStartWord = 0;
  _bmWordSize = 0;
54 55 56 57 58 59 60 61
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
62 63 64
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
65 66 67 68 69 70 71 72 73 74 75 76
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
77 78 79
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
95
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
96
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
97
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
98
         "size inconsistency");
99 100
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
101 102 103
}
#endif

104 105 106 107
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

179 180 181 182 183 184
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
185
  }
186 187 188 189 190 191 192 193 194 195 196 197
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
198
  _saved_index = -1;
199
  _should_expand = false;
200
  NOT_PRODUCT(_max_depth = 0);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
247 248 249
}

CMMarkStack::~CMMarkStack() {
250
  if (_base != NULL) {
251 252
    _base = NULL;
    _virtual_space.release();
253
  }
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
293
        int  ind = index + i;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
316
    assert(ind < _capacity, "By overflow test above.");
317 318
    _base[ind] = ptr_arr[i];
  }
319
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
320 321 322 323 324 325 326 327 328 329
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
330
    jint  new_ind = index - k;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
356 357
      res = false;
      break;
358 359 360 361 362 363
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

381
void CMMarkStack::oops_do(OopClosure* f) {
382 383 384
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
385 386 387 388 389
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
390
  return _g1h->is_obj_ill(obj);
391 392
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

471 472 473 474
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

475 476
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
477 478
}

479 480 481 482
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
  _markBitMap1(MinObjAlignment - 1),
  _markBitMap2(MinObjAlignment - 1),
483 484

  _parallel_marking_threads(0),
485
  _max_parallel_marking_threads(0),
486 487 488 489
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
490
  _cleanup_list("Cleanup List"),
491 492 493 494
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
495

496 497 498 499 500 501
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

502
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
503 504
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
505 506
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
507 508 509

  _has_overflown(false),
  _concurrent(false),
510 511 512
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
513 514 515 516 517 518 519 520

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
521 522 523 524

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
525 526
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
527 528
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
529
    verbose_level = no_verbose;
530 531
  }
  if (verbose_level > high_verbose) {
532
    verbose_level = high_verbose;
533
  }
534 535
  _verbose_level = verbose_level;

536
  if (verbose_low()) {
537 538
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
539
  }
540

541 542 543 544 545 546 547 548
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
549 550

  // Create & start a ConcurrentMark thread.
551 552 553 554
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

555
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
556 557
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
558 559

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
560
  satb_qs.set_buffer_size(G1SATBBufferSize);
561

562 563
  _root_regions.init(_g1h, this);

564
  if (ConcGCThreads > ParallelGCThreads) {
565 566 567 568
    warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
            "than ParallelGCThreads (" UINT32_FORMAT ").",
            ConcGCThreads, ParallelGCThreads);
    return;
569 570 571 572
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
573 574 575 576
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
577
  } else {
578 579
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
580 581 582
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
583
    } else if (G1MarkingOverheadPercent > 0) {
584 585
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
586
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
587
      double overall_cm_overhead =
J
johnc 已提交
588 589
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
590 591 592 593 594 595 596 597
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

598
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
599 600 601
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
602 603 604 605
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
606 607 608 609
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

610 611 612 613
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

614
    if (parallel_marking_threads() > 1) {
615
      _cleanup_task_overhead = 1.0;
616
    } else {
617
      _cleanup_task_overhead = marking_task_overhead();
618
    }
619 620 621 622 623 624 625 626 627 628 629
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

630
    guarantee(parallel_marking_threads() > 0, "peace of mind");
631
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
632
         _max_parallel_marking_threads, false, true);
633
    if (_parallel_workers == NULL) {
634
      vm_exit_during_initialization("Failed necessary allocation.");
635 636 637
    } else {
      _parallel_workers->initialize_workers();
    }
638 639
  }

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
              mark_stack_size, 1, MarkStackSizeMax);
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
                  MarkStackSize, 1, MarkStackSizeMax);
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

716
  // so that the call below can read a sensible value
717
  _heap_start = (HeapWord*) heap_rs.base();
718
  set_non_marking_state();
719
  _completed_initialization = true;
720 721 722 723
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
724
  // update _heap_end.
725
  if (!concurrent_marking_in_progress() && !force) return;
726 727

  MemRegion committed = _g1h->g1_committed();
728
  assert(committed.start() == _heap_start, "start shouldn't change");
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

750 751 752 753
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
754

755 756
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
757

758
  if (verbose_low()) {
759
    gclog_or_tty->print_cr("[global] resetting");
760
  }
761 762 763 764

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
765
  for (uint i = 0; i < _max_worker_id; ++i) {
766
    _tasks[i]->reset(_nextMarkBitMap);
767
  }
768 769 770 771 772 773

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

791
void ConcurrentMark::set_concurrency(uint active_tasks) {
792
  assert(active_tasks <= _max_worker_id, "we should not have more");
793 794 795 796 797 798 799

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
800 801 802 803
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
804 805 806

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
807
  for (uint i = 0; i < _max_worker_id; ++i)
808 809 810 811 812 813 814 815
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
816
    assert(!concurrent_marking_in_progress(), "invariant");
817 818 819
    assert(_finger == _heap_end,
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
                   _finger, _heap_end));
820 821 822 823 824 825 826
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
827
  reset_marking_state();
828 829 830 831 832
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
833 834
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
835 836 837
}

void ConcurrentMark::clearNextBitmap() {
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
860
    if (next > end) {
861
      next = end;
862
    }
863 864 865 866 867 868 869 870 871 872 873 874 875
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

