concurrentMark.cpp 156.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
39 40 41 42 43 44
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
45
#include "services/memTracker.hpp"
46

47
// Concurrent marking bit map wrapper
48

49
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
50 51 52 53 54 55 56
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

Z
zgu 已提交
57 58
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);

59
  guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
60 61 62
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
63
            "couldn't reseve backing store for concurrent marking bit map");
64
  assert(_virtual_space.committed_size() == brs.size(),
65
         "didn't reserve backing store for all of concurrent marking bit map?");
66 67 68 69 70 71 72 73 74 75 76 77
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
78 79 80
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
81 82 83 84 85 86 87 88 89 90 91 92
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
93 94 95
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
113
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
Z
zgu 已提交
167
  _base = NEW_C_HEAP_ARRAY(oop, size, mtGC);
168
  if (_base == NULL) {
169
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
170
  }
171 172
  _index = 0;
  _capacity = (jint) size;
173
  _saved_index = -1;
174 175 176 177
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
178
  if (_base != NULL) {
Z
zgu 已提交
179
    FREE_C_HEAP_ARRAY(oop, _base, mtGC);
180
  }
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
244
    assert(ind < _capacity, "By overflow test above.");
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
284 285
      res = false;
      break;
286 287 288 289 290 291
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

309
void CMMarkStack::oops_do(OopClosure* f) {
310 311 312
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
313 314 315 316 317
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
318
  return _g1h->is_obj_ill(obj);
319 320
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

399 400 401 402
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

403 404
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
405 406
}

407
ConcurrentMark::ConcurrentMark(ReservedSpace rs, uint max_regions) :
408 409 410 411
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
412
  _max_parallel_marking_threads(0),
413 414 415 416
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
417
  _cleanup_list("Cleanup List"),
418
  _region_bm((BitMap::idx_t) max_regions, false /* in_resource_area*/),
419 420 421
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
422

423 424 425 426 427 428
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

429
  _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
430 431 432 433 434 435 436
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
437 438 439
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
440 441 442 443 444 445 446 447

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
448 449 450 451 452

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
  _count_marked_bytes(NULL) {
453 454
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
455
    verbose_level = no_verbose;
456 457
  }
  if (verbose_level > high_verbose) {
458
    verbose_level = high_verbose;
459
  }
460 461
  _verbose_level = verbose_level;

462
  if (verbose_low()) {
463 464
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
465
  }
466

467
  _markStack.allocate(MarkStackSize);
468 469

  // Create & start a ConcurrentMark thread.
470 471 472 473
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

474 475 476 477 478 479
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
480
  satb_qs.set_buffer_size(G1SATBBufferSize);
481

482 483
  _root_regions.init(_g1h, this);

Z
zgu 已提交
484 485
  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num, mtGC);
486

Z
zgu 已提交
487 488
  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_task_num, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num, mtGC);
489 490 491

  BitMap::idx_t card_bm_size = _card_bm.size();

492 493 494 495 496 497 498
  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

499
    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
Z
zgu 已提交
500
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, (size_t) max_regions, mtGC);
501 502 503 504 505 506

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

507 508 509
    _accum_task_vtime[i] = 0.0;
  }

510 511 512 513 514 515 516 517 518
  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

519 520
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
521 522 523 524 525
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
526 527 528 529
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
530
  } else {
531 532
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
533 534
      // if both are set

535
      _parallel_marking_threads = (uint) ConcGCThreads;
536
      _max_parallel_marking_threads = _parallel_marking_threads;
537 538
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
539
    } else if (G1MarkingOverheadPercent > 0) {
540 541 542 543
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
544
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
545
      double overall_cm_overhead =
J
johnc 已提交
546 547
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
548 549 550 551 552 553 554 555
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

556
      _parallel_marking_threads = (uint) marking_thread_num;
557
      _max_parallel_marking_threads = _parallel_marking_threads;
558 559 560
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
561
      _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
562
      _max_parallel_marking_threads = _parallel_marking_threads;
563 564 565 566
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

567
    if (parallel_marking_threads() > 1) {
568
      _cleanup_task_overhead = 1.0;
569
    } else {
570
      _cleanup_task_overhead = marking_task_overhead();
571
    }
572 573 574 575 576 577 578 579 580 581 582
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

583
    guarantee(parallel_marking_threads() > 0, "peace of mind");
584
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
585
         _max_parallel_marking_threads, false, true);
586
    if (_parallel_workers == NULL) {
587
      vm_exit_during_initialization("Failed necessary allocation.");
588 589 590
    } else {
      _parallel_workers->initialize_workers();
    }
591 592 593 594 595 596 597 598 599
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
600
  // update _heap_end.
601
  if (!concurrent_marking_in_progress() && !force) return;
602 603

  MemRegion committed = _g1h->g1_committed();
604
  assert(committed.start() == _heap_start, "start shouldn't change");
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

626 627 628 629
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
630 631 632 633

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

634
  if (verbose_low()) {
635
    gclog_or_tty->print_cr("[global] resetting");
636
  }
637 638 639 640

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
641
  for (int i = 0; i < (int) _max_task_num; ++i) {
642
    _tasks[i]->reset(_nextMarkBitMap);
643
  }
644 645 646 647 648 649

