concurrentMark.cpp 168.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
39 40 41
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
42 43 44 45 46 47
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
48
#include "services/memTracker.hpp"
49

50
// Concurrent marking bit map wrapper
51

52 53
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
54
  _shifter(shifter) {
55 56
  _bmStartWord = 0;
  _bmWordSize = 0;
57 58 59 60 61 62 63 64
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
65 66 67
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
68 69 70 71 72 73 74 75 76 77 78 79
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
80 81 82
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
98
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
99
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
100
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
101
         "size inconsistency");
102 103
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
104 105 106
}
#endif

107 108 109 110
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

182 183 184 185 186 187
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
188
  }
189 190 191 192 193 194 195 196 197 198 199 200
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
201
  _saved_index = -1;
202
  _should_expand = false;
203
  NOT_PRODUCT(_max_depth = 0);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
250 251 252
}

CMMarkStack::~CMMarkStack() {
253
  if (_base != NULL) {
254 255
    _base = NULL;
    _virtual_space.release();
256
  }
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
296
        int  ind = index + i;
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
319
    assert(ind < _capacity, "By overflow test above.");
320 321
    _base[ind] = ptr_arr[i];
  }
322
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
323 324 325 326 327 328 329 330 331 332
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
333
    jint  new_ind = index - k;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
359 360
      res = false;
      break;
361 362 363 364 365 366
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

384
void CMMarkStack::oops_do(OopClosure* f) {
385 386 387
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
388 389 390 391 392
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
393
  return _g1h->is_obj_ill(obj);
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

474 475 476 477
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

478 479
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
480 481
}

482 483 484 485
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
  _markBitMap1(MinObjAlignment - 1),
  _markBitMap2(MinObjAlignment - 1),
486 487

  _parallel_marking_threads(0),
488
  _max_parallel_marking_threads(0),
489 490 491 492
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
493
  _cleanup_list("Cleanup List"),
494 495 496 497
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
498

499 500 501 502 503 504
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

505
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
506 507
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
508 509
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
510 511 512

  _has_overflown(false),
  _concurrent(false),
513 514 515
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
516 517 518 519 520 521 522 523

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
524 525 526 527

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
528 529
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
530 531
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
532
    verbose_level = no_verbose;
533 534
  }
  if (verbose_level > high_verbose) {
535
    verbose_level = high_verbose;
536
  }
537 538
  _verbose_level = verbose_level;

539
  if (verbose_low()) {
540 541
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
542
  }
543

544 545 546 547 548 549 550 551
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
552 553

  // Create & start a ConcurrentMark thread.
554 555 556 557
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

558
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
559 560
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
561 562

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
563
  satb_qs.set_buffer_size(G1SATBBufferSize);
564

565 566
  _root_regions.init(_g1h, this);

567
  if (ConcGCThreads > ParallelGCThreads) {
568 569 570 571
    warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
            "than ParallelGCThreads (" UINT32_FORMAT ").",
            ConcGCThreads, ParallelGCThreads);
    return;
572 573 574 575
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
576 577 578 579
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
580
  } else {
581 582
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
583 584 585
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
586
    } else if (G1MarkingOverheadPercent > 0) {
587 588
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
589
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
590
      double overall_cm_overhead =
J
johnc 已提交
591 592
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
593 594 595 596 597 598 599 600
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

601
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
602 603 604
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
605 606 607 608
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
609 610 611 612
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

613 614 615 616
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

617
    if (parallel_marking_threads() > 1) {
618
      _cleanup_task_overhead = 1.0;
619
    } else {
620
      _cleanup_task_overhead = marking_task_overhead();
621
    }
622 623 624 625 626 627 628 629 630 631 632
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

633
    guarantee(parallel_marking_threads() > 0, "peace of mind");
634
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
635
         _max_parallel_marking_threads, false, true);
636
    if (_parallel_workers == NULL) {
637
      vm_exit_during_initialization("Failed necessary allocation.");
638 639 640
    } else {
      _parallel_workers->initialize_workers();
    }
641 642
  }

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
              mark_stack_size, 1, MarkStackSizeMax);
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
                  MarkStackSize, 1, MarkStackSizeMax);
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

719
  // so that the call below can read a sensible value
720
  _heap_start = (HeapWord*) heap_rs.base();
721
  set_non_marking_state();
722
  _completed_initialization = true;
723 724 725 726
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
727
  // update _heap_end.
728
  if (!concurrent_marking_in_progress() && !force) return;
729 730

  MemRegion committed = _g1h->g1_committed();
731
  assert(committed.start() == _heap_start, "start shouldn't change");
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

753 754 755 756
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
757

758 759
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
760

761
  if (verbose_low()) {
762
    gclog_or_tty->print_cr("[global] resetting");
763
  }
764 765 766 767

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
768
  for (uint i = 0; i < _max_worker_id; ++i) {
769
    _tasks[i]->reset(_nextMarkBitMap);
770
  }
771 772 773 774 775 776

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

794
void ConcurrentMark::set_concurrency(uint active_tasks) {
795
  assert(active_tasks <= _max_worker_id, "we should not have more");
796 797 798 799 800 801 802

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
803 804 805 806
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
807 808 809

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
810
  for (uint i = 0; i < _max_worker_id; ++i)
811 812 813 814 815 816 817 818
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
819
    assert(!concurrent_marking_in_progress(), "invariant");
820 821 822
    assert(_finger == _heap_end,
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
                   _finger, _heap_end));
823 824 825 826 827 828 829
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
830
  reset_marking_state();
831 832 833 834 835
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
836 837
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
838 839 840
}

void ConcurrentMark::clearNextBitmap() {
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
863
    if (next > end) {
864
      next = end;
865
    }
866 867 868 869 870 871 872 873 874 875 876 877 878
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