876 877 878
  // Clear the liveness counting data
  clear_all_count_data();

879 880 881
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
882 883 884 885 886 887
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
888
      r->note_start_of_marking();
889 890 891 892 893 894 895 896 897 898 899
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

900
#ifndef PRODUCT
901
  if (G1PrintReachableAtInitialMark) {
902
    print_reachable("at-cycle-start",
903
                    VerifyOption_G1UsePrevMarking, true /* all */);
904
  }
905
#endif
906 907 908

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
909 910 911 912

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
913 914 915 916 917 918
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

919 920 921 922 923 924 925 926
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

927 928 929 930
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
931
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
932 933

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
934 935 936 937
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
938

939 940
  _root_regions.prepare_for_scan();

941 942 943 944 945 946 947
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
967

968
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
969
  if (verbose_low()) {
970
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
971
  }
972

973 974 975
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
976
  _first_overflow_barrier_sync.enter();
977 978 979
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
980 981 982
  // at this point everyone should have synced up and not be doing any
  // more work

983
  if (verbose_low()) {
984
    gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
985
  }
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
        gclog_or_tty->date_stamp(PrintGCDateStamps);
        gclog_or_tty->stamp(PrintGCTimeStamps);
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1009 1010 1011 1012 1013 1014 1015
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1016
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1017
  if (verbose_low()) {
1018
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1019
  }
1020

1021 1022 1023
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
1024
  _second_overflow_barrier_sync.enter();
1025 1026 1027
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
1028
  // at this point everything should be re-initialized and ready to go
1029

1030
  if (verbose_low()) {
1031
    gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1032
  }
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1061 1062 1063 1064 1065 1066
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1067
  void work(uint worker_id) {
1068 1069
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1070
    ResourceMark rm;
1071 1072 1073 1074 1075

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1076 1077
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1078 1079 1080 1081 1082
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1083 1084 1085
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1086 1087
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1088

1089 1090 1091 1092 1093 1094
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1095
        bool ret = _cm->do_yield_check(worker_id);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1119
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1120 1121 1122 1123

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1124
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1125 1126 1127 1128 1129 1130 1131 1132 1133
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1134 1135
// Calculates the number of active workers for a concurrent
// phase.
1136
uint ConcurrentMark::calc_parallel_marking_threads() {
1137
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1138
    uint n_conc_workers = 0;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1153 1154
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1155
  }
1156 1157 1158 1159
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1211
    if (use_parallel_marking_threads()) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1234
  force_overflow_conc()->init();
1235 1236 1237 1238 1239 1240

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1241
  uint active_workers = MAX2(1U, parallel_marking_threads());
1242

1243 1244
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1245 1246

  CMConcurrentMarkingTask markingTask(this, cmThread());
1247
  if (use_parallel_marking_threads()) {
1248 1249 1250 1251
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1252
    _parallel_workers->run_task(&markingTask);
1253
  } else {
1254
    markingTask.work(0);
1255
  }
1256 1257 1258 1259 1260 1261 1262
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1263

1264 1265 1266 1267 1268 1269 1270 1271
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1272 1273
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1274 1275 1276 1277
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1278 1279
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1280 1281
  }

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1296
    if (G1TraceMarkStackOverflow) {
1297
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1298
    }
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(overflow)");
      Universe::heap()->prepare_for_verify();
      Universe::verify(/* silent */ false,
                       /* option */ VerifyOption_G1UsePrevMarking);
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1312
  } else {
1313 1314 1315 1316
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1317
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1318
    // We're done with marking.
1319 1320
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1321 1322
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1323 1324

    if (VerifyDuringGC) {
1325 1326 1327
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1328 1329
      Universe::verify(/* silent */ false,
                       /* option */ VerifyOption_G1UseNextMarking);
1330
    }
1331
    assert(!restart_for_overflow(), "sanity");
1332 1333
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1334 1335
  }

1336 1337 1338 1339 1340
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1341 1342 1343 1344 1345 1346 1347 1348 1349
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1350 1351 1352 1353
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1354
  G1CollectedHeap* _g1h;
1355
  ConcurrentMark* _cm;
1356 1357
  CardTableModRefBS* _ct_bs;

1358 1359 1360
  BitMap* _region_bm;
  BitMap* _card_bm;

1361
  // Takes a region that's not empty (i.e., it has at least one
1362 1363 1364 1365 1366 1367 1368
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1369
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1370 1371
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1372
      _region_bm->par_at_put(index, true);
1373 1374
    } else {
      // Starts humongous case: calculate how many regions are part of
1375
      // this humongous region and then set the bit range.
1376
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1377
      _region_bm->par_at_put_range(index, end_index, true);
1378 1379 1380
    }
  }

1381
public:
1382
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1383
                         BitMap* region_bm, BitMap* card_bm):
1384 1385 1386
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1387 1388 1389 1390 1391 1392 1393 1394 1395
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1396
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1397
                         BitMap* region_bm, BitMap* card_bm) :
1398
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1399 1400
    _bm(bm), _region_marked_bytes(0) { }

1401 1402
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1403
    if (hr->continuesHumongous()) {
1404 1405 1406 1407 1408 1409 1410
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1411 1412
      return false;
    }
1413