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

650
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
651
  assert(active_tasks <= _max_task_num, "we should not have more");
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
671 672
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
673 674 675 676 677 678 679 680 681 682 683 684 685
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
686 687
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
688 689 690
}

void ConcurrentMark::clearNextBitmap() {
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
713
    if (next > end) {
714
      next = end;
715
    }
716 717 718 719 720 721 722 723 724 725 726 727 728
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

729 730 731
  // Clear the liveness counting data
  clear_all_count_data();

732 733 734
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
735 736 737 738 739 740
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
741
      r->note_start_of_marking();
742 743 744 745 746 747 748 749 750 751 752
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

753
#ifndef PRODUCT
754
  if (G1PrintReachableAtInitialMark) {
755
    print_reachable("at-cycle-start",
756
                    VerifyOption_G1UsePrevMarking, true /* all */);
757
  }
758
#endif
759 760 761

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
762 763 764 765

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
766 767 768 769 770 771
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

772 773 774 775 776 777 778 779
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

780 781 782 783
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
784
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
785 786

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
787 788 789 790
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
791

792 793
  _root_regions.prepare_for_scan();

794 795 796 797 798 799 800
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
820 821

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
822
  if (verbose_low()) {
823
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
824
  }
825

826 827 828
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
829
  _first_overflow_barrier_sync.enter();
830 831 832
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
833 834 835
  // at this point everyone should have synced up and not be doing any
  // more work

836
  if (verbose_low()) {
837
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
838
  }
839 840 841 842

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
843 844 845 846 847 848
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
849

850
    if (G1Log::fine()) {
851 852 853 854 855 856 857 858 859 860 861
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
862
  if (verbose_low()) {
863
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
864
  }
865

866 867 868
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
869
  _second_overflow_barrier_sync.enter();
870 871 872
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
873 874
  // at this point everything should be re-initialised and ready to go

875
  if (verbose_low()) {
876
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
877
  }
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

906 907 908 909 910 911
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
912
  void work(uint worker_id) {
913 914
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
915
    ResourceMark rm;
916 917 918 919 920

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

921 922
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
923 924 925 926 927
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
928 929 930 931 932 933
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

934 935 936 937 938 939
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

940
        bool ret = _cm->do_yield_check(worker_id);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
964
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
965 966 967 968

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
969
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
970 971 972 973 974 975 976 977 978
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

979 980
// Calculates the number of active workers for a concurrent
// phase.
981
uint ConcurrentMark::calc_parallel_marking_threads() {
982
  if (G1CollectedHeap::use_parallel_gc_threads()) {
983
    uint n_conc_workers = 0;
984 985 986 987 988 989 990 991 992 993 994 995 996 997
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
998 999
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1000
  }
1001 1002 1003 1004
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
    if (parallel_marking_threads() > 0) {
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1070 1071 1072 1073 1074 1075 1076 1077 1078
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1079
  force_overflow_conc()->init();
1080 1081 1082 1083 1084 1085

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1086
  uint active_workers = MAX2(1U, parallel_marking_threads());
1087 1088 1089

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1090 1091

  CMConcurrentMarkingTask markingTask(this, cmThread());
1092
  if (parallel_marking_threads() > 0) {
1093 1094 1095 1096
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1097
    _parallel_workers->run_task(&markingTask);
1098
  } else {
1099
    markingTask.work(0);
1100
  }
1101 1102 1103 1104 1105 1106 1107
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1108

1109 1110 1111 1112 1113 1114 1115 1116
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1117 1118
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1119 1120 1121 1122
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1123
    Universe::verify(/* silent      */ false,
1124
                     /* option      */ VerifyOption_G1UsePrevMarking);
1125 1126
  }

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1143
    if (G1TraceMarkStackOverflow) {
1144
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1145
    }
1146
  } else {
1147 1148 1149 1150
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1151
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1152
    // We're done with marking.
1153 1154
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1155 1156
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1157 1158

    if (VerifyDuringGC) {
1159 1160 1161
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1162
      Universe::verify(/* silent      */ false,
1163
                       /* option      */ VerifyOption_G1UseNextMarking);
1164
    }
1165 1166 1167 1168 1169 1170
    assert(!restart_for_overflow(), "sanity");
  }

  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1187 1188 1189 1190
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1191
  ConcurrentMark* _cm;
1192 1193 1194
  BitMap* _region_bm;
  BitMap* _card_bm;

1195 1196
  void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
    assert(start_idx <= last_idx, "sanity");
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    // Set the inclusive bit range [start_idx, last_idx].
    // For small ranges (up to 8 cards) use a simple loop; otherwise
    // use par_at_put_range.
    if ((last_idx - start_idx) < 8) {
      for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
        _card_bm->par_set_bit(i);
      }
    } else {
      assert(last_idx < _card_bm->size(), "sanity");
      // Note BitMap::par_at_put_range() is exclusive.
1208 1209
      BitMap::idx_t max_idx = MAX2(last_idx+1, _card_bm->size());
      _card_bm->par_at_put_range(start_idx, max_idx, true);
1210 1211 1212
    }
  }

