concurrentMark.cpp 173.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "code/codeCache.hpp"
28
#include "gc_implementation/g1/concurrentMark.inline.hpp"
29 30 31
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
32
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
35
#include "gc_implementation/g1/g1RemSet.hpp"
36
#include "gc_implementation/g1/heapRegion.inline.hpp"
37 38
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
39
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
40 41 42
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
43
#include "memory/allocation.hpp"
44 45 46 47 48 49
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
50
#include "runtime/prefetch.inline.hpp"
Z
zgu 已提交
51
#include "services/memTracker.hpp"
52

53
// Concurrent marking bit map wrapper
54

55 56
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
57
  _shifter(shifter) {
58 59
  _bmStartWord = 0;
  _bmWordSize = 0;
60 61
}

62 63
HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
                                               const HeapWord* limit) const {
64 65 66 67
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
68 69 70
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
71 72 73 74 75 76 77 78 79
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

80 81
HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
                                                 const HeapWord* limit) const {
82
  size_t addrOffset = heapWordToOffset(addr);
83 84 85
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
101
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
102
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
103
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
104
         "size inconsistency");
105 106
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
107 108 109
}
#endif

110 111 112 113
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
132
  _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
133 134 135 136 137 138
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

185 186 187 188 189 190
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
191
  }
192 193 194 195 196 197 198 199 200 201 202 203
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
204
  _saved_index = -1;
205
  _should_expand = false;
206
  NOT_PRODUCT(_max_depth = 0);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
253 254 255
}

CMMarkStack::~CMMarkStack() {
256
  if (_base != NULL) {
257 258
    _base = NULL;
    _virtual_space.release();
259
  }
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
299
        int  ind = index + i;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
322
    assert(ind < _capacity, "By overflow test above.");
323 324
    _base[ind] = ptr_arr[i];
  }
325
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
326 327 328 329 330 331 332 333 334 335
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
336
    jint  new_ind = index - k;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
362 363
      res = false;
      break;
364 365 366 367 368 369
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

387
void CMMarkStack::oops_do(OopClosure* f) {
388 389 390
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
391 392 393 394 395
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
396
  return _g1h->is_obj_ill(obj);
397 398
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

477 478 479 480
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

481 482
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
483 484
}

485 486
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
487 488
  _markBitMap1(log2_intptr(MinObjAlignment)),
  _markBitMap2(log2_intptr(MinObjAlignment)),
489
  _parallel_marking_threads(0),
490
  _max_parallel_marking_threads(0),
491 492 493 494
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
495
  _cleanup_list("Cleanup List"),
496 497 498 499
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
500

501 502 503 504 505 506
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

507
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
508 509
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
510 511
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
512 513 514

  _has_overflown(false),
  _concurrent(false),
515
  _has_aborted(false),
516
  _aborted_gc_id(GCId::undefined()),
517 518
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
519 520 521 522 523 524 525 526

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
527 528 529 530

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
531 532
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
533 534
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
535
    verbose_level = no_verbose;
536 537
  }
  if (verbose_level > high_verbose) {
538
    verbose_level = high_verbose;
539
  }
540 541
  _verbose_level = verbose_level;

542
  if (verbose_low()) {
543
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
544
                           "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
545
  }
546

547 548 549 550 551 552 553 554
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
555 556

  // Create & start a ConcurrentMark thread.
557 558 559
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
560 561 562
  if (_cmThread->osthread() == NULL) {
      vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
  }
563

564
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
565 566
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
567 568

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
569
  satb_qs.set_buffer_size(G1SATBBufferSize);
570

571 572
  _root_regions.init(_g1h, this);

573
  if (ConcGCThreads > ParallelGCThreads) {
574 575
    warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
            "than ParallelGCThreads (" UINTX_FORMAT ").",
576 577
            ConcGCThreads, ParallelGCThreads);
    return;
578 579 580 581
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
582 583 584 585
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
586
  } else {
587 588
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
589 590 591
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
592
    } else if (G1MarkingOverheadPercent > 0) {
593 594
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
595
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
596
      double overall_cm_overhead =
J
johnc 已提交
597 598
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
599 600 601 602 603 604 605 606
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

607
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
608 609 610
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
611 612 613 614
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
615 616 617 618
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

619 620 621 622
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

623
    if (parallel_marking_threads() > 1) {
624
      _cleanup_task_overhead = 1.0;
625
    } else {
626
      _cleanup_task_overhead = marking_task_overhead();
627
    }
628 629 630 631 632 633 634 635 636 637 638
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