1414 1415
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1416

1417
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1418
           err_msg("Preconditions not met - "
1419 1420
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, ntams, hr->end()));
1421

1422
    // Find the first marked object at or after "start".
1423
    start = _bm->getNextMarkedWordAddress(start, ntams);
1424

1425 1426
    size_t marked_bytes = 0;

1427
    while (start < ntams) {
1428 1429
      oop obj = oop(start);
      int obj_sz = obj->size();
1430
      HeapWord* obj_end = start + obj_sz;
1431

1432
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1444

1445 1446
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1447 1448

      // Add the size of this object to the number of marked bytes.
1449
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1450

1451
      // Find the next marked object after this one.
1452
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1453
    }
1454 1455 1456

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1471 1472 1473

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1474 1475 1476 1477
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1478
      set_bit_for_region(hr);
1479
    }
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1497
  G1CollectedHeap* _g1h;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1510
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1511 1512 1513 1514 1515
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1516 1517
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1555
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1566
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1567 1568 1569 1570 1571

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1572 1573 1574 1575
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1593 1594 1595 1596
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1597
        }
1598
        failures += 1;
1599 1600 1601
      }
    }

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1612
    // find the first violating region by returning true.
1613 1614
    return false;
  }
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1664
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1681

1682
  int failures() const { return _failures; }
1683 1684
};

1685 1686 1687 1688 1689 1690
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1691

1692
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1693
 public:
1694
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1695 1696
                              BitMap* region_bm,
                              BitMap* card_bm) :
1697
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1715
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1716 1717 1718 1719 1720 1721

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1744
    }
1745 1746 1747 1748 1749 1750 1751 1752 1753

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1754 1755 1756 1757

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1758 1759 1760 1761
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1762
  uint    _n_workers;
1763

1764
public:
1765 1766 1767 1768 1769
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1770
    // Use the value already set as the number of active threads
1771
    // in the call to run_task().
1772 1773 1774 1775
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1776
    } else {
1777
      _n_workers = 1;
1778
    }
1779 1780
  }

1781
  void work(uint worker_id) {
1782 1783
    assert(worker_id < _n_workers, "invariant");

1784
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1785 1786 1787
                                                _actual_region_bm,
                                                _actual_card_bm);

1788
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1789 1790 1791
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1792
                                            HeapRegion::FinalCountClaimValue);
1793
    } else {
1794
      _g1h->heap_region_iterate(&final_update_cl);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1805
  uint _regions_claimed;
1806
  size_t _freed_bytes;
T
tonyp 已提交
1807
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1808
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1809 1810
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1811 1812 1813 1814 1815
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1816 1817
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1818
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1819
                             HumongousRegionSet* humongous_proxy_set,
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1830 1831
  size_t freed_bytes() { return _freed_bytes; }

1832
  bool doHeapRegion(HeapRegion *hr) {
1833 1834 1835
    if (hr->continuesHumongous()) {
      return false;
    }
1836 1837
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1854 1855 1856
    }
    return false;
  }
1857 1858

  size_t max_live_bytes() { return _max_live_bytes; }
1859
  uint regions_claimed() { return _regions_claimed; }
1860 1861 1862 1863 1864 1865
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1866

1867 1868 1869 1870
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1871 1872
  FreeRegionList* _cleanup_list;

1873 1874
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1875
                   FreeRegionList* cleanup_list) :
1876
    AbstractGangTask("G1 note end"), _g1h(g1h),
1877
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1878

1879
  void work(uint worker_id) {
1880
    double start = os::elapsedTime();
T
tonyp 已提交
1881
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1882
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1883 1884
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1885
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1886
                                           &old_proxy_set,
T
tonyp 已提交
1887 1888
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1889
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1890
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1891
                                            _g1h->workers()->active_workers(),
1892
                                            HeapRegion::NoteEndClaimValue);
1893 1894 1895 1896 1897
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1898 1899 1900
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1901
                                            &old_proxy_set,
T
tonyp 已提交
1902
                                            &humongous_proxy_set,
1903
                                            true /* par */);
1904 1905 1906 1907
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1926 1927 1928 1929
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1945
    _region_bm(region_bm), _card_bm(card_bm) { }
1946

1947
  void work(uint worker_id) {
1948
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1949
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1950
                       HeapRegion::ScrubRemSetClaimValue);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1970
  HRSPhaseSetter x(HRSPhaseCleanup);
1971 1972
  g1h->verify_region_sets_optional();

1973 1974 1975 1976
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1977 1978
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
1979 1980
  }

1981 1982 1983 1984 1985
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1986 1987
  HeapRegionRemSet::reset_for_cleanup_tasks();

1988
  uint n_workers;
1989

1990
  // Do counting once more with the world stopped for good measure.
1991 1992
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1993
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1994
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1995 1996
           "sanity check");

1997 1998
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1999
    assert(g1h->n_par_threads() == n_workers,
2000
           "Should not have been reset");
2001
    g1h->workers()->run_task(&g1_par_count_task);
2002
    // Done with the parallel phase so reset to 0.
2003
    g1h->set_par_threads(0);
2004

2005
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2006
           "sanity check");
2007
  } else {
2008
    n_workers = 1;
2009 2010 2011
    g1_par_count_task.work(0);
  }