1213 1214 1215 1216 1217 1218 1219 1220
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1221
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1222 1223
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1224
      _region_bm->par_at_put(index, true);
1225 1226
    } else {
      // Starts humongous case: calculate how many regions are part of
1227
      // this humongous region and then set the bit range.
1228
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1229
      _region_bm->par_at_put_range(index, end_index, true);
1230 1231 1232
    }
  }

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
public:
  CMCountDataClosureBase(ConcurrentMark *cm,
                         BitMap* region_bm, BitMap* card_bm):
    _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
  CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
                         BitMap* region_bm, BitMap* card_bm) :
    CMCountDataClosureBase(cm, region_bm, card_bm),
    _bm(bm), _region_marked_bytes(0) { }

1251 1252
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1253
    if (hr->continuesHumongous()) {
1254 1255 1256 1257 1258 1259 1260
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1261 1262
      return false;
    }
1263 1264

    HeapWord* nextTop = hr->next_top_at_mark_start();
1265 1266 1267 1268 1269 1270 1271
    HeapWord* start   = hr->bottom();

    assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, nextTop, hr->end()));

1272 1273
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
1274

1275 1276 1277 1278 1279 1280 1281
    size_t marked_bytes = 0;

    while (start < nextTop) {
      oop obj = oop(start);
      int obj_sz = obj->size();
      HeapWord* obj_last = start + obj_sz - 1;

1282 1283 1284 1285 1286 1287 1288
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
      BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);

      // Set the bits in the card BM for this object (inclusive).
      set_card_bitmap_range(start_idx, last_idx);

      // Add the size of this object to the number of marked bytes.
1289
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1290

1291
      // Find the next marked object after this one.
1292
      start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
1293
    }
1294 1295 1296 1297

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
    if (nextTop < top) {
1298 1299
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
      BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
1300

1301
      set_card_bitmap_range(start_idx, last_idx);
1302 1303 1304

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1305 1306 1307 1308
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1309
      set_bit_for_region(hr);
1310
    }
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
  VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
    _cm(cm),
    _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1385
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1396
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1397 1398 1399 1400 1401

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1402 1403 1404 1405
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1423 1424 1425 1426
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1427
        }
1428
        failures += 1;
1429 1430 1431
      }
    }

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1442
    // find the first violating region by returning true.
1443 1444
    return false;
  }
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

    VerifyLiveObjectDataHRClosure verify_cl(_cm,
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1511

1512
  int failures() const { return _failures; }
1513 1514
};

1515 1516 1517 1518 1519 1520
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1521

1522
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1523 1524 1525 1526
 public:
  FinalCountDataUpdateClosure(ConcurrentMark* cm,
                              BitMap* region_bm,
                              BitMap* card_bm) :
1527
    CMCountDataClosureBase(cm, region_bm, card_bm) { }
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1545
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1546 1547 1548 1549 1550 1551 1552

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);
    }

1553 1554
    // Now set the bits for [ntams, top]
    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1555 1556 1557 1558 1559 1560
    // set_card_bitmap_range() expects the last_idx to be with
    // the range of the bit map (see assertion in set_card_bitmap_range()),
    // so limit it to that range with this application of MIN2.
    BitMap::idx_t last_idx = MIN2(_cm->card_bitmap_index_for(top),
                                  _card_bm->size()-1);
    if (start_idx < _card_bm->size()) {
1561
    set_card_bitmap_range(start_idx, last_idx);
1562 1563 1564 1565 1566 1567 1568 1569
    } else {
      // To reach here start_idx must be beyond the end of
      // the bit map and last_idx must have been limited by
      // the MIN2().
      assert(start_idx == last_idx + 1,
        err_msg("Not beyond end start_idx " SIZE_FORMAT " last_idx "
                SIZE_FORMAT, start_idx, last_idx));
    }
1570 1571 1572 1573 1574 1575 1576 1577 1578

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1579 1580 1581 1582

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1583 1584 1585 1586
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1587
  uint    _n_workers;
1588

1589
public:
1590 1591 1592 1593 1594
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1595
    // Use the value already set as the number of active threads
1596
    // in the call to run_task().
1597 1598 1599 1600
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1601
    } else {
1602
      _n_workers = 1;
1603
    }
1604 1605
  }

1606
  void work(uint worker_id) {
1607 1608 1609 1610 1611 1612
    assert(worker_id < _n_workers, "invariant");

    FinalCountDataUpdateClosure final_update_cl(_cm,
                                                _actual_region_bm,
                                                _actual_card_bm);

1613
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1614 1615 1616
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1617
                                            HeapRegion::FinalCountClaimValue);
1618
    } else {
1619
      _g1h->heap_region_iterate(&final_update_cl);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1630
  uint _regions_claimed;
1631
  size_t _freed_bytes;
T
tonyp 已提交
1632
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1633
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1634 1635
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1636 1637 1638 1639 1640
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1641 1642
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1643
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1644
                             HumongousRegionSet* humongous_proxy_set,
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1655 1656
  size_t freed_bytes() { return _freed_bytes; }

1657
  bool doHeapRegion(HeapRegion *hr) {
1658 1659 1660
    if (hr->continuesHumongous()) {
      return false;
    }
1661 1662
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1679 1680 1681
    }
    return false;
  }
1682 1683

  size_t max_live_bytes() { return _max_live_bytes; }
1684
  uint regions_claimed() { return _regions_claimed; }
1685 1686 1687 1688 1689 1690
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1691