639
    guarantee(parallel_marking_threads() > 0, "peace of mind");
640
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
641
         _max_parallel_marking_threads, false, true);
642
    if (_parallel_workers == NULL) {
643
      vm_exit_during_initialization("Failed necessary allocation.");
644 645 646
    } else {
      _parallel_workers->initialize_workers();
    }
647 648
  }

649 650 651 652 653 654 655 656 657
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
658
              mark_stack_size, (uintx) 1, MarkStackSizeMax);
659 660 661 662 663 664 665 666 667 668
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
669
                  MarkStackSize, (uintx) 1, MarkStackSizeMax);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

725
  // so that the call below can read a sensible value
726
  _heap_start = (HeapWord*) heap_rs.base();
727
  set_non_marking_state();
728
  _completed_initialization = true;
729 730 731 732
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
733
  // update _heap_end.
734
  if (!concurrent_marking_in_progress() && !force) return;
735 736

  MemRegion committed = _g1h->g1_committed();
737
  assert(committed.start() == _heap_start, "start shouldn't change");
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

759 760 761 762
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
763

764 765
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
766

767
  if (verbose_low()) {
768
    gclog_or_tty->print_cr("[global] resetting");
769
  }
770 771 772 773

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
774
  for (uint i = 0; i < _max_worker_id; ++i) {
775
    _tasks[i]->reset(_nextMarkBitMap);
776
  }
777 778 779 780 781 782

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

800
void ConcurrentMark::set_concurrency(uint active_tasks) {
801
  assert(active_tasks <= _max_worker_id, "we should not have more");
802 803 804 805 806 807 808

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
809 810 811 812
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
813 814 815

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
816
  for (uint i = 0; i < _max_worker_id; ++i)
817 818 819 820 821 822 823 824
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
825
    assert(!concurrent_marking_in_progress(), "invariant");
826
    assert(out_of_regions(),
827
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
828
                   p2i(_finger), p2i(_heap_end)));
829 830 831 832 833 834 835
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
836
  reset_marking_state();
837 838 839 840 841
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
842 843
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
844 845 846
}

void ConcurrentMark::clearNextBitmap() {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
869
    if (next > end) {
870
      next = end;
871
    }
872 873 874 875 876 877 878 879 880 881 882 883 884
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

885 886 887
  // Clear the liveness counting data
  clear_all_count_data();

888 889 890
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
891 892 893 894 895 896
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
897
      r->note_start_of_marking();
898 899 900 901 902 903 904 905 906 907 908
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

909
#ifndef PRODUCT
910
  if (G1PrintReachableAtInitialMark) {
911
    print_reachable("at-cycle-start",
912
                    VerifyOption_G1UsePrevMarking, true /* all */);
913
  }
914
#endif
915 916 917

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
918 919 920 921

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
922 923 924 925 926 927
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

928 929 930 931 932 933 934 935
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

936 937 938 939
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
940
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
941 942

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
943 944 945 946
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
947

948 949
  _root_regions.prepare_for_scan();

950 951 952 953 954 955 956
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
976

977
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
978
  if (verbose_low()) {
979
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
980
  }
981

982
  if (concurrent()) {
P
pliden 已提交
983
    SuspendibleThreadSet::leave();
984
  }
985 986 987

  bool barrier_aborted = !_first_overflow_barrier_sync.enter();

988
  if (concurrent()) {
P
pliden 已提交
989
    SuspendibleThreadSet::join();
990
  }
991 992 993
  // at this point everyone should have synced up and not be doing any
  // more work

994
  if (verbose_low()) {
995 996 997 998 999 1000 1001 1002 1003 1004 1005
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
    }
  }

  if (barrier_aborted) {
    // If the barrier aborted we ignore the overflow condition and
    // just abort the whole marking phase as quickly as possible.
    return;
1006
  }
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
1026
        gclog_or_tty->gclog_stamp(concurrent_gc_id());
1027 1028
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1029 1030 1031 1032 1033 1034 1035
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1036
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1037
  if (verbose_low()) {
1038
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1039
  }
1040

1041
  if (concurrent()) {
P
pliden 已提交
1042
    SuspendibleThreadSet::leave();
1043
  }
1044 1045 1046

  bool barrier_aborted = !_second_overflow_barrier_sync.enter();

1047
  if (concurrent()) {
P
pliden 已提交
1048
    SuspendibleThreadSet::join();
1049
  }
1050
  // at this point everything should be re-initialized and ready to go
1051