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2041 2042 2043 2044 2045 2046 2047
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2048 2049 2050 2051 2052
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2053 2054 2055 2056 2057 2058
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2059
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2060
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2061
    g1h->set_par_threads((int)n_workers);
2062 2063
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2064 2065 2066

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2067 2068 2069
  } else {
    g1_par_note_end_task.work(0);
  }
2070
  g1h->check_gc_time_stamps();
2071 2072 2073 2074 2075 2076 2077

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2078 2079 2080 2081 2082 2083

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2084
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2085
      g1h->set_par_threads((int)n_workers);
2086 2087
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2088 2089 2090 2091

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2103
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2104 2105 2106 2107 2108

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2109
  if (G1Log::fine()) {
2110 2111 2112 2113 2114 2115
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2116 2117 2118 2119
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2120 2121 2122 2123
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2124 2125 2126 2127
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2128
  if (VerifyDuringGC) {
2129 2130 2131
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
2132 2133
    Universe::verify(/* silent */ false,
                     /* option */ VerifyOption_G1UsePrevMarking);
2134
  }
2135 2136

  g1h->verify_region_sets_optional();
2137 2138 2139 2140 2141
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2142 2143 2144
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2145
  FreeRegionList tmp_free_list("Tmp Free List");
2146 2147 2148

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2149
                           "cleanup list has %u entries",
2150 2151 2152 2153 2154 2155 2156 2157
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2158
    hr->par_clear();
T
tonyp 已提交
2159
    tmp_free_list.add_as_tail(hr);
2160 2161 2162 2163 2164 2165 2166

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2167
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2168 2169 2170
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2171 2172
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2173
                               tmp_free_list.length(),
2174 2175 2176 2177 2178
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2179
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2180 2181 2182 2183 2184 2185 2186
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2187 2188 2189
      }
    }
  }
T
tonyp 已提交
2190
  assert(tmp_free_list.is_empty(), "post-condition");
2191 2192
}

2193 2194
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2195

2196 2197 2198 2199 2200
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2215 2216 2217 2218 2219
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2220
 public:
2221 2222 2223
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2224
    assert(_ref_counter_limit > 0, "sanity");
2225
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2226 2227 2228 2229 2230 2231 2232 2233 2234
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2235
      if (_cm->verbose_high()) {
2236
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2237
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2238
                               _task->worker_id(), p, (void*) obj);
2239
      }
2240 2241 2242 2243 2244

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2261 2262 2263
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2264 2265
                                 false      /* do_termination */,
                                 _is_serial);
2266 2267 2268 2269
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2270
      if (_cm->verbose_high()) {
2271
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2272
      }
2273 2274 2275 2276
    }
  }
};

2277 2278 2279 2280 2281 2282 2283 2284
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2285
  ConcurrentMark* _cm;
2286
  CMTask*         _task;
2287
  bool            _is_serial;
2288
 public:
2289 2290 2291
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2292
  }
2293 2294 2295

  void do_void() {
    do {
2296
      if (_cm->verbose_high()) {
2297 2298
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2299
      }
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2317 2318

      _task->do_marking_step(1000000000.0 /* something very large */,
2319 2320
                             true         /* do_termination */,
                             _is_serial);
2321 2322 2323 2324
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2325 2326 2327 2328
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2329 2330 2331 2332 2333 2334 2335
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2336
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2337 2338 2339
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2340 2341
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2342 2343 2344 2345 2346 2347

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2348
class G1CMRefProcTaskProxy: public AbstractGangTask {
2349 2350 2351 2352 2353 2354
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2355
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2356
                     G1CollectedHeap* g1h,
2357
                     ConcurrentMark* cm) :
2358
    AbstractGangTask("Process reference objects in parallel"),
2359
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2360 2361 2362
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2363

2364
  virtual void work(uint worker_id) {
2365
    CMTask* task = _cm->task(worker_id);
2366
    G1CMIsAliveClosure g1_is_alive(_g1h);
2367 2368
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2369

2370
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2371 2372 2373
  }
};

2374
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2375
  assert(_workers != NULL, "Need parallel worker threads.");
2376
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2377

2378
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2379

2380 2381 2382 2383 2384
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2385 2386 2387 2388 2389
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2390
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2391 2392 2393 2394
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2395
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2396
    AbstractGangTask("Enqueue reference objects in parallel"),
2397
    _enq_task(enq_task) { }
2398

2399 2400
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2401 2402 2403
  }
};

2404
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2405
  assert(_workers != NULL, "Need parallel worker threads.");
2406
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2407

2408
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2409

2410 2411 2412 2413 2414 2415 2416
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2417 2418 2419 2420 2421
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2422
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2433 2434 2435
  ResourceMark rm;
  HandleMark   hm;

2436 2437 2438 2439 2440 2441 2442 2443
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2444
    if (G1Log::finer()) {
2445 2446
      gclog_or_tty->put(' ');
    }
2447
    TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2448

2449
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2450

2451 2452
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2453

2454
    // Set the soft reference policy
2455 2456
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2481
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2482

2483
    // Parallel processing task executor.
2484
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2485
                                              g1h->workers(), active_workers);
2486
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2487

2488 2489 2490 2491
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2492 2493 2494 2495 2496 2497 2498 2499
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
    rp->process_discovered_references(&g1_is_alive,
2500 2501
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
2502
                                      executor);
2503