1692 1693 1694 1695
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1696 1697
  FreeRegionList* _cleanup_list;

1698 1699
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1700
                   FreeRegionList* cleanup_list) :
1701
    AbstractGangTask("G1 note end"), _g1h(g1h),
1702
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1703

1704
  void work(uint worker_id) {
1705
    double start = os::elapsedTime();
T
tonyp 已提交
1706
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1707
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1708 1709
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1710
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1711
                                           &old_proxy_set,
T
tonyp 已提交
1712 1713
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1714
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1715
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1716
                                            _g1h->workers()->active_workers(),
1717
                                            HeapRegion::NoteEndClaimValue);
1718 1719 1720 1721 1722
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1723 1724 1725
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1726
                                            &old_proxy_set,
T
tonyp 已提交
1727
                                            &humongous_proxy_set,
1728
                                            true /* par */);
1729 1730 1731 1732
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1751 1752 1753 1754
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1770
    _region_bm(region_bm), _card_bm(card_bm) { }
1771

1772
  void work(uint worker_id) {
1773
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1774
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1775
                       HeapRegion::ScrubRemSetClaimValue);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1795
  HRSPhaseSetter x(HRSPhaseCleanup);
1796 1797
  g1h->verify_region_sets_optional();

1798 1799 1800 1801
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1802
    Universe::verify(/* silent      */ false,
1803
                     /* option      */ VerifyOption_G1UsePrevMarking);
1804 1805
  }

1806 1807 1808 1809 1810
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1811 1812
  HeapRegionRemSet::reset_for_cleanup_tasks();

1813
  uint n_workers;
1814

1815
  // Do counting once more with the world stopped for good measure.
1816 1817
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1818
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1819
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1820 1821
           "sanity check");

1822 1823
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1824
    assert(g1h->n_par_threads() == n_workers,
1825
           "Should not have been reset");
1826
    g1h->workers()->run_task(&g1_par_count_task);
1827
    // Done with the parallel phase so reset to 0.
1828
    g1h->set_par_threads(0);
1829

1830
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1831
           "sanity check");
1832
  } else {
1833
    n_workers = 1;
1834 1835 1836
    g1_par_count_task.work(0);
  }

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

1866 1867 1868 1869 1870 1871 1872
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

1873 1874 1875 1876 1877
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

1878 1879 1880 1881 1882 1883
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
1884
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
1885
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1886
    g1h->set_par_threads((int)n_workers);
1887 1888
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
1889 1890 1891

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
1892 1893 1894
  } else {
    g1_par_note_end_task.work(0);
  }
1895
  g1h->check_gc_time_stamps();
1896 1897 1898 1899 1900 1901 1902

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
1903 1904 1905 1906 1907 1908

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
1909
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1910
      g1h->set_par_threads((int)n_workers);
1911 1912
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
1913 1914 1915 1916

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
1928
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
1929 1930 1931 1932 1933

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

1934
  if (G1Log::fine()) {
1935 1936 1937 1938 1939 1940
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

1941 1942 1943 1944
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

1945 1946 1947 1948
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

1949 1950 1951 1952
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
1953
  if (VerifyDuringGC) {
1954 1955 1956
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
1957
    Universe::verify(/* silent      */ false,
1958
                     /* option      */ VerifyOption_G1UsePrevMarking);
1959
  }
1960 1961

  g1h->verify_region_sets_optional();
1962 1963 1964 1965 1966
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

1967 1968 1969
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
1970
  FreeRegionList tmp_free_list("Tmp Free List");
1971 1972 1973

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1974
                           "cleanup list has %u entries",
1975 1976 1977 1978 1979 1980 1981 1982
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
1983
    hr->par_clear();
T
tonyp 已提交
1984
    tmp_free_list.add_as_tail(hr);
1985 1986 1987 1988 1989 1990 1991

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
1992
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1993 1994 1995
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1996 1997
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
1998
                               tmp_free_list.length(),
1999 2000 2001 2002 2003
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2004
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2005 2006 2007 2008 2009 2010 2011
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2012 2013 2014
      }
    }
  }
T
tonyp 已提交
2015
  assert(tmp_free_list.is_empty(), "post-condition");
2016 2017
}

2018 2019
// Support closures for reference procssing in G1

2020 2021 2022 2023 2024
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2025

2026
class G1CMKeepAliveClosure: public ExtendedOopClosure {
2027 2028 2029
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
 public:
2030 2031 2032 2033
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
    _g1(g1), _cm(cm) {
    assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  }
2034

2035 2036
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2037

2038
  template <class T> void do_oop_work(T* p) {
2039 2040 2041
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

2042
    if (_cm->verbose_high()) {
2043
      gclog_or_tty->print_cr("\t[0] we're looking at location "
2044 2045 2046
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
2047 2048

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2049
      _cm->mark_and_count(obj);
2050
      _cm->mark_stack_push(obj);
2051 2052 2053 2054 2055
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
2056
  ConcurrentMark*               _cm;
2057 2058 2059
  CMMarkStack*                  _markStack;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
2060
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2061
                               G1CMKeepAliveClosure* oopClosure) :
2062
    _cm(cm),
2063
    _markStack(markStack),
2064
    _oopClosure(oopClosure) { }
2065 2066

  void do_void() {
2067
    _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
2068 2069 2070
  }
};