1052
  if (verbose_low()) {
1053 1054 1055 1056 1057
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
    }
1058
  }
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1087 1088 1089 1090 1091 1092
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1093
  void work(uint worker_id) {
1094 1095
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1096
    ResourceMark rm;
1097 1098 1099

    double start_vtime = os::elapsedVTime();

P
pliden 已提交
1100
    SuspendibleThreadSet::join();
1101

1102 1103
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1104 1105 1106 1107 1108
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1109 1110 1111
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1112 1113
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1114

1115 1116 1117 1118 1119 1120
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1121
        bool ret = _cm->do_yield_check(worker_id);
1122 1123 1124 1125 1126

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
P
pliden 已提交
1127
          SuspendibleThreadSet::leave();
1128
          os::sleep(Thread::current(), sleep_time_ms, false);
P
pliden 已提交
1129
          SuspendibleThreadSet::join();
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1145
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1146

P
pliden 已提交
1147
    SuspendibleThreadSet::leave();
1148 1149

    double end_vtime = os::elapsedVTime();
1150
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1151 1152 1153 1154 1155 1156 1157 1158 1159
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1160 1161
// Calculates the number of active workers for a concurrent
// phase.
1162
uint ConcurrentMark::calc_parallel_marking_threads() {
1163
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1164
    uint n_conc_workers = 0;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1179 1180
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1181
  }
1182 1183 1184 1185
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1186 1187
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
1227 1228 1229
  // Start of concurrent marking.
  ClassLoaderDataGraph::clear_claimed_marks();

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1240
    if (use_parallel_marking_threads()) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1254 1255 1256 1257 1258 1259 1260 1261 1262
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1263
  force_overflow_conc()->init();
1264 1265 1266 1267 1268 1269

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1270
  uint active_workers = MAX2(1U, parallel_marking_threads());
1271

1272 1273
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1274 1275

  CMConcurrentMarkingTask markingTask(this, cmThread());
1276
  if (use_parallel_marking_threads()) {
1277
    _parallel_workers->set_active_workers((int)active_workers);
1278
    // Don't set _n_par_threads because it affects MT in process_roots()
1279 1280
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1281
    _parallel_workers->run_task(&markingTask);
1282
  } else {
1283
    markingTask.work(0);
1284
  }
1285 1286 1287 1288 1289 1290 1291
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1292

1293 1294 1295 1296 1297 1298 1299 1300
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1301 1302
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1303 1304 1305
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1306 1307
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1308
  }
1309
  g1h->check_bitmaps("Remark Start");
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1325
    if (G1TraceMarkStackOverflow) {
1326
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1327
    }
1328 1329 1330 1331 1332

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1333 1334
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1335 1336 1337 1338 1339
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1340
  } else {
1341 1342 1343 1344
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1345
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1346
    // We're done with marking.
1347 1348
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1349 1350
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1351 1352

    if (VerifyDuringGC) {
1353 1354
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1355 1356
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1357
    }
1358
    g1h->check_bitmaps("Remark End");
1359
    assert(!restart_for_overflow(), "sanity");
1360 1361
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1362 1363
  }

1364 1365 1366 1367 1368
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1369 1370 1371 1372 1373 1374 1375
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1376 1377 1378

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1379 1380
}

1381 1382 1383 1384
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1385
  G1CollectedHeap* _g1h;
1386
  ConcurrentMark* _cm;
1387 1388
  CardTableModRefBS* _ct_bs;

1389 1390 1391
  BitMap* _region_bm;
  BitMap* _card_bm;

1392
  // Takes a region that's not empty (i.e., it has at least one
1393 1394 1395 1396 1397 1398 1399
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1400
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1401 1402
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1403
      _region_bm->par_at_put(index, true);
1404 1405
    } else {
      // Starts humongous case: calculate how many regions are part of
1406
      // this humongous region and then set the bit range.
1407
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1408
      _region_bm->par_at_put_range(index, end_index, true);
1409 1410 1411
    }
  }

1412
public:
1413
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1414
                         BitMap* region_bm, BitMap* card_bm):
1415 1416 1417
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1418 1419 1420 1421 1422 1423 1424 1425 1426
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1427
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1428
                         BitMap* region_bm, BitMap* card_bm) :
1429
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1430 1431
    _bm(bm), _region_marked_bytes(0) { }

1432 1433
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1434
    if (hr->continuesHumongous()) {
1435 1436 1437 1438 1439 1440 1441
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1442 1443
      return false;
    }
1444