2504 2505 2506
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2507

2508 2509
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2510

2511
    if (_markStack.overflow()) {
2512
      // This should have been done already when we tried to push an
2513 2514 2515
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2516

2517 2518 2519
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2520

2521
    rp->verify_no_references_recorded();
2522
    assert(!rp->discovery_enabled(), "Post condition");
2523 2524
  }

2525
  // Now clean up stale oops in StringTable
2526
  StringTable::unlink(&g1_is_alive);
2527 2528
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
2539 2540
  ConcurrentMark* _cm;
  bool            _is_serial;
2541
public:
2542
  void work(uint worker_id) {
2543 2544
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2545 2546
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2547 2548
      task->record_start_time();
      do {
2549
        task->do_marking_step(1000000000.0 /* something very large */,
2550 2551
                              true         /* do_termination       */,
                              _is_serial);
2552 2553 2554 2555 2556 2557 2558
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2559 2560
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2561
    _cm->terminator()->reset_for_reuse(active_workers);
2562
  }
2563 2564 2565 2566 2567 2568 2569 2570 2571
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2572
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2573
    G1CollectedHeap::StrongRootsScope srs(g1h);
2574
    // this is remark, so we'll use up all active threads
2575
    uint active_workers = g1h->workers()->active_workers();
2576 2577
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2578
      active_workers = (uint) ParallelGCThreads;
2579 2580
      g1h->workers()->set_active_workers(active_workers);
    }
2581
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2582 2583 2584 2585
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2586

2587 2588 2589 2590
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2591
    g1h->set_par_threads(active_workers);
2592 2593 2594
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2595
    G1CollectedHeap::StrongRootsScope srs(g1h);
2596
    uint active_workers = 1;
2597
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2598

2599 2600 2601 2602 2603 2604 2605 2606
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2607 2608
    remarkTask.work(0);
  }
2609
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2610 2611 2612 2613 2614
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2615 2616 2617 2618

  print_stats();
}

2619 2620
#ifndef PRODUCT

2621
class PrintReachableOopClosure: public OopClosure {
2622 2623 2624
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2625
  VerifyOption     _vo;
2626
  bool             _all;
2627 2628

public:
2629 2630
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2631
                           bool          all) :
2632
    _g1h(G1CollectedHeap::heap()),
2633
    _out(out), _vo(vo), _all(all) { }
2634

2635 2636
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2637

2638 2639
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2640 2641 2642
    const char* str = NULL;
    const char* str2 = "";

2643 2644 2645 2646 2647
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2648
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2649
      guarantee(hr != NULL, "invariant");
2650 2651
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2652 2653

      if (over_tams) {
2654 2655
        str = " >";
        if (marked) {
2656
          str2 = " AND MARKED";
2657
        }
2658 2659
      } else if (marked) {
        str = " M";
2660
      } else {
2661
        str = " NOT";
2662
      }
2663 2664
    }

2665
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2666 2667 2668 2669
                   p, (void*) obj, str, str2);
  }
};

2670
class PrintReachableObjectClosure : public ObjectClosure {
2671
private:
2672 2673 2674 2675 2676
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2677 2678

public:
2679 2680
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2681 2682
                              bool          all,
                              HeapRegion*   hr) :
2683 2684
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2685

2686
  void do_object(oop o) {
2687 2688
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2689 2690 2691 2692 2693
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2694
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2695
      o->oop_iterate_no_header(&oopCl);
2696
    }
2697 2698 2699
  }
};

2700
class PrintReachableRegionClosure : public HeapRegionClosure {
2701
private:
2702 2703 2704 2705
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2706 2707 2708 2709 2710 2711

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2712
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2713
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2714
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2715 2716 2717 2718 2719 2720 2721 2722
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2723
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2724 2725 2726
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2727 2728 2729 2730

    return false;
  }

2731 2732
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2733
                              bool          all) :
2734
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2735 2736
};

2737
void ConcurrentMark::print_reachable(const char* str,
2738
                                     VerifyOption vo,
2739 2740 2741
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2765
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2766 2767
  out->cr();

2768
  out->print_cr("--- ITERATING OVER REGIONS");
2769
  out->cr();
2770
  PrintReachableRegionClosure rcl(out, vo, all);
2771
  _g1h->heap_region_iterate(&rcl);
2772
  out->cr();
2773

2774
  gclog_or_tty->print_cr("  done");
2775
  gclog_or_tty->flush();
2776 2777
}

2778 2779
#endif // PRODUCT

2780
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2781 2782 2783
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2784 2785 2786
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2787 2788 2789
  _nextMarkBitMap->clearRange(mr);
}

2790 2791 2792 2793 2794
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2795
HeapRegion*
2796
ConcurrentMark::claim_region(uint worker_id) {
2797 2798 2799 2800 2801 2802
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2803
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2829 2830 2831 2832
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2833
    if (verbose_low()) {
2834
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2835 2836
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2837
                             worker_id, curr_region, bottom, end, limit);
2838
    }
2839

2840 2841
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2842 2843 2844 2845 2846
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2847
      assert(_finger >= end, "the finger should have moved forward");
2848