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2090 2091 2092
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2103
      if (_cm->verbose_high()) {
2104 2105 2106
        gclog_or_tty->print_cr("\t[%d] we're looking at location "
                               "*"PTR_FORMAT" = "PTR_FORMAT,
                               _task->task_id(), p, (void*) obj);
2107
      }
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2134
      if (_cm->verbose_high()) {
2135
         gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2136
      }
2137 2138 2139 2140 2141 2142 2143 2144 2145
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2146
    _cm(cm), _task(task) { }
2147 2148 2149

  void do_void() {
    do {
2150 2151 2152 2153
      if (_cm->verbose_high()) {
        gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
                               _task->task_id());
      }
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2175 2176 2177 2178
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2179 2180 2181 2182 2183 2184 2185
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2186
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2187 2188 2189
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2190 2191
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2192 2193 2194 2195 2196 2197

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2198
class G1CMRefProcTaskProxy: public AbstractGangTask {
2199 2200 2201 2202 2203 2204
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2205
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2206
                     G1CollectedHeap* g1h,
2207
                     ConcurrentMark* cm) :
2208
    AbstractGangTask("Process reference objects in parallel"),
2209
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2210

2211 2212
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2213
    G1CMIsAliveClosure g1_is_alive(_g1h);
2214
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2215 2216
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

2217
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2218 2219 2220
  }
};

2221
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2222 2223
  assert(_workers != NULL, "Need parallel worker threads.");

2224
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2225 2226 2227 2228 2229 2230 2231 2232 2233

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2234
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2235 2236 2237 2238
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2239
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2240
    AbstractGangTask("Enqueue reference objects in parallel"),
2241
    _enq_task(enq_task) { }
2242

2243 2244
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2245 2246 2247
  }
};

2248
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2249 2250
  assert(_workers != NULL, "Need parallel worker threads.");

2251
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2252 2253 2254 2255 2256 2257

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2258 2259 2260 2261
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2262 2263 2264 2265 2266 2267 2268 2269
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2270
    if (G1Log::finer()) {
2271 2272
      gclog_or_tty->put(' ');
    }
2273
    TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
2274

2275
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2276

2277 2278
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2279

2280 2281 2282
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2283

2284
    G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2285
    G1CMDrainMarkingStackClosure
2286
      g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2287

2288 2289
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2290 2291
    uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
    active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
2292

2293
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2294
                                              g1h->workers(), active_workers);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2305 2306 2307 2308
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2309 2310 2311 2312 2313 2314 2315 2316 2317
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2318

2319 2320 2321 2322 2323 2324 2325
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2326

2327 2328 2329 2330 2331 2332
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2333

2334
    rp->verify_no_references_recorded();
2335
    assert(!rp->discovery_enabled(), "Post condition");
2336 2337
  }

2338
  // Now clean up stale oops in StringTable
2339
  StringTable::unlink(&g1_is_alive);
2340 2341
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2355
  void work(uint worker_id) {
2356 2357
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2358 2359
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2360 2361
      task->record_start_time();
      do {
2362 2363 2364
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2365 2366 2367 2368 2369 2370 2371
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2372
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2373
    AbstractGangTask("Par Remark"), _cm(cm) {
2374
    _cm->terminator()->reset_for_reuse(active_workers);
2375
  }
2376 2377 2378 2379 2380 2381 2382 2383 2384
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2385
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2386
    G1CollectedHeap::StrongRootsScope srs(g1h);
2387
    // this is remark, so we'll use up all active threads
2388
    uint active_workers = g1h->workers()->active_workers();
2389 2390
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2391
      active_workers = (uint) ParallelGCThreads;
2392 2393
      g1h->workers()->set_active_workers(active_workers);
    }
2394
    set_phase(active_workers, false /* concurrent */);
2395 2396 2397 2398
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2399

2400
    CMRemarkTask remarkTask(this, active_workers);
2401
    g1h->set_par_threads(active_workers);
2402 2403 2404
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2405
    G1CollectedHeap::StrongRootsScope srs(g1h);
2406
    // this is remark, so we'll use up all available threads
2407
    uint active_workers = 1;
2408
    set_phase(active_workers, false /* concurrent */);
2409

2410
    CMRemarkTask remarkTask(this, active_workers);
2411 2412 2413 2414 2415
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2416 2417
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2433 2434
#ifndef PRODUCT

2435
class PrintReachableOopClosure: public OopClosure {
2436 2437 2438
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2439
  VerifyOption     _vo;
2440
  bool             _all;
2441 2442

public:
2443 2444
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2445
                           bool          all) :
2446
    _g1h(G1CollectedHeap::heap()),
2447
    _out(out), _vo(vo), _all(all) { }
2448

2449 2450
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2451

2452 2453
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2454 2455 2456
    const char* str = NULL;
    const char* str2 = "";

2457 2458 2459 2460 2461
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2462
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2463
      guarantee(hr != NULL, "invariant");
2464 2465
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2466 2467

      if (over_tams) {
2468 2469
        str = " >";
        if (marked) {
2470
          str2 = " AND MARKED";
2471
        }
2472 2473
      } else if (marked) {
        str = " M";
2474
      } else {
2475
        str = " NOT";
2476
      }
2477 2478
    }