1445 1446
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1447

1448
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1449
           err_msg("Preconditions not met - "
1450
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1451
                   p2i(start), p2i(ntams), p2i(hr->end())));
1452

1453
    // Find the first marked object at or after "start".
1454
    start = _bm->getNextMarkedWordAddress(start, ntams);
1455

1456 1457
    size_t marked_bytes = 0;

1458
    while (start < ntams) {
1459 1460
      oop obj = oop(start);
      int obj_sz = obj->size();
1461
      HeapWord* obj_end = start + obj_sz;
1462

1463
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1475

1476 1477
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1478 1479

      // Add the size of this object to the number of marked bytes.
1480
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1481

1482
      // Find the next marked object after this one.
1483
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1484
    }
1485 1486 1487

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1502 1503 1504

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1505 1506 1507 1508
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1509
      set_bit_for_region(hr);
1510
    }
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1528
  G1CollectedHeap* _g1h;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1541
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1542 1543 1544 1545 1546
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1547 1548
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1586
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1597
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1598 1599 1600 1601 1602

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1603 1604 1605 1606
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1624 1625 1626 1627
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1628
        }
1629
        failures += 1;
1630 1631 1632
      }
    }

1633 1634 1635
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1636
                             HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1637 1638 1639 1640 1641 1642
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1643
    // find the first violating region by returning true.
1644 1645
    return false;
  }
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
};

class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1694
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1711

1712
  int failures() const { return _failures; }
1713 1714
};

1715 1716 1717 1718 1719 1720
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1721

1722
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1723
 public:
1724
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1725 1726
                              BitMap* region_bm,
                              BitMap* card_bm) :
1727
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1745
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1746 1747 1748 1749 1750 1751

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1774
    }
1775 1776 1777 1778 1779 1780 1781 1782 1783

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1784 1785 1786 1787

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1788 1789 1790 1791
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1792
  uint    _n_workers;
1793

1794
public:
1795 1796 1797 1798 1799
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1800
    // Use the value already set as the number of active threads
1801
    // in the call to run_task().
1802 1803 1804 1805
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1806
    } else {
1807
      _n_workers = 1;
1808
    }
1809 1810
  }

1811
  void work(uint worker_id) {
1812 1813
    assert(worker_id < _n_workers, "invariant");

1814
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1815 1816 1817
                                                _actual_region_bm,
                                                _actual_card_bm);

1818
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1819 1820 1821
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1822
                                            HeapRegion::FinalCountClaimValue);
1823
    } else {
1824
      _g1h->heap_region_iterate(&final_update_cl);
1825 1826 1827 1828 1829 1830 1831 1832 1833
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  size_t _max_live_bytes;
1834
  uint _regions_claimed;
1835
  size_t _freed_bytes;
T
tonyp 已提交
1836
  FreeRegionList* _local_cleanup_list;
1837 1838
  HeapRegionSetCount _old_regions_removed;
  HeapRegionSetCount _humongous_regions_removed;
T
tonyp 已提交
1839
  HRRSCleanupTask* _hrrs_cleanup_task;
1840 1841 1842 1843 1844
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1845
                             FreeRegionList* local_cleanup_list,
1846
                             HRRSCleanupTask* hrrs_cleanup_task) :
1847
    _g1(g1),
1848 1849 1850 1851
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
1852 1853
    _old_regions_removed(),
    _humongous_regions_removed(),
1854 1855
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1856
  size_t freed_bytes() { return _freed_bytes; }
1857 1858
  const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1859

1860
  bool doHeapRegion(HeapRegion *hr) {
1861 1862 1863
    if (hr->continuesHumongous()) {
      return false;
    }
1864 1865
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1866 1867 1868 1869 1870
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

    if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
      _freed_bytes += hr->used();
      hr->set_containing_set(NULL);
      if (hr->isHumongous()) {
        assert(hr->startsHumongous(), "we should only see starts humongous");
        _humongous_regions_removed.increment(1u, hr->capacity());
        _g1->free_humongous_region(hr, _local_cleanup_list, true);
      } else {
        _old_regions_removed.increment(1u, hr->capacity());
        _g1->free_region(hr, _local_cleanup_list, true);
      }
    } else {
      hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
    }

1887 1888 1889 1890
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1891 1892 1893
    }
    return false;
  }
1894 1895

  size_t max_live_bytes() { return _max_live_bytes; }
1896
  uint regions_claimed() { return _regions_claimed; }
1897 1898 1899 1900 1901 1902
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1903

1904 1905 1906 1907
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1908 1909
  FreeRegionList* _cleanup_list;