879 880 881
  // Clear the liveness counting data
  clear_all_count_data();

882 883 884
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
885 886 887 888 889 890
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
891
      r->note_start_of_marking();
892 893 894 895 896 897 898 899 900 901 902
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

903
#ifndef PRODUCT
904
  if (G1PrintReachableAtInitialMark) {
905
    print_reachable("at-cycle-start",
906
                    VerifyOption_G1UsePrevMarking, true /* all */);
907
  }
908
#endif
909 910 911

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
912 913 914 915

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
916 917 918 919 920 921
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

922 923 924 925 926 927 928 929
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

930 931 932 933
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
934
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
935 936

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
937 938 939 940
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
941

942 943
  _root_regions.prepare_for_scan();

944 945 946 947 948 949 950
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
970

971
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
972
  if (verbose_low()) {
973
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
974
  }
975

976 977 978
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
979
  _first_overflow_barrier_sync.enter();
980 981 982
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
983 984 985
  // at this point everyone should have synced up and not be doing any
  // more work

986
  if (verbose_low()) {
987
    gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
988
  }
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
        gclog_or_tty->date_stamp(PrintGCDateStamps);
        gclog_or_tty->stamp(PrintGCTimeStamps);
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1012 1013 1014 1015 1016 1017 1018
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1019
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1020
  if (verbose_low()) {
1021
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1022
  }
1023

1024 1025 1026
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
1027
  _second_overflow_barrier_sync.enter();
1028 1029 1030
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
1031
  // at this point everything should be re-initialized and ready to go
1032

1033
  if (verbose_low()) {
1034
    gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1035
  }
1036 1037
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1064 1065 1066 1067 1068 1069
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1070
  void work(uint worker_id) {
1071 1072
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1073
    ResourceMark rm;
1074 1075 1076 1077 1078

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1079 1080
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1081 1082 1083 1084 1085
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1086 1087 1088
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1089 1090
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1091

1092 1093 1094 1095 1096 1097
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1098
        bool ret = _cm->do_yield_check(worker_id);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1122
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1123 1124 1125 1126

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1127
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1128 1129 1130 1131 1132 1133 1134 1135 1136
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1137 1138
// Calculates the number of active workers for a concurrent
// phase.
1139
uint ConcurrentMark::calc_parallel_marking_threads() {
1140
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1141
    uint n_conc_workers = 0;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1156 1157
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1158
  }
1159 1160 1161 1162
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1214
    if (use_parallel_marking_threads()) {
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1228 1229 1230 1231 1232 1233 1234 1235 1236
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1237
  force_overflow_conc()->init();
1238 1239 1240 1241 1242 1243

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1244
  uint active_workers = MAX2(1U, parallel_marking_threads());
1245

1246 1247
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1248 1249

  CMConcurrentMarkingTask markingTask(this, cmThread());
1250
  if (use_parallel_marking_threads()) {
1251 1252 1253 1254
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1255
    _parallel_workers->run_task(&markingTask);
1256
  } else {
1257
    markingTask.work(0);
1258
  }
1259 1260 1261 1262 1263 1264 1265
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1266

1267 1268 1269 1270 1271 1272 1273 1274
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1275 1276
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1277 1278 1279
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1280 1281
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1282 1283
  }

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1298
    if (G1TraceMarkStackOverflow) {
1299
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1300
    }
1301 1302 1303 1304 1305

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1306 1307
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1308 1309 1310 1311 1312
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1313
  } else {
1314 1315 1316 1317
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1318
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1319
    // We're done with marking.
1320 1321
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1322 1323
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1324 1325

    if (VerifyDuringGC) {
1326 1327
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1328 1329
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1330
    }
1331
    assert(!restart_for_overflow(), "sanity");
1332 1333
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1334 1335
  }

1336 1337 1338 1339 1340
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1341 1342 1343 1344 1345 1346 1347
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1348 1349 1350

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1351 1352
}

1353 1354 1355 1356
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1357
  G1CollectedHeap* _g1h;
1358
  ConcurrentMark* _cm;
1359 1360
  CardTableModRefBS* _ct_bs;

1361 1362 1363
  BitMap* _region_bm;
  BitMap* _card_bm;

1364
  // Takes a region that's not empty (i.e., it has at least one
1365 1366 1367 1368 1369 1370 1371
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1372
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1373 1374
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1375
      _region_bm->par_at_put(index, true);
1376 1377
    } else {
      // Starts humongous case: calculate how many regions are part of
1378
      // this humongous region and then set the bit range.
1379
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1380
      _region_bm->par_at_put_range(index, end_index, true);
1381 1382 1383
    }
  }

1384
public:
1385
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1386
                         BitMap* region_bm, BitMap* card_bm):
1387 1388 1389
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1390 1391 1392 1393 1394 1395 1396 1397 1398
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1399
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1400
                         BitMap* region_bm, BitMap* card_bm) :
1401
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1402 1403
    _bm(bm), _region_marked_bytes(0) { }

1404 1405
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1406
    if (hr->continuesHumongous()) {
1407 1408 1409 1410 1411 1412 1413
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1414 1415
      return false;
    }
1416

1417 1418
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1419

1420
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1421
           err_msg("Preconditions not met - "
1422 1423
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, ntams, hr->end()));
1424