2479
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2480 2481 2482 2483
                   p, (void*) obj, str, str2);
  }
};

2484
class PrintReachableObjectClosure : public ObjectClosure {
2485
private:
2486 2487 2488 2489 2490
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2491 2492

public:
2493 2494
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2495 2496
                              bool          all,
                              HeapRegion*   hr) :
2497 2498
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2499

2500
  void do_object(oop o) {
2501 2502
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2503 2504 2505 2506 2507
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2508
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2509
      o->oop_iterate_no_header(&oopCl);
2510
    }
2511 2512 2513
  }
};

2514
class PrintReachableRegionClosure : public HeapRegionClosure {
2515
private:
2516 2517 2518 2519
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2520 2521 2522 2523 2524 2525

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2526
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2527
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2528
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2529 2530 2531 2532 2533 2534 2535 2536
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2537
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2538 2539 2540
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2541 2542 2543 2544

    return false;
  }

2545 2546
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2547
                              bool          all) :
2548
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2549 2550
};

2551
void ConcurrentMark::print_reachable(const char* str,
2552
                                     VerifyOption vo,
2553 2554 2555
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2579
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2580 2581
  out->cr();

2582
  out->print_cr("--- ITERATING OVER REGIONS");
2583
  out->cr();
2584
  PrintReachableRegionClosure rcl(out, vo, all);
2585
  _g1h->heap_region_iterate(&rcl);
2586
  out->cr();
2587

2588
  gclog_or_tty->print_cr("  done");
2589
  gclog_or_tty->flush();
2590 2591
}

2592 2593
#endif // PRODUCT

2594
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2595 2596 2597
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2598 2599 2600
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2601 2602 2603
  _nextMarkBitMap->clearRange(mr);
}

2604 2605 2606 2607 2608
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2609 2610 2611 2612 2613 2614 2615 2616
HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2617
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2643 2644 2645 2646
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2647
    if (verbose_low()) {
2648 2649 2650 2651
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);
2652
    }
2653

2654 2655
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2656 2657 2658 2659 2660
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2661
      assert(_finger >= end, "the finger should have moved forward");
2662

2663
      if (verbose_low()) {
2664 2665
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);
2666
      }
2667 2668

      if (limit > bottom) {
2669
        if (verbose_low()) {
2670 2671
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
2672
        }
2673 2674
        return curr_region;
      } else {
2675 2676
        assert(limit == bottom,
               "the region limit should be at bottom");
2677
        if (verbose_low()) {
2678 2679
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
2680
        }
2681 2682 2683 2684 2685
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2686
      assert(_finger > finger, "the finger should have moved forward");
2687
      if (verbose_low()) {
2688 2689 2690 2691
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);
2692
      }
2693 2694 2695 2696 2697 2698 2699 2700 2701

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2751

2752 2753
  virtual void do_object(oop obj) {
    do_object_work(obj);
2754
  }
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
    for (int i = 0; i < (int) _max_task_num; i += 1) {
      cl.set_phase(VerifyNoCSetOopsQueues, i);
      OopTaskQueue* queue = _task_queues->queue(i);
      queue->oops_do(&cl);
    }
2779 2780
  }

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
    assert(parallel_marking_threads() <= _max_task_num, "sanity");
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
2827
}
2828
#endif // PRODUCT
2829

2830
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
2831 2832
  _markStack.setEmpty();
  _markStack.clear_overflow();
2833 2834 2835 2836 2837
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
2838 2839 2840 2841 2842 2843 2844 2845
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;

 public:
  AggregateCountDataHRClosure(ConcurrentMark *cm,
                              BitMap* cm_card_bm,
                              size_t max_task_num) :
    _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num) { }

  bool is_card_aligned(HeapWord* p) {
    return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
  }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

    assert(is_card_aligned(start), "sanity");
    assert(is_card_aligned(end), "sanity");

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

    // If ntams is not card aligned then we bump the index for
    // limit so that we get the card spanning ntams.
    if (!is_card_aligned(limit)) {
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
2909
    uint hrs_index = hr->hrs_index();
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
    size_t marked_bytes = 0;

    for (int i = 0; (size_t)i < _max_task_num; i += 1) {
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

      // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
        // parameter. If does, however, have an early exit if
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
                           size_t max_task_num,
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num),
    _active_workers(n_workers) { }

  void work(uint worker_id) {
    AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
                                           _max_task_num, n_workers);

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3014
  uint max_regions = _g1h->max_regions();
3015 3016 3017 3018 3019 3020 3021 3022 3023
  assert(_max_task_num != 0, "unitialized");

  for (int i = 0; (size_t) i < _max_task_num; i += 1) {
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3024
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3025 3026 3027 3028
    task_card_bm->clear();
  }
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3043 3044
  // Clear the liveness counting data
  clear_all_count_data();
3045 3046
  // Empty mark stack
  clear_marking_state();
3047
  for (int i = 0; i < (int)_max_task_num; ++i) {
3048
    _tasks[i]->clear_region_fields();
3049
  }
3050 3051 3052 3053
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3054 3055 3056 3057 3058
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3097
                "(%8.2f s marking).",
3098
                cmThread()->vtime_accum(),
3099
                cmThread()->vtime_mark_accum());
3100 3101
}