1910 1911
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1912
                   FreeRegionList* cleanup_list) :
1913
    AbstractGangTask("G1 note end"), _g1h(g1h),
1914
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1915

1916
  void work(uint worker_id) {
1917
    double start = os::elapsedTime();
T
tonyp 已提交
1918 1919
    FreeRegionList local_cleanup_list("Local Cleanup List");
    HRRSCleanupTask hrrs_cleanup_task;
1920
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
T
tonyp 已提交
1921
                                           &hrrs_cleanup_task);
1922
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1923
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1924
                                            _g1h->workers()->active_workers(),
1925
                                            HeapRegion::NoteEndClaimValue);
1926 1927 1928 1929 1930
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1931
    // Now update the lists
1932
    _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1933 1934
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1935
      _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1936 1937
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1938

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
1949
        FreeRegionListIterator iter(&local_cleanup_list);
1950 1951 1952 1953 1954 1955
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

1956
      _cleanup_list->add_ordered(&local_cleanup_list);
T
tonyp 已提交
1957 1958 1959
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1975
    _region_bm(region_bm), _card_bm(card_bm) { }
1976

1977
  void work(uint worker_id) {
1978
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1979
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1980
                       HeapRegion::ScrubRemSetClaimValue);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

2000 2001
  g1h->verify_region_sets_optional();

2002 2003 2004
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2005 2006
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
2007
  }
2008
  g1h->check_bitmaps("Cleanup Start");
2009

2010 2011 2012 2013 2014
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
2015 2016
  HeapRegionRemSet::reset_for_cleanup_tasks();

2017
  uint n_workers;
2018

2019
  // Do counting once more with the world stopped for good measure.
2020 2021
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

2022
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2023
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2024 2025
           "sanity check");

2026 2027
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2028
    assert(g1h->n_par_threads() == n_workers,
2029
           "Should not have been reset");
2030
    g1h->workers()->run_task(&g1_par_count_task);
2031
    // Done with the parallel phase so reset to 0.
2032
    g1h->set_par_threads(0);
2033

2034
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2035
           "sanity check");
2036
  } else {
2037
    n_workers = 1;
2038 2039 2040
    g1_par_count_task.work(0);
  }

2041 2042 2043 2044 2045
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
2046 2047
    BitMap expected_region_bm(_region_bm.size(), true);
    BitMap expected_card_bm(_card_bm.size(), true);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2070 2071 2072 2073 2074 2075 2076
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2077 2078 2079 2080 2081
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2082 2083 2084 2085 2086 2087
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2088
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2089
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2090
    g1h->set_par_threads((int)n_workers);
2091 2092
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2093 2094 2095

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2096 2097 2098
  } else {
    g1_par_note_end_task.work(0);
  }
2099
  g1h->check_gc_time_stamps();
2100 2101 2102 2103 2104 2105 2106

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2107 2108 2109 2110 2111 2112

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2113
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2114
      g1h->set_par_threads((int)n_workers);
2115 2116
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2117 2118 2119 2120

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2132
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2133 2134 2135 2136 2137

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2138
  if (G1Log::fine()) {
2139 2140 2141 2142 2143 2144
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2145 2146 2147 2148
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

J
johnc 已提交
2149
  if (VerifyDuringGC) {
2150 2151
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2152 2153
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2154
  }
2155
  g1h->check_bitmaps("Cleanup End");
2156 2157

  g1h->verify_region_sets_optional();
2158 2159 2160 2161 2162 2163

  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

  // Clean out dead classes and update Metaspace sizes.
2164 2165 2166
  if (ClassUnloadingWithConcurrentMark) {
    ClassLoaderDataGraph::purge();
  }
2167 2168 2169 2170 2171 2172
  MetaspaceGC::compute_new_size();

  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

S
sla 已提交
2173
  g1h->trace_heap_after_concurrent_cycle();
2174 2175 2176 2177 2178
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2179 2180
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2181
  _cleanup_list.verify_optional();
T
tonyp 已提交
2182
  FreeRegionList tmp_free_list("Tmp Free List");
2183 2184 2185

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2186
                           "cleanup list has %u entries",
2187 2188 2189 2190 2191 2192 2193
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
2194
    assert(hr != NULL, "Got NULL from a non-empty list");
2195
    hr->par_clear();
2196
    tmp_free_list.add_ordered(hr);
2197 2198 2199 2200 2201 2202 2203