1425
    // Find the first marked object at or after "start".
1426
    start = _bm->getNextMarkedWordAddress(start, ntams);
1427

1428 1429
    size_t marked_bytes = 0;

1430
    while (start < ntams) {
1431 1432
      oop obj = oop(start);
      int obj_sz = obj->size();
1433
      HeapWord* obj_end = start + obj_sz;
1434

1435
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1447

1448 1449
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1450 1451

      // Add the size of this object to the number of marked bytes.
1452
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1453

1454
      // Find the next marked object after this one.
1455
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1456
    }
1457 1458 1459

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1474 1475 1476

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1477 1478 1479 1480
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1481
      set_bit_for_region(hr);
1482
    }
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1500
  G1CollectedHeap* _g1h;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1513
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1514 1515 1516 1517 1518
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1519 1520
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1558
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1569
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1570 1571 1572 1573 1574

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1575 1576 1577 1578
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1596 1597 1598 1599
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1600
        }
1601
        failures += 1;
1602 1603 1604
      }
    }

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1615
    // find the first violating region by returning true.
1616 1617
    return false;
  }
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1667
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1684

1685
  int failures() const { return _failures; }
1686 1687
};

1688 1689 1690 1691 1692 1693
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1694

1695
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1696
 public:
1697
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1698 1699
                              BitMap* region_bm,
                              BitMap* card_bm) :
1700
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1718
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1719 1720 1721 1722 1723 1724

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1747
    }
1748 1749 1750 1751 1752 1753 1754 1755 1756

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1757 1758 1759 1760

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1761 1762 1763 1764
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1765
  uint    _n_workers;
1766

1767
public:
1768 1769 1770 1771 1772
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1773
    // Use the value already set as the number of active threads
1774
    // in the call to run_task().
1775 1776 1777 1778
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1779
    } else {
1780
      _n_workers = 1;
1781
    }
1782 1783
  }

1784
  void work(uint worker_id) {
1785 1786
    assert(worker_id < _n_workers, "invariant");

1787
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1788 1789 1790
                                                _actual_region_bm,
                                                _actual_card_bm);

1791
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1792 1793 1794
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1795
                                            HeapRegion::FinalCountClaimValue);
1796
    } else {
1797
      _g1h->heap_region_iterate(&final_update_cl);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1808
  uint _regions_claimed;
1809
  size_t _freed_bytes;
T
tonyp 已提交
1810
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1811
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1812 1813
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1814 1815 1816 1817 1818
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1819 1820
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1821
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1822
                             HumongousRegionSet* humongous_proxy_set,
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1833 1834
  size_t freed_bytes() { return _freed_bytes; }

1835
  bool doHeapRegion(HeapRegion *hr) {
1836 1837 1838
    if (hr->continuesHumongous()) {
      return false;
    }
1839 1840
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1857 1858 1859
    }
    return false;
  }
1860 1861

  size_t max_live_bytes() { return _max_live_bytes; }
1862
  uint regions_claimed() { return _regions_claimed; }
1863 1864 1865 1866 1867 1868
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1869

1870 1871 1872 1873
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1874 1875
  FreeRegionList* _cleanup_list;

1876 1877
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1878
                   FreeRegionList* cleanup_list) :
1879
    AbstractGangTask("G1 note end"), _g1h(g1h),
1880
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1881

1882
  void work(uint worker_id) {
1883
    double start = os::elapsedTime();
T
tonyp 已提交
1884
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1885
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1886 1887
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1888
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1889
                                           &old_proxy_set,
T
tonyp 已提交
1890 1891
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1892
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1893
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1894
                                            _g1h->workers()->active_workers(),
1895
                                            HeapRegion::NoteEndClaimValue);
1896 1897 1898 1899 1900
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1901 1902 1903
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1904
                                            &old_proxy_set,
T
tonyp 已提交
1905
                                            &humongous_proxy_set,
1906
                                            true /* par */);
1907 1908 1909 1910
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1929 1930 1931 1932
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1948
    _region_bm(region_bm), _card_bm(card_bm) { }
1949

1950
  void work(uint worker_id) {
1951
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1952
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1953
                       HeapRegion::ScrubRemSetClaimValue);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1973
  HRSPhaseSetter x(HRSPhaseCleanup);
1974 1975
  g1h->verify_region_sets_optional();

1976 1977 1978
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1979 1980
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1981 1982
  }

1983 1984 1985 1986 1987
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1988 1989
  HeapRegionRemSet::reset_for_cleanup_tasks();

1990
  uint n_workers;
1991

1992
  // Do counting once more with the world stopped for good measure.
1993 1994
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1995
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1996
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1997 1998
           "sanity check");

1999 2000
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2001
    assert(g1h->n_par_threads() == n_workers,
2002
           "Should not have been reset");
2003
    g1h->workers()->run_task(&g1_par_count_task);
2004
    // Done with the parallel phase so reset to 0.
2005
    g1h->set_par_threads(0);
2006

2007
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2008
           "sanity check");
2009
  } else {
2010
    n_workers = 1;
2011 2012 2013
    g1_par_count_task.work(0);
  }

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2043 2044 2045 2046 2047 2048 2049
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2050 2051 2052 2053 2054
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2055 2056 2057 2058 2059 2060
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2061
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2062
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2063
    g1h->set_par_threads((int)n_workers);
2064 2065
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2066 2067 2068

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2069 2070 2071
  } else {
    g1_par_note_end_task.work(0);
  }
2072
  g1h->check_gc_time_stamps();
2073 2074 2075 2076 2077 2078 2079