2849
      if (verbose_low()) {
2850 2851
        gclog_or_tty->print_cr("[%u] we were successful with region = "
                               PTR_FORMAT, worker_id, curr_region);
2852
      }
2853 2854

      if (limit > bottom) {
2855
        if (verbose_low()) {
2856 2857
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
                                 "returning it ", worker_id, curr_region);
2858
        }
2859 2860
        return curr_region;
      } else {
2861 2862
        assert(limit == bottom,
               "the region limit should be at bottom");
2863
        if (verbose_low()) {
2864 2865
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
                                 "returning NULL", worker_id, curr_region);
2866
        }
2867 2868 2869 2870 2871
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2872
      assert(_finger > finger, "the finger should have moved forward");
2873
      if (verbose_low()) {
2874
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2875 2876
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2877
                               worker_id, _finger, finger);
2878
      }
2879 2880 2881 2882 2883 2884 2885 2886 2887

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2937

2938 2939
  virtual void do_object(oop obj) {
    do_object_work(obj);
2940
  }
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2953

2954 2955 2956 2957 2958 2959
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2960
    for (uint i = 0; i < _max_worker_id; i += 1) {
2961
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2962
      CMTaskQueue* queue = _task_queues->queue(i);
2963 2964
      queue->oops_do(&cl);
    }
2965 2966
  }

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
2999
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
3013
}
3014
#endif // PRODUCT
3015

3016 3017 3018
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3019
  G1CollectedHeap* _g1h;
3020
  ConcurrentMark* _cm;
3021
  CardTableModRefBS* _ct_bs;
3022
  BitMap* _cm_card_bm;
3023
  uint _max_worker_id;
3024 3025

 public:
3026
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3027
                              BitMap* cm_card_bm,
3028
                              uint max_worker_id) :
3029 3030
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3031
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3062 3063 3064 3065
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3066 3067 3068 3069 3070

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3071 3072 3073 3074 3075 3076 3077 3078
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3079 3080 3081 3082 3083 3084
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3085
    uint hrs_index = hr->hrs_index();
3086 3087
    size_t marked_bytes = 0;

3088
    for (uint i = 0; i < _max_worker_id; i += 1) {
3089 3090 3091 3092 3093 3094 3095
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3096
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3107
        // parameter. It does, however, have an early exit if
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3128
  uint _max_worker_id;
3129 3130 3131 3132 3133 3134
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3135
                           uint max_worker_id,
3136 3137 3138
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3139
    _max_worker_id(max_worker_id),
3140 3141 3142
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3143
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3162
                                           _max_worker_id, n_workers);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3190
  uint max_regions = _g1h->max_regions();
3191
  assert(_max_worker_id > 0, "uninitialized");
3192

3193
  for (uint i = 0; i < _max_worker_id; i += 1) {
3194 3195 3196 3197 3198 3199
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3200
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3201 3202 3203 3204
    task_card_bm->clear();
  }
}

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3219 3220
  // Clear the liveness counting data
  clear_all_count_data();
3221
  // Empty mark stack
3222
  reset_marking_state();
3223
  for (uint i = 0; i < _max_worker_id; ++i) {
3224
    _tasks[i]->clear_region_fields();
3225
  }
3226 3227 3228 3229
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3230 3231 3232 3233 3234
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3273
                "(%8.2f s marking).",
3274
                cmThread()->vtime_accum(),
3275
                cmThread()->vtime_mark_accum());
3276 3277
}

T
tonyp 已提交
3278
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3279 3280 3281
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3282 3283
}

3284 3285 3286 3287 3288 3289 3290
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
      _prevMarkBitMap, _nextMarkBitMap);
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3291
// We take a break if someone is trying to stop the world.
3292
bool ConcurrentMark::do_yield_check(uint worker_id) {
3293
  if (should_yield()) {
3294
    if (worker_id == 0) {
3295
      _g1h->g1_policy()->record_concurrent_pause();
3296
    }
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3315 3316
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3317 3318 3319 3320 3321 3322 3323
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
3324 3325
  for (uint i = 0; i < _max_worker_id; ++i) {
    gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3326 3327 3328 3329 3330
  }
  gclog_or_tty->print_cr("");
}
#endif

3331 3332 3333 3334
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3335 3336
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
                           _worker_id, (void*) obj);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3347 3348 3349 3350 3351 3352 3353 3354 3355
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3356 3357
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3358 3359 3360

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3361 3362
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3363

3364 3365 3366 3367 3368
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3395 3396 3397 3398 3399
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3400

3401
  if (G1UseConcMarkReferenceProcessing) {
3402
    _ref_processor = g1h->ref_processor_cm();
3403
    assert(_ref_processor != NULL, "should not be NULL");
3404
  }
3405
}
3406 3407

void CMTask::setup_for_region(HeapRegion* hr) {
3408 3409 3410 3411 3412
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3413

3414
  if (_cm->verbose_low()) {
3415 3416
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
                           _worker_id, hr);
3417
  }
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3430
    if (_cm->verbose_low()) {
3431
      gclog_or_tty->print_cr("[%u] found an empty region "
3432
                             "["PTR_FORMAT", "PTR_FORMAT")",
3433
                             _worker_id, bottom, limit);
3434
    }
3435 3436 3437 3438 3439 3440 3441
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3442
    assert(limit >= _finger, "peace of mind");
3443
  } else {
3444
    assert(limit < _region_limit, "only way to get here");
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3462
  assert(_curr_region != NULL, "invariant");
3463
  if (_cm->verbose_low()) {
3464 3465
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
                           _worker_id, _curr_region);
3466
  }
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3478 3479 3480 3481 3482 3483 3484 3485 3486
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3487
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3488
  guarantee(nextMarkBitMap != NULL, "invariant");
3489