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2204
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2205 2206 2207
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2208 2209
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2210
                               tmp_free_list.length(),
2211 2212 2213 2214 2215
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2216
        g1h->secondary_free_list_add(&tmp_free_list);
2217 2218 2219 2220 2221 2222 2223
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2224 2225 2226
      }
    }
  }
T
tonyp 已提交
2227
  assert(tmp_free_list.is_empty(), "post-condition");
2228 2229
}

2230 2231
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2232

2233 2234 2235 2236 2237
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2252 2253 2254 2255 2256
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2257
 public:
2258 2259 2260
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2261
    assert(_ref_counter_limit > 0, "sanity");
2262
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2263 2264 2265 2266 2267 2268 2269 2270 2271
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2272
      if (_cm->verbose_high()) {
2273
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2274
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2275
                               _task->worker_id(), p2i(p), p2i((void*) obj));
2276
      }
2277 2278 2279 2280 2281

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2298 2299 2300
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2301 2302
                                 false      /* do_termination */,
                                 _is_serial);
2303 2304 2305 2306
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2307
      if (_cm->verbose_high()) {
2308
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2309
      }
2310 2311 2312 2313
    }
  }
};

2314 2315 2316 2317 2318 2319 2320 2321
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2322
  ConcurrentMark* _cm;
2323
  CMTask*         _task;
2324
  bool            _is_serial;
2325
 public:
2326 2327 2328
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2329
  }
2330 2331 2332

  void do_void() {
    do {
2333
      if (_cm->verbose_high()) {
2334 2335
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2336
      }
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2354 2355

      _task->do_marking_step(1000000000.0 /* something very large */,
2356 2357
                             true         /* do_termination */,
                             _is_serial);
2358 2359 2360 2361
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2362 2363 2364 2365
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2366 2367 2368 2369 2370 2371 2372
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2373
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2374 2375 2376
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2377 2378
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2379 2380 2381 2382 2383 2384

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2385
class G1CMRefProcTaskProxy: public AbstractGangTask {
2386 2387 2388 2389 2390 2391
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2392
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2393
                     G1CollectedHeap* g1h,
2394
                     ConcurrentMark* cm) :
2395
    AbstractGangTask("Process reference objects in parallel"),
2396
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2397 2398 2399
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2400

2401
  virtual void work(uint worker_id) {
2402
    CMTask* task = _cm->task(worker_id);
2403
    G1CMIsAliveClosure g1_is_alive(_g1h);
2404 2405
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2406

2407
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2408 2409 2410
  }
};

2411
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2412
  assert(_workers != NULL, "Need parallel worker threads.");
2413
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2414

2415
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2416

2417 2418 2419 2420 2421
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2422 2423 2424 2425 2426
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2427
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2428 2429 2430 2431
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2432
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2433
    AbstractGangTask("Enqueue reference objects in parallel"),
2434
    _enq_task(enq_task) { }
2435

2436 2437
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2438 2439 2440
  }
};

2441
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2442
  assert(_workers != NULL, "Need parallel worker threads.");
2443
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2444

2445
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2446

2447 2448 2449 2450 2451 2452 2453
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2454 2455 2456 2457 2458
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
}

// Helper class to get rid of some boilerplate code.
class G1RemarkGCTraceTime : public GCTraceTime {
  static bool doit_and_prepend(bool doit) {
    if (doit) {
      gclog_or_tty->put(' ');
    }
    return doit;
  }

 public:
  G1RemarkGCTraceTime(const char* title, bool doit)
    : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
        G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  }
};

2479
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2490 2491 2492
  ResourceMark rm;
  HandleMark   hm;

2493 2494 2495 2496 2497 2498 2499 2500
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2501
    if (G1Log::finer()) {
2502 2503
      gclog_or_tty->put(' ');
    }
2504
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2505

2506
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2507

2508 2509
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2510

2511
    // Set the soft reference policy
2512 2513
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2514

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2538
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2539

2540
    // Parallel processing task executor.
2541
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2542
                                              g1h->workers(), active_workers);
2543
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2544

2545 2546 2547 2548
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2549 2550 2551 2552 2553 2554 2555
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2556 2557 2558 2559 2560
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
2561 2562
                                          g1h->gc_timer_cm(),
                                          concurrent_gc_id());
S
sla 已提交
2563
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2564

2565 2566 2567
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2568

2569 2570
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2571

2572
    if (_markStack.overflow()) {
2573
      // This should have been done already when we tried to push an
2574 2575 2576
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2577

2578 2579 2580
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2581

2582
    rp->verify_no_references_recorded();
2583
    assert(!rp->discovery_enabled(), "Post condition");
2584 2585
  }