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2080 2081 2082 2083 2084 2085

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2086
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2087
      g1h->set_par_threads((int)n_workers);
2088 2089
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2090 2091 2092 2093

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2105
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2106 2107 2108 2109 2110

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2111
  if (G1Log::fine()) {
2112 2113 2114 2115 2116 2117
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2118 2119 2120 2121
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2122 2123 2124 2125
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2126 2127 2128 2129
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2130
  if (VerifyDuringGC) {
2131 2132
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2133 2134
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2135
  }
2136 2137

  g1h->verify_region_sets_optional();
S
sla 已提交
2138
  g1h->trace_heap_after_concurrent_cycle();
2139 2140 2141 2142 2143
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2144 2145 2146
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2147
  FreeRegionList tmp_free_list("Tmp Free List");
2148 2149 2150

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2151
                           "cleanup list has %u entries",
2152 2153 2154 2155 2156 2157 2158 2159
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2160
    hr->par_clear();
T
tonyp 已提交
2161
    tmp_free_list.add_as_tail(hr);
2162 2163 2164 2165 2166 2167 2168

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2169
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2170 2171 2172
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2173 2174
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2175
                               tmp_free_list.length(),
2176 2177 2178 2179 2180
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2181
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2182 2183 2184 2185 2186 2187 2188
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2189 2190 2191
      }
    }
  }
T
tonyp 已提交
2192
  assert(tmp_free_list.is_empty(), "post-condition");
2193 2194
}

2195 2196
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2197

2198 2199 2200 2201 2202
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2217 2218 2219 2220 2221
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2222
 public:
2223 2224 2225
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2226
    assert(_ref_counter_limit > 0, "sanity");
2227
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2228 2229 2230 2231 2232 2233 2234 2235 2236
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2237
      if (_cm->verbose_high()) {
2238
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2239
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2240
                               _task->worker_id(), p, (void*) obj);
2241
      }
2242 2243 2244 2245 2246

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2263 2264 2265
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2266 2267
                                 false      /* do_termination */,
                                 _is_serial);
2268 2269 2270 2271
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2272
      if (_cm->verbose_high()) {
2273
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2274
      }
2275 2276 2277 2278
    }
  }
};

2279 2280 2281 2282 2283 2284 2285 2286
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2287
  ConcurrentMark* _cm;
2288
  CMTask*         _task;
2289
  bool            _is_serial;
2290
 public:
2291 2292 2293
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2294
  }
2295 2296 2297

  void do_void() {
    do {
2298
      if (_cm->verbose_high()) {
2299 2300
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2301
      }
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2319 2320

      _task->do_marking_step(1000000000.0 /* something very large */,
2321 2322
                             true         /* do_termination */,
                             _is_serial);
2323 2324 2325 2326
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2327 2328 2329 2330
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2331 2332 2333 2334 2335 2336 2337
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2338
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2339 2340 2341
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2342 2343
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2344 2345 2346 2347 2348 2349

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2350
class G1CMRefProcTaskProxy: public AbstractGangTask {
2351 2352 2353 2354 2355 2356
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2357
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2358
                     G1CollectedHeap* g1h,
2359
                     ConcurrentMark* cm) :
2360
    AbstractGangTask("Process reference objects in parallel"),
2361
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2362 2363 2364
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2365

2366
  virtual void work(uint worker_id) {
2367
    CMTask* task = _cm->task(worker_id);
2368
    G1CMIsAliveClosure g1_is_alive(_g1h);
2369 2370
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2371

2372
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2373 2374 2375
  }
};

2376
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2377
  assert(_workers != NULL, "Need parallel worker threads.");
2378
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2379

2380
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2381

2382 2383 2384 2385 2386
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2387 2388 2389 2390 2391
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2392
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2393 2394 2395 2396
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2397
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2398
    AbstractGangTask("Enqueue reference objects in parallel"),
2399
    _enq_task(enq_task) { }
2400

2401 2402
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2403 2404 2405
  }
};

2406
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2407
  assert(_workers != NULL, "Need parallel worker threads.");
2408
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2409

2410
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2411

2412 2413 2414 2415 2416 2417 2418
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2419 2420 2421 2422 2423
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2424
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2435 2436 2437
  ResourceMark rm;
  HandleMark   hm;

2438 2439 2440 2441 2442 2443 2444 2445
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2446
    if (G1Log::finer()) {
2447 2448
      gclog_or_tty->put(' ');
    }
S
sla 已提交
2449
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
2450

2451
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2452

2453 2454
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2455

2456
    // Set the soft reference policy
2457 2458
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2483
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2484

2485
    // Parallel processing task executor.
2486
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2487
                                              g1h->workers(), active_workers);
2488
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2489

2490 2491 2492 2493
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2494 2495 2496 2497 2498 2499 2500
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2501 2502 2503 2504 2505 2506 2507
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
                                          g1h->gc_timer_cm());
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2508

2509 2510 2511
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2512

2513 2514
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2515

2516
    if (_markStack.overflow()) {
2517
      // This should have been done already when we tried to push an
2518 2519 2520
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2521

2522 2523 2524
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2525

2526
    rp->verify_no_references_recorded();
2527
    assert(!rp->discovery_enabled(), "Post condition");
2528 2529
  }