3490
  if (_cm->verbose_low()) {
3491
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3492
  }
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3536 3537 3538
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3539 3540 3541 3542
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3543
  if (has_aborted()) return;
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3560
  if (!concurrent()) return;
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3573
  if (_words_scanned >= _words_scanned_limit) {
3574
    ++_clock_due_to_scanning;
3575 3576
  }
  if (_refs_reached >= _refs_reached_limit) {
3577
    ++_clock_due_to_marking;
3578
  }
3579 3580 3581 3582 3583 3584

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3585
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3586
                        "scanned = %d%s, refs reached = %d%s",
3587
                        _worker_id, last_interval_ms,
3588 3589 3590 3591
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3609
    _has_timed_out = true;
3610 3611 3612 3613 3614 3615 3616 3617
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3618
    if (_cm->verbose_low()) {
3619 3620
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3621
    }
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3644
  if (_cm->verbose_medium()) {
3645
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3646
  }
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3672
      if (_cm->verbose_low()) {
3673 3674
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3675
      }
3676 3677 3678 3679
      set_has_aborted();
    } else {
      // the transfer was successful

3680
      if (_cm->verbose_medium()) {
3681 3682
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3683
      }
3684
      statsOnly( int tmp_size = _cm->mark_stack_size();
3685
                 if (tmp_size > _global_max_size) {
3686
                   _global_max_size = tmp_size;
3687
                 }
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3702 3703
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3704 3705 3706 3707
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3708
    if (_cm->verbose_medium()) {
3709 3710
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3711
    }
3712 3713 3714 3715
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3716
      assert(success, "invariant");
3717 3718 3719
    }

    statsOnly( int tmp_size = _task_queue->size();
3720
               if (tmp_size > _local_max_size) {
3721
                 _local_max_size = tmp_size;
3722
               }
3723 3724 3725 3726 3727 3728 3729 3730
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3731
  if (has_aborted()) return;
3732 3733 3734 3735 3736

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3737
  if (partially) {
3738
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3739
  } else {
3740
    target_size = 0;
3741
  }
3742 3743

  if (_task_queue->size() > target_size) {
3744
    if (_cm->verbose_high()) {
3745 3746
      gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
                             _worker_id, target_size);
3747
    }
3748 3749 3750 3751 3752 3753

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3754
      if (_cm->verbose_high()) {
3755
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3756
                               (void*) obj);
3757
      }
3758

3759
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3760
      assert(!_g1h->is_on_master_free_list(
3761
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3762 3763 3764

      scan_object(obj);

3765
      if (_task_queue->size() <= target_size || has_aborted()) {
3766
        ret = false;
3767
      } else {
3768
        ret = _task_queue->pop_local(obj);
3769
      }
3770 3771
    }

3772
    if (_cm->verbose_high()) {
3773 3774
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3775
    }
3776 3777 3778 3779
  }
}

void CMTask::drain_global_stack(bool partially) {
3780
  if (has_aborted()) return;
3781 3782 3783

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3784
  assert(partially || _task_queue->size() == 0, "invariant");
3785 3786 3787 3788 3789 3790 3791 3792

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3793
  if (partially) {
3794
    target_size = _cm->partial_mark_stack_size_target();
3795
  } else {
3796
    target_size = 0;
3797
  }
3798 3799

  if (_cm->mark_stack_size() > target_size) {
3800
    if (_cm->verbose_low()) {
3801 3802
      gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
                             _worker_id, target_size);
3803
    }
3804 3805 3806 3807 3808 3809

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3810
    if (_cm->verbose_low()) {
3811 3812
      gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
                             _worker_id, _cm->mark_stack_size());
3813
    }
3814 3815 3816 3817 3818 3819 3820 3821
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3822
  if (has_aborted()) return;
3823 3824 3825 3826 3827 3828 3829 3830 3831

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3832
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3833
    satb_mq_set.set_par_closure(_worker_id, &oc);
3834
  } else {
3835
    satb_mq_set.set_closure(&oc);
3836
  }
3837 3838 3839

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3840
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3841
    while (!has_aborted() &&
3842
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3843
      if (_cm->verbose_medium()) {
3844
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3845
      }
3846 3847 3848 3849 3850 3851
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3852
      if (_cm->verbose_medium()) {
3853
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3854
      }
3855 3856 3857 3858 3859 3860 3861
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3862
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3863
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3864
    } else {
3865
      satb_mq_set.iterate_closure_all_threads();
3866
    }
3867 3868 3869 3870
  }

  _draining_satb_buffers = false;

3871 3872 3873
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3874

3875
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3876
    satb_mq_set.set_par_closure(_worker_id, NULL);
3877
  } else {
3878
    satb_mq_set.set_closure(NULL);
3879
  }
3880 3881 3882 3883 3884 3885 3886

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3887 3888
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3914
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

3928 3929
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
3930 3931 3932 3933 3934 3935 3936 3937 3938
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

3939
    The data structures that it uses to do marking work are the
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3973
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3985 3986 3987
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
3988
      (local queues, stacks, fingers etc.)  are re-initialized so that
3989 3990
      when do_marking_step() completes, the marking phase can
      immediately restart.
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4039 4040
 *****************************************************************************/