2586 2587 2588 2589 2590
  if (has_overflown()) {
    // We can not trust g1_is_alive if the marking stack overflowed
    return;
  }

2591 2592 2593
  assert(_markStack.isEmpty(), "Marking should have completed");

  // Unload Klasses, String, Symbols, Code Cache, etc.
2594 2595
  {
    G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2596

2597 2598
    if (ClassUnloadingWithConcurrentMark) {
      bool purged_classes;
2599

2600 2601 2602 2603
      {
        G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
        purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
      }
2604

2605 2606 2607 2608 2609
      {
        G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
        weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
      }
    }
2610

2611 2612 2613 2614
    if (G1StringDedup::is_enabled()) {
      G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
      G1StringDedup::unlink(&g1_is_alive);
    }
2615
  }
2616 2617 2618 2619 2620 2621 2622 2623
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
class CMObjectClosure;

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

class G1RemarkThreadsClosure : public ThreadClosure {
  CMObjectClosure _cm_obj;
  G1CMOopClosure _cm_cl;
  MarkingCodeBlobClosure _code_cl;
  int _thread_parity;
  bool _is_par;

 public:
  G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
    _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
    _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}

  void do_thread(Thread* thread) {
    if (thread->is_Java_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread* jt = (JavaThread*)thread;

        // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
        // however the liveness of oops reachable from nmethods have very complex lifecycles:
        // * Alive if on the stack of an executing method
        // * Weakly reachable otherwise
        // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
        // live by the SATB invariant but other oops recorded in nmethods may behave differently.
        jt->nmethods_do(&_code_cl);

        jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
      }
    } else if (thread->is_VM_thread()) {
      if (thread->claim_oops_do(_is_par, _thread_parity)) {
        JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
      }
    }
  }
};

2675 2676
class CMRemarkTask: public AbstractGangTask {
private:
2677 2678
  ConcurrentMark* _cm;
  bool            _is_serial;
2679
public:
2680
  void work(uint worker_id) {
2681 2682
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2683 2684
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2685
      task->record_start_time();
2686 2687 2688 2689 2690 2691 2692 2693
      {
        ResourceMark rm;
        HandleMark hm;

        G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
        Threads::threads_do(&threads_f);
      }

2694
      do {
2695
        task->do_marking_step(1000000000.0 /* something very large */,
2696 2697
                              true         /* do_termination       */,
                              _is_serial);
2698 2699 2700 2701 2702 2703 2704
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2705 2706
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2707
    _cm->terminator()->reset_for_reuse(active_workers);
2708
  }
2709 2710 2711 2712 2713 2714 2715
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2716 2717
  G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());

2718 2719
  g1h->ensure_parsability(false);

2720
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2721
    G1CollectedHeap::StrongRootsScope srs(g1h);
2722
    // this is remark, so we'll use up all active threads
2723
    uint active_workers = g1h->workers()->active_workers();
2724 2725
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2726
      active_workers = (uint) ParallelGCThreads;
2727 2728
      g1h->workers()->set_active_workers(active_workers);
    }
2729
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2730 2731 2732 2733
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2734

2735 2736 2737 2738
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2739
    g1h->set_par_threads(active_workers);
2740 2741 2742
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2743
    G1CollectedHeap::StrongRootsScope srs(g1h);
2744
    uint active_workers = 1;
2745
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2746

2747 2748 2749 2750 2751 2752 2753 2754
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2755 2756
    remarkTask.work(0);
  }
2757
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2758 2759 2760 2761 2762
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2763 2764 2765 2766

  print_stats();
}

2767 2768
#ifndef PRODUCT

2769
class PrintReachableOopClosure: public OopClosure {
2770 2771 2772
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2773
  VerifyOption     _vo;
2774
  bool             _all;
2775 2776

public:
2777 2778
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2779
                           bool          all) :
2780
    _g1h(G1CollectedHeap::heap()),
2781
    _out(out), _vo(vo), _all(all) { }
2782

2783 2784
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2785

2786 2787
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2788 2789 2790
    const char* str = NULL;
    const char* str2 = "";

2791 2792 2793 2794 2795
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2796
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2797
      guarantee(hr != NULL, "invariant");
2798 2799
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2800 2801

      if (over_tams) {
2802 2803
        str = " >";
        if (marked) {
2804
          str2 = " AND MARKED";
2805
        }
2806 2807
      } else if (marked) {
        str = " M";
2808
      } else {
2809
        str = " NOT";
2810
      }
2811 2812
    }