2530
  // Now clean up stale oops in StringTable
2531
  StringTable::unlink(&g1_is_alive);
2532 2533
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
2544 2545
  ConcurrentMark* _cm;
  bool            _is_serial;
2546
public:
2547
  void work(uint worker_id) {
2548 2549
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2550 2551
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2552 2553
      task->record_start_time();
      do {
2554
        task->do_marking_step(1000000000.0 /* something very large */,
2555 2556
                              true         /* do_termination       */,
                              _is_serial);
2557 2558 2559 2560 2561 2562 2563
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2564 2565
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2566
    _cm->terminator()->reset_for_reuse(active_workers);
2567
  }
2568 2569 2570 2571 2572 2573 2574 2575 2576
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2577
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2578
    G1CollectedHeap::StrongRootsScope srs(g1h);
2579
    // this is remark, so we'll use up all active threads
2580
    uint active_workers = g1h->workers()->active_workers();
2581 2582
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2583
      active_workers = (uint) ParallelGCThreads;
2584 2585
      g1h->workers()->set_active_workers(active_workers);
    }
2586
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2587 2588 2589 2590
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2591

2592 2593 2594 2595
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2596
    g1h->set_par_threads(active_workers);
2597 2598 2599
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2600
    G1CollectedHeap::StrongRootsScope srs(g1h);
2601
    uint active_workers = 1;
2602
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2603

2604 2605 2606 2607 2608 2609 2610 2611
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2612 2613
    remarkTask.work(0);
  }
2614
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2615 2616 2617 2618 2619
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2620 2621 2622 2623

  print_stats();
}

2624 2625
#ifndef PRODUCT

2626
class PrintReachableOopClosure: public OopClosure {
2627 2628 2629
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2630
  VerifyOption     _vo;
2631
  bool             _all;
2632 2633

public:
2634 2635
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2636
                           bool          all) :
2637
    _g1h(G1CollectedHeap::heap()),
2638
    _out(out), _vo(vo), _all(all) { }
2639

2640 2641
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2642

2643 2644
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2645 2646 2647
    const char* str = NULL;
    const char* str2 = "";

2648 2649 2650 2651 2652
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2653
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2654
      guarantee(hr != NULL, "invariant");
2655 2656
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2657 2658

      if (over_tams) {
2659 2660
        str = " >";
        if (marked) {
2661
          str2 = " AND MARKED";
2662
        }
2663 2664
      } else if (marked) {
        str = " M";
2665
      } else {
2666
        str = " NOT";
2667
      }
2668 2669
    }

2670
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2671 2672 2673 2674
                   p, (void*) obj, str, str2);
  }
};

2675
class PrintReachableObjectClosure : public ObjectClosure {
2676
private:
2677 2678 2679 2680 2681
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2682 2683

public:
2684 2685
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2686 2687
                              bool          all,
                              HeapRegion*   hr) :
2688 2689
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2690

2691
  void do_object(oop o) {
2692 2693
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2694 2695 2696 2697 2698
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2699
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2700
      o->oop_iterate_no_header(&oopCl);
2701
    }
2702 2703 2704
  }
};

2705
class PrintReachableRegionClosure : public HeapRegionClosure {
2706
private:
2707 2708 2709 2710
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2711 2712 2713 2714 2715 2716

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2717
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2718
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2719
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2720 2721 2722 2723 2724 2725 2726 2727
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2728
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2729 2730 2731
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2732 2733 2734 2735

    return false;
  }

2736 2737
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2738
                              bool          all) :
2739
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2740 2741
};

2742
void ConcurrentMark::print_reachable(const char* str,
2743
                                     VerifyOption vo,
2744 2745 2746
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2770
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2771 2772
  out->cr();

2773
  out->print_cr("--- ITERATING OVER REGIONS");
2774
  out->cr();
2775
  PrintReachableRegionClosure rcl(out, vo, all);
2776
  _g1h->heap_region_iterate(&rcl);
2777
  out->cr();
2778

2779
  gclog_or_tty->print_cr("  done");
2780
  gclog_or_tty->flush();
2781 2782
}

2783 2784
#endif // PRODUCT

2785
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2786 2787 2788
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2789 2790 2791
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2792 2793 2794
  _nextMarkBitMap->clearRange(mr);
}

2795 2796 2797 2798 2799
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2800
HeapRegion*
2801
ConcurrentMark::claim_region(uint worker_id) {
2802 2803 2804 2805 2806 2807
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2808
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2834 2835 2836 2837
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2838
    if (verbose_low()) {
2839
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2840 2841
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2842
                             worker_id, curr_region, bottom, end, limit);
2843
    }
2844

2845 2846
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2847 2848 2849 2850 2851
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2852
      assert(_finger >= end, "the finger should have moved forward");
2853

2854
      if (verbose_low()) {
2855 2856
        gclog_or_tty->print_cr("[%u] we were successful with region = "
                               PTR_FORMAT, worker_id, curr_region);
2857
      }
2858 2859

      if (limit > bottom) {
2860
        if (verbose_low()) {
2861 2862
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
                                 "returning it ", worker_id, curr_region);
2863
        }
2864 2865
        return curr_region;
      } else {
2866 2867
        assert(limit == bottom,
               "the region limit should be at bottom");
2868
        if (verbose_low()) {
2869 2870
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
                                 "returning NULL", worker_id, curr_region);
2871
        }
2872 2873 2874 2875 2876
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2877
      assert(_finger > finger, "the finger should have moved forward");
2878
      if (verbose_low()) {
2879
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2880 2881
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2882
                               worker_id, _finger, finger);
2883
      }
2884 2885 2886 2887 2888 2889 2890 2891 2892