T
tonyp 已提交
3102 3103 3104 3105
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3106
// We take a break if someone is trying to stop the world.
3107
bool ConcurrentMark::do_yield_check(uint worker_id) {
3108
  if (should_yield()) {
3109
    if (worker_id == 0) {
3110
      _g1h->g1_policy()->record_concurrent_pause();
3111
    }
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3130 3131
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
    gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
                           _task_id, (void*) obj);
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3162 3163 3164 3165 3166 3167 3168 3169 3170
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3171 3172
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3173 3174 3175

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3176 3177
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3178

3179 3180 3181 3182 3183
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3210 3211 3212 3213 3214
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3215

3216
  if (G1UseConcMarkReferenceProcessing) {
3217
    _ref_processor = g1h->ref_processor_cm();
3218
    assert(_ref_processor != NULL, "should not be NULL");
3219
  }
3220
}
3221 3222

void CMTask::setup_for_region(HeapRegion* hr) {
3223 3224 3225 3226 3227
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3228

3229
  if (_cm->verbose_low()) {
3230 3231
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);
3232
  }
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3245
    if (_cm->verbose_low()) {
3246 3247 3248
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
3249
    }
3250 3251 3252 3253 3254 3255 3256
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3257
    assert(limit >= _finger, "peace of mind");
3258
  } else {
3259
    assert(limit < _region_limit, "only way to get here");
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3277
  assert(_curr_region != NULL, "invariant");
3278
  if (_cm->verbose_low()) {
3279 3280
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
3281
  }
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3302
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3303
  guarantee(nextMarkBitMap != NULL, "invariant");
3304

3305
  if (_cm->verbose_low()) {
3306
    gclog_or_tty->print_cr("[%d] resetting", _task_id);
3307
  }
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3351 3352 3353
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3354 3355 3356 3357
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3358
  if (has_aborted()) return;
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3375
  if (!concurrent()) return;
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3388
  if (_words_scanned >= _words_scanned_limit) {
3389
    ++_clock_due_to_scanning;
3390 3391
  }
  if (_refs_reached >= _refs_reached_limit) {
3392
    ++_clock_due_to_marking;
3393
  }
3394 3395 3396 3397 3398 3399

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3400 3401 3402 3403 3404 3405 3406
      gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                        "scanned = %d%s, refs reached = %d%s",
                        _task_id, last_interval_ms,
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3424
    _has_timed_out = true;
3425 3426 3427 3428 3429 3430 3431 3432
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3433
    if (_cm->verbose_low()) {
3434 3435
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
3436
    }
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3459
  if (_cm->verbose_medium()) {
3460
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3461
  }
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3487 3488 3489 3490
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
                               _task_id);
      }
3491 3492 3493 3494
      set_has_aborted();
    } else {
      // the transfer was successful

3495
      if (_cm->verbose_medium()) {
3496 3497
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
3498
      }
3499
      statsOnly( int tmp_size = _cm->mark_stack_size();
3500
                 if (tmp_size > _global_max_size) {
3501
                   _global_max_size = tmp_size;
3502
                 }
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3517 3518
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3519 3520 3521 3522
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3523
    if (_cm->verbose_medium()) {
3524 3525
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
3526
    }
3527 3528 3529 3530
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3531
      assert(success, "invariant");
3532 3533 3534
    }

    statsOnly( int tmp_size = _task_queue->size();
3535
               if (tmp_size > _local_max_size) {
3536
                 _local_max_size = tmp_size;
3537
               }
3538 3539 3540 3541 3542 3543 3544 3545
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3546
  if (has_aborted()) return;
3547 3548 3549 3550 3551

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3552
  if (partially) {
3553
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3554
  } else {
3555
    target_size = 0;
3556
  }
3557 3558

  if (_task_queue->size() > target_size) {
3559
    if (_cm->verbose_high()) {
3560 3561
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);
3562
    }
3563 3564 3565 3566 3567 3568

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3569
      if (_cm->verbose_high()) {
3570 3571
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);
3572
      }
3573

3574
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3575
      assert(!_g1h->is_on_master_free_list(
3576
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3577 3578 3579

      scan_object(obj);

3580
      if (_task_queue->size() <= target_size || has_aborted()) {
3581
        ret = false;
3582
      } else {
3583
        ret = _task_queue->pop_local(obj);
3584
      }
3585 3586
    }

3587
    if (_cm->verbose_high()) {
3588 3589
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
3590
    }
3591 3592 3593 3594
  }
}

void CMTask::drain_global_stack(bool partially) {
3595
  if (has_aborted()) return;
3596 3597 3598

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3599
  assert(partially || _task_queue->size() == 0, "invariant");
3600 3601 3602 3603 3604 3605 3606 3607

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3608
  if (partially) {
3609
    target_size = _cm->partial_mark_stack_size_target();
3610
  } else {
3611
    target_size = 0;
3612
  }
3613 3614

  if (_cm->mark_stack_size() > target_size) {
3615
    if (_cm->verbose_low()) {
3616 3617
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);
3618
    }
3619 3620 3621 3622 3623 3624