4041
void CMTask::do_marking_step(double time_target_ms,
4042 4043
                             bool do_termination,
                             bool is_serial) {
4044 4045
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4046 4047

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4048 4049
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4050
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4051

4052 4053
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4064 4065 4066 4067 4068 4069
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4082
  _has_timed_out = false;
4083 4084 4085 4086
  _draining_satb_buffers = false;

  ++_calls;

4087
  if (_cm->verbose_low()) {
4088
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4089
                           "target = %1.2lfms >>>>>>>>>>",
4090
                           _worker_id, _calls, _time_target_ms);
4091
  }
4092 4093 4094 4095 4096

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4097 4098
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4099 4100

  if (_cm->has_overflown()) {
4101 4102 4103 4104
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4120 4121
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4137
      if (_cm->verbose_low()) {
4138
        gclog_or_tty->print_cr("[%u] we're scanning part "
4139
                               "["PTR_FORMAT", "PTR_FORMAT") "
4140 4141 4142
                               "of region "HR_FORMAT,
                               _worker_id, _finger, _region_limit,
                               HR_FORMAT_PARAMS(_curr_region));
4143
      }
4144

4145 4146
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4147

4148 4149 4150 4151 4152 4153 4154
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4155
      // If the iteration is successful, give up the region.
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4170 4171 4172
        giveup_current_region();
        regular_clock_call();
      } else {
4173
        assert(has_aborted(), "currently the only way to do so");
4174 4175 4176 4177 4178
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4179
        assert(_finger != NULL, "invariant");
4180 4181 4182 4183 4184 4185 4186 4187

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4188
        assert(_finger < _region_limit, "invariant");
4189
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4190 4191
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4192
          giveup_current_region();
4193
        } else {
4194
          move_finger_to(new_finger);
4195
        }
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4213 4214 4215 4216
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4217
      if (_cm->verbose_low()) {
4218
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4219
      }
4220
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4221 4222 4223 4224
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4225
        if (_cm->verbose_low()) {
4226
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4227
                                 "region "PTR_FORMAT,
4228
                                 _worker_id, claimed_region);
4229
        }
4230 4231

        setup_for_region(claimed_region);
4232
        assert(_curr_region == claimed_region, "invariant");
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4243 4244
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4245 4246 4247 4248 4249
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4250
    // tasks might be pushing objects to it concurrently.
4251 4252
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4253

4254
    if (_cm->verbose_low()) {
4255
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4256
    }
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4269
  if (do_stealing && !has_aborted()) {
4270 4271 4272 4273
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4274
    // tasks might be pushing objects to it concurrently.
4275 4276
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4277

4278
    if (_cm->verbose_low()) {
4279
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4280
    }
4281 4282 4283 4284 4285

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4286
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4287
        if (_cm->verbose_medium()) {
4288 4289
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
                                 _worker_id, (void*) obj);
4290
        }
4291 4292 4293

        statsOnly( ++_steals );

4294 4295
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4308 4309 4310 4311 4312 4313 4314 4315 4316
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4317 4318
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4319
  if (do_termination && !has_aborted()) {
4320
    // We cannot check whether the global stack is empty, since other
4321
    // tasks might be concurrently pushing objects on it.
4322 4323 4324
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4325

4326
    if (_cm->verbose_low()) {
4327
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4328
    }
4329 4330

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4331

4332 4333 4334
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4335 4336
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4337 4338 4339 4340 4341 4342 4343
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4344
      if (_worker_id == 0) {
4345 4346
        // let's allow task 0 to do this
        if (concurrent()) {
4347
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4348 4349 4350 4351 4352 4353 4354 4355
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4356 4357 4358 4359 4360 4361 4362 4363
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4364

4365
      if (_cm->verbose_low()) {
4366
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4367
      }
4368 4369 4370 4371
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4372
      if (_cm->verbose_low()) {
4373 4374
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4375
      }
4376 4377 4378 4379 4380 4381 4382 4383 4384

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4385
  set_cm_oop_closure(NULL);
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4396
    if (_has_timed_out) {
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4412
      if (_cm->verbose_low()) {
4413
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4414
      }
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4426 4427 4428 4429 4430 4431

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4432 4433 4434 4435
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4436 4437
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4438 4439 4440 4441
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4442
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4443
                             "elapsed = %1.2lfms <<<<<<<<<<",
4444
                             _worker_id, _time_target_ms, elapsed_time_ms);
4445
      if (_cm->has_aborted()) {
4446 4447
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4448
      }
4449 4450
    }
  } else {
4451
    if (_cm->verbose_low()) {
4452
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4453
                             "elapsed = %1.2lfms <<<<<<<<<<",
4454
                             _worker_id, _time_target_ms, elapsed_time_ms);
4455
    }
4456 4457 4458 4459 4460
  }

  _claimed = false;
}

4461
CMTask::CMTask(uint worker_id,
4462
               ConcurrentMark* cm,
4463 4464
               size_t* marked_bytes,
               BitMap* card_bm,
4465 4466 4467
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4468
    _worker_id(worker_id), _cm(cm),
4469 4470 4471 4472
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4473
    _cm_oop_closure(NULL),
4474 4475
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4476 4477
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4478 4479 4480 4481 4482 4483

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4538
                 HeapRegion::GrainBytes);
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4549 4550 4551 4552 4553 4554 4555 4556 4557
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4569
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}