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2942

2943 2944
  virtual void do_object(oop obj) {
    do_object_work(obj);
2945
  }
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2958

2959 2960 2961 2962 2963 2964
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2965
    for (uint i = 0; i < _max_worker_id; i += 1) {
2966
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2967
      CMTaskQueue* queue = _task_queues->queue(i);
2968 2969
      queue->oops_do(&cl);
    }
2970 2971
  }

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
3004
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
3018
}
3019
#endif // PRODUCT
3020

3021 3022 3023
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3024
  G1CollectedHeap* _g1h;
3025
  ConcurrentMark* _cm;
3026
  CardTableModRefBS* _ct_bs;
3027
  BitMap* _cm_card_bm;
3028
  uint _max_worker_id;
3029 3030

 public:
3031
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3032
                              BitMap* cm_card_bm,
3033
                              uint max_worker_id) :
3034 3035
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3036
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3067 3068 3069 3070
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3071 3072 3073 3074 3075

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3076 3077 3078 3079 3080 3081 3082 3083
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3084 3085 3086 3087 3088 3089
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3090
    uint hrs_index = hr->hrs_index();
3091 3092
    size_t marked_bytes = 0;

3093
    for (uint i = 0; i < _max_worker_id; i += 1) {
3094 3095 3096 3097 3098 3099 3100
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3101
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3112
        // parameter. It does, however, have an early exit if
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3133
  uint _max_worker_id;
3134 3135 3136 3137 3138 3139
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3140
                           uint max_worker_id,
3141 3142 3143
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3144
    _max_worker_id(max_worker_id),
3145 3146 3147
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3148
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3167
                                           _max_worker_id, n_workers);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3195
  uint max_regions = _g1h->max_regions();
3196
  assert(_max_worker_id > 0, "uninitialized");
3197

3198
  for (uint i = 0; i < _max_worker_id; i += 1) {
3199 3200 3201 3202 3203 3204
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3205
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3206 3207 3208 3209
    task_card_bm->clear();
  }
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3224 3225
  // Clear the liveness counting data
  clear_all_count_data();
3226
  // Empty mark stack
3227
  reset_marking_state();
3228
  for (uint i = 0; i < _max_worker_id; ++i) {
3229
    _tasks[i]->clear_region_fields();
3230
  }
3231 3232 3233 3234
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3235 3236 3237 3238 3239
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3240 3241 3242

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3281
                "(%8.2f s marking).",
3282
                cmThread()->vtime_accum(),
3283
                cmThread()->vtime_mark_accum());
3284 3285
}

T
tonyp 已提交
3286
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3287 3288 3289
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3290 3291
}

3292 3293 3294 3295 3296 3297 3298
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
      _prevMarkBitMap, _nextMarkBitMap);
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3299
// We take a break if someone is trying to stop the world.
3300
bool ConcurrentMark::do_yield_check(uint worker_id) {
3301
  if (should_yield()) {
3302
    if (worker_id == 0) {
3303
      _g1h->g1_policy()->record_concurrent_pause();
3304
    }
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3323 3324
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3325 3326 3327 3328 3329 3330 3331
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
3332 3333
  for (uint i = 0; i < _max_worker_id; ++i) {
    gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3334 3335 3336 3337 3338
  }
  gclog_or_tty->print_cr("");
}
#endif

3339 3340 3341 3342
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3343 3344
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
                           _worker_id, (void*) obj);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3355 3356 3357 3358 3359 3360 3361 3362 3363
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3364 3365
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3366 3367 3368

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3369 3370
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3371

3372 3373 3374 3375 3376
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3403 3404 3405 3406 3407
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3408

3409
  if (G1UseConcMarkReferenceProcessing) {
3410
    _ref_processor = g1h->ref_processor_cm();
3411
    assert(_ref_processor != NULL, "should not be NULL");
3412
  }
3413
}
3414 3415

void CMTask::setup_for_region(HeapRegion* hr) {
3416 3417 3418 3419 3420
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3421

3422
  if (_cm->verbose_low()) {
3423 3424
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
                           _worker_id, hr);
3425
  }
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3438
    if (_cm->verbose_low()) {
3439
      gclog_or_tty->print_cr("[%u] found an empty region "
3440
                             "["PTR_FORMAT", "PTR_FORMAT")",
3441
                             _worker_id, bottom, limit);
3442
    }
3443 3444 3445 3446 3447 3448 3449
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3450
    assert(limit >= _finger, "peace of mind");
3451
  } else {
3452
    assert(limit < _region_limit, "only way to get here");
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3470
  assert(_curr_region != NULL, "invariant");
3471
  if (_cm->verbose_low()) {
3472 3473
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
                           _worker_id, _curr_region);
3474
  }
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3486 3487 3488 3489 3490 3491 3492 3493 3494
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3495
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3496
  guarantee(nextMarkBitMap != NULL, "invariant");
3497

3498
  if (_cm->verbose_low()) {
3499
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3500
  }
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3544 3545 3546
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3547 3548 3549 3550
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3551
  if (has_aborted()) return;
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3568
  if (!concurrent()) return;
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3581
  if (_words_scanned >= _words_scanned_limit) {
3582
    ++_clock_due_to_scanning;
3583 3584
  }
  if (_refs_reached >= _refs_reached_limit) {
3585
    ++_clock_due_to_marking;
3586
  }
3587 3588 3589 3590 3591 3592