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3625
    if (_cm->verbose_low()) {
3626 3627
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
3628
    }
3629 3630 3631 3632 3633 3634 3635 3636
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3637
  if (has_aborted()) return;
3638 3639 3640 3641 3642 3643 3644 3645 3646

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3647
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3648
    satb_mq_set.set_par_closure(_task_id, &oc);
3649
  } else {
3650
    satb_mq_set.set_closure(&oc);
3651
  }
3652 3653 3654

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3655
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3656 3657
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3658
      if (_cm->verbose_medium()) {
3659
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3660
      }
3661 3662 3663 3664 3665 3666
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3667
      if (_cm->verbose_medium()) {
3668
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3669
      }
3670 3671 3672 3673 3674 3675 3676
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3677
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3678
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
3679
    } else {
3680
      satb_mq_set.iterate_closure_all_threads();
3681
    }
3682 3683 3684 3685
  }

  _draining_satb_buffers = false;

3686 3687 3688
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3689

3690
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3691
    satb_mq_set.set_par_closure(_task_id, NULL);
3692
  } else {
3693
    satb_mq_set.set_closure(NULL);
3694
  }
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3729
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3788
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3800 3801 3802 3803 3804 3805
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
      (local queues, stacks, fingers etc.)  are re-initialised so that
      when do_marking_step() completes, the marking phase can
      immediately restart.
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

3842 3843 3844
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
3845 3846
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
3847 3848

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3849 3850 3851
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
3852

3853 3854
  assert(!_claimed,
         "only one thread should claim this task at any one time");
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
3877
  _has_timed_out = false;
3878 3879 3880 3881
  _draining_satb_buffers = false;

  ++_calls;

3882
  if (_cm->verbose_low()) {
3883 3884 3885
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);
3886
  }
3887 3888 3889 3890 3891

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3892 3893
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
3894 3895

  if (_cm->has_overflown()) {
3896 3897 3898 3899
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
3915 3916
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

3932
      if (_cm->verbose_low()) {
3933 3934 3935 3936
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);
3937
      }
3938 3939 3940

      // Let's iterate over the bitmap of the part of the
      // region that is left.
3941
      if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3942 3943 3944 3945 3946
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
3947
        assert(has_aborted(), "currently the only way to do so");
3948 3949 3950 3951 3952
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
3953
        assert(_finger != NULL, "invariant");
3954 3955 3956 3957 3958 3959 3960 3961

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
3962 3963 3964 3965
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
3966
          giveup_current_region();
3967
        } else {
3968
          move_finger_to(new_finger);
3969
        }
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
3987 3988 3989 3990
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
3991
      if (_cm->verbose_low()) {
3992
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
3993
      }
3994 3995 3996 3997 3998
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

3999
        if (_cm->verbose_low()) {
4000 4001 4002
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);
4003
        }
4004 4005

        setup_for_region(claimed_region);
4006
        assert(_curr_region == claimed_region, "invariant");
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4017 4018
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4019 4020 4021 4022 4023
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4024
    // tasks might be pushing objects to it concurrently.
4025 4026
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4027

4028
    if (_cm->verbose_low()) {
4029
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4030
    }
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4043
  if (do_stealing && !has_aborted()) {
4044 4045 4046 4047
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4048
    // tasks might be pushing objects to it concurrently.
4049 4050
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4051

4052
    if (_cm->verbose_low()) {
4053
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4054
    }
4055 4056 4057 4058 4059 4060

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4061
        if (_cm->verbose_medium()) {
4062 4063
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);
4064
        }
4065 4066 4067

        statsOnly( ++_steals );

4068 4069
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4082 4083 4084 4085 4086 4087 4088 4089 4090
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4091 4092
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4093
  if (do_termination && !has_aborted()) {
4094
    // We cannot check whether the global stack is empty, since other
4095
    // tasks might be concurrently pushing objects on it.
4096 4097 4098
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4099

4100
    if (_cm->verbose_low()) {
4101
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4102
    }
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
4119
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4120 4121 4122 4123 4124 4125 4126 4127
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4128 4129 4130 4131 4132 4133 4134 4135
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4136

4137
      if (_cm->verbose_low()) {
4138
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4139
      }
4140 4141 4142 4143
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4144 4145 4146 4147
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] apparently there is more work to do",
                               _task_id);
      }
4148 4149 4150 4151 4152 4153 4154 4155 4156

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4157
  set_cm_oop_closure(NULL);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4168
    if (_has_timed_out) {
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4184
      if (_cm->verbose_low()) {
4185
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4186
      }
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4209
      if (_cm->has_aborted()) {
4210 4211
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
4212
      }
4213 4214
    }
  } else {
4215
    if (_cm->verbose_low()) {
4216 4217 4218
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4219
    }
4220 4221 4222 4223 4224 4225 4226
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
4227 4228
               size_t* marked_bytes,
               BitMap* card_bm,
4229 4230 4231 4232 4233 4234 4235 4236
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4237
    _cm_oop_closure(NULL),
4238 4239
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4240 4241
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4242 4243 4244 4245 4246 4247

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4302
                 HeapRegion::GrainBytes);
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4313 4314 4315 4316 4317 4318 4319 4320 4321
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4333
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}