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3593
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3594
                        "scanned = %d%s, refs reached = %d%s",
3595
                        _worker_id, last_interval_ms,
3596 3597 3598 3599
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3617
    _has_timed_out = true;
3618 3619 3620 3621 3622 3623 3624 3625
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3626
    if (_cm->verbose_low()) {
3627 3628
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3629
    }
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3652
  if (_cm->verbose_medium()) {
3653
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3654
  }
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3680
      if (_cm->verbose_low()) {
3681 3682
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3683
      }
3684 3685 3686 3687
      set_has_aborted();
    } else {
      // the transfer was successful

3688
      if (_cm->verbose_medium()) {
3689 3690
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3691
      }
3692
      statsOnly( int tmp_size = _cm->mark_stack_size();
3693
                 if (tmp_size > _global_max_size) {
3694
                   _global_max_size = tmp_size;
3695
                 }
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3710 3711
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3712 3713 3714 3715
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3716
    if (_cm->verbose_medium()) {
3717 3718
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3719
    }
3720 3721 3722 3723
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3724
      assert(success, "invariant");
3725 3726 3727
    }

    statsOnly( int tmp_size = _task_queue->size();
3728
               if (tmp_size > _local_max_size) {
3729
                 _local_max_size = tmp_size;
3730
               }
3731 3732 3733 3734 3735 3736 3737 3738
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3739
  if (has_aborted()) return;
3740 3741 3742 3743 3744

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3745
  if (partially) {
3746
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3747
  } else {
3748
    target_size = 0;
3749
  }
3750 3751

  if (_task_queue->size() > target_size) {
3752
    if (_cm->verbose_high()) {
3753 3754
      gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
                             _worker_id, target_size);
3755
    }
3756 3757 3758 3759 3760 3761

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3762
      if (_cm->verbose_high()) {
3763
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3764
                               (void*) obj);
3765
      }
3766

3767
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3768
      assert(!_g1h->is_on_master_free_list(
3769
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3770 3771 3772

      scan_object(obj);

3773
      if (_task_queue->size() <= target_size || has_aborted()) {
3774
        ret = false;
3775
      } else {
3776
        ret = _task_queue->pop_local(obj);
3777
      }
3778 3779
    }

3780
    if (_cm->verbose_high()) {
3781 3782
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3783
    }
3784 3785 3786 3787
  }
}

void CMTask::drain_global_stack(bool partially) {
3788
  if (has_aborted()) return;
3789 3790 3791

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3792
  assert(partially || _task_queue->size() == 0, "invariant");
3793 3794 3795 3796 3797 3798 3799 3800

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3801
  if (partially) {
3802
    target_size = _cm->partial_mark_stack_size_target();
3803
  } else {
3804
    target_size = 0;
3805
  }
3806 3807

  if (_cm->mark_stack_size() > target_size) {
3808
    if (_cm->verbose_low()) {
3809 3810
      gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
                             _worker_id, target_size);
3811
    }
3812 3813 3814 3815 3816 3817

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3818
    if (_cm->verbose_low()) {
3819 3820
      gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
                             _worker_id, _cm->mark_stack_size());
3821
    }
3822 3823 3824 3825 3826 3827 3828 3829
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3830
  if (has_aborted()) return;
3831 3832 3833 3834 3835 3836 3837 3838 3839

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3840
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3841
    satb_mq_set.set_par_closure(_worker_id, &oc);
3842
  } else {
3843
    satb_mq_set.set_closure(&oc);
3844
  }
3845 3846 3847

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3848
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3849
    while (!has_aborted() &&
3850
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3851
      if (_cm->verbose_medium()) {
3852
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3853
      }
3854 3855 3856 3857 3858 3859
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3860
      if (_cm->verbose_medium()) {
3861
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3862
      }
3863 3864 3865 3866 3867 3868 3869
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3870
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3871
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3872
    } else {
3873
      satb_mq_set.iterate_closure_all_threads();
3874
    }
3875 3876 3877 3878
  }

  _draining_satb_buffers = false;

3879 3880 3881
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3882

3883
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3884
    satb_mq_set.set_par_closure(_worker_id, NULL);
3885
  } else {
3886
    satb_mq_set.set_closure(NULL);
3887
  }
3888 3889 3890 3891 3892 3893 3894

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3895 3896
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3922
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

3936 3937
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
3938 3939 3940 3941 3942 3943 3944 3945 3946
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

3947
    The data structures that it uses to do marking work are the
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3981
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3993 3994 3995
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
3996
      (local queues, stacks, fingers etc.)  are re-initialized so that
3997 3998
      when do_marking_step() completes, the marking phase can
      immediately restart.
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4047 4048
 *****************************************************************************/

4049
void CMTask::do_marking_step(double time_target_ms,
4050 4051
                             bool do_termination,
                             bool is_serial) {
4052 4053
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4054 4055

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4056 4057
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4058
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4059

4060 4061
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4072 4073 4074 4075 4076 4077
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4090
  _has_timed_out = false;
4091 4092 4093 4094
  _draining_satb_buffers = false;

  ++_calls;

4095
  if (_cm->verbose_low()) {
4096
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4097
                           "target = %1.2lfms >>>>>>>>>>",
4098
                           _worker_id, _calls, _time_target_ms);
4099
  }
4100 4101 4102 4103 4104

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4105 4106
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4107 4108

  if (_cm->has_overflown()) {
4109 4110 4111 4112
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4128 4129
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4145
      if (_cm->verbose_low()) {
4146
        gclog_or_tty->print_cr("[%u] we're scanning part "
4147
                               "["PTR_FORMAT", "PTR_FORMAT") "
4148 4149 4150
                               "of region "HR_FORMAT,
                               _worker_id, _finger, _region_limit,
                               HR_FORMAT_PARAMS(_curr_region));
4151
      }
4152

4153 4154
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4155

4156 4157 4158 4159 4160 4161 4162
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4163
      // If the iteration is successful, give up the region.
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4178 4179 4180
        giveup_current_region();
        regular_clock_call();
      } else {
4181
        assert(has_aborted(), "currently the only way to do so");
4182 4183 4184 4185 4186
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4187
        assert(_finger != NULL, "invariant");
4188 4189 4190 4191 4192 4193 4194 4195

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4196
        assert(_finger < _region_limit, "invariant");
4197
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4198 4199
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4200
          giveup_current_region();
4201
        } else {
4202
          move_finger_to(new_finger);
4203
        }
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4221 4222 4223 4224
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4225
      if (_cm->verbose_low()) {
4226
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4227
      }
4228
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4229 4230 4231 4232
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4233
        if (_cm->verbose_low()) {
4234
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4235
                                 "region "PTR_FORMAT,
4236
                                 _worker_id, claimed_region);
4237
        }
4238 4239

        setup_for_region(claimed_region);
4240
        assert(_curr_region == claimed_region, "invariant");
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4251 4252
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4253 4254 4255 4256 4257
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4258
    // tasks might be pushing objects to it concurrently.
4259 4260
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4261

4262
    if (_cm->verbose_low()) {
4263
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4264
    }
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4277
  if (do_stealing && !has_aborted()) {
4278 4279 4280 4281
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4282
    // tasks might be pushing objects to it concurrently.
4283 4284
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4285

4286
    if (_cm->verbose_low()) {
4287
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4288
    }
4289 4290 4291 4292 4293

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4294
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4295
        if (_cm->verbose_medium()) {
4296 4297
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
                                 _worker_id, (void*) obj);
4298
        }
4299 4300 4301

        statsOnly( ++_steals );

4302 4303
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4316 4317 4318 4319 4320 4321 4322 4323 4324
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4325 4326
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4327
  if (do_termination && !has_aborted()) {
4328
    // We cannot check whether the global stack is empty, since other
4329
    // tasks might be concurrently pushing objects on it.
4330 4331 4332
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4333

4334
    if (_cm->verbose_low()) {
4335
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4336
    }
4337 4338

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4339

4340 4341 4342
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4343 4344
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4345 4346 4347 4348 4349 4350 4351
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4352
      if (_worker_id == 0) {
4353 4354
        // let's allow task 0 to do this
        if (concurrent()) {
4355
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4356 4357 4358 4359 4360 4361 4362 4363
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4364 4365 4366 4367 4368 4369 4370 4371
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4372

4373
      if (_cm->verbose_low()) {
4374
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4375
      }
4376 4377 4378 4379
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4380
      if (_cm->verbose_low()) {
4381 4382
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4383
      }
4384 4385 4386 4387 4388 4389 4390 4391 4392

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4393
  set_cm_oop_closure(NULL);
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4404
    if (_has_timed_out) {
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4420
      if (_cm->verbose_low()) {
4421
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4422
      }
4423

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4434 4435 4436 4437 4438 4439

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4440 4441 4442 4443
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4444 4445
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4446 4447 4448 4449
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4450
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4451
                             "elapsed = %1.2lfms <<<<<<<<<<",
4452
                             _worker_id, _time_target_ms, elapsed_time_ms);
4453
      if (_cm->has_aborted()) {
4454 4455
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4456
      }
4457 4458
    }
  } else {
4459
    if (_cm->verbose_low()) {
4460
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4461
                             "elapsed = %1.2lfms <<<<<<<<<<",
4462
                             _worker_id, _time_target_ms, elapsed_time_ms);
4463
    }
4464 4465 4466 4467 4468
  }

  _claimed = false;
}

4469
CMTask::CMTask(uint worker_id,
4470
               ConcurrentMark* cm,
4471 4472
               size_t* marked_bytes,
               BitMap* card_bm,
4473 4474 4475
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4476
    _worker_id(worker_id), _cm(cm),
4477 4478 4479 4480
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4481
    _cm_oop_closure(NULL),
4482 4483
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4484 4485
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4486 4487 4488 4489 4490 4491

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4531 4532
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
    _total_remset_bytes(0) {
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4547
                 HeapRegion::GrainBytes);
4548 4549
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4550 4551 4552 4553 4554 4555 4556 4557 4558
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
                "used", "prev-live", "next-live", "gc-eff", "remset");
4559
  _out->print_cr(G1PPRL_LINE_PREFIX
4560 4561 4562 4563 4564 4565 4566 4567 4568
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT,
                "", "",
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)", "(bytes)");
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4580
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4610
  size_t remset_bytes    = r->rem_set()->mem_size();
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4644
  _total_remset_bytes    += remset_bytes;
4645 4646 4647 4648 4649 4650 4651 4652

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4653 4654
                 G1PPRL_DOUBLE_FORMAT
                 G1PPRL_BYTE_FORMAT,
4655
                 type, bottom, end,
4656
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff , remset_bytes);
4657 4658 4659 4660 4661

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4662 4663
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4664 4665 4666 4667 4668 4669 4670
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4671 4672
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
                 G1PPRL_SUM_MB_FORMAT("remset"),
4673 4674 4675 4676 4677 4678
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4679 4680
                 perc(_total_next_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_remset_bytes));
4681 4682
  _out->cr();
}