2813
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2814
                   p2i(p), p2i((void*) obj), str, str2);
2815 2816 2817
  }
};

2818
class PrintReachableObjectClosure : public ObjectClosure {
2819
private:
2820 2821 2822 2823 2824
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2825 2826

public:
2827 2828
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2829 2830
                              bool          all,
                              HeapRegion*   hr) :
2831 2832
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2833

2834
  void do_object(oop o) {
2835 2836
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2837 2838 2839 2840
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
2841
                     p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2842
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2843
      o->oop_iterate_no_header(&oopCl);
2844
    }
2845 2846 2847
  }
};

2848
class PrintReachableRegionClosure : public HeapRegionClosure {
2849
private:
2850 2851 2852 2853
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2854 2855 2856 2857 2858 2859

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2860
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2861
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2862
                   "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2863 2864 2865 2866 2867 2868
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
2869
      _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2870
      _out->cr();
2871
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2872 2873 2874
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2875 2876 2877 2878

    return false;
  }

2879 2880
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2881
                              bool          all) :
2882
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2883 2884
};

2885
void ConcurrentMark::print_reachable(const char* str,
2886
                                     VerifyOption vo,
2887 2888 2889
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2913
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2914 2915
  out->cr();

2916
  out->print_cr("--- ITERATING OVER REGIONS");
2917
  out->cr();
2918
  PrintReachableRegionClosure rcl(out, vo, all);
2919
  _g1h->heap_region_iterate(&rcl);
2920
  out->cr();
2921

2922
  gclog_or_tty->print_cr("  done");
2923
  gclog_or_tty->flush();
2924 2925
}

2926 2927
#endif // PRODUCT

2928
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2929 2930 2931
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2932 2933 2934
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2935 2936 2937
  _nextMarkBitMap->clearRange(mr);
}

2938 2939 2940 2941 2942
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2943
HeapRegion*
2944
ConcurrentMark::claim_region(uint worker_id) {
2945 2946 2947 2948 2949 2950
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2951
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2977 2978 2979 2980
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2981
    if (verbose_low()) {
2982
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2983 2984
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2985
                             worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2986
    }
2987

2988 2989
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2990 2991 2992 2993 2994
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2995
      assert(_finger >= end, "the finger should have moved forward");
2996

2997
      if (verbose_low()) {
2998
        gclog_or_tty->print_cr("[%u] we were successful with region = "
2999
                               PTR_FORMAT, worker_id, p2i(curr_region));
3000
      }
3001 3002

      if (limit > bottom) {
3003
        if (verbose_low()) {
3004
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3005
                                 "returning it ", worker_id, p2i(curr_region));
3006
        }
3007 3008
        return curr_region;
      } else {
3009 3010
        assert(limit == bottom,
               "the region limit should be at bottom");
3011
        if (verbose_low()) {
3012
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3013
                                 "returning NULL", worker_id, p2i(curr_region));
3014
        }
3015 3016 3017 3018 3019
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
3020
      assert(_finger > finger, "the finger should have moved forward");
3021
      if (verbose_low()) {
3022
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3023 3024
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
3025
                               worker_id, p2i(_finger), p2i(finger));
3026
      }
3027 3028 3029 3030 3031 3032 3033 3034 3035

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3064
                      p2i((void*) obj), phase_str(), _info));
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
3085

3086 3087
  virtual void do_object(oop obj) {
    do_object_work(obj);
3088
  }
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
3101

3102 3103 3104 3105 3106 3107
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
3108
    for (uint i = 0; i < _max_worker_id; i += 1) {
3109
      cl.set_phase(VerifyNoCSetOopsQueues, i);
3110
      CMTaskQueue* queue = _task_queues->queue(i);
3111 3112
      queue->oops_do(&cl);
    }
3113 3114
  }

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3143
                        p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3144 3145 3146
    }

    // Verify the task fingers
3147
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3148 3149 3150 3151 3152 3153 3154 3155 3156
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3157
                          p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3158 3159 3160
      }
    }
  }
3161
}
3162
#endif // PRODUCT
3163

3164 3165 3166
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3167
  G1CollectedHeap* _g1h;
3168
  ConcurrentMark* _cm;
3169
  CardTableModRefBS* _ct_bs;
3170
  BitMap* _cm_card_bm;
3171
  uint _max_worker_id;
3172 3173

 public:
3174
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3175
                              BitMap* cm_card_bm,
3176
                              uint max_worker_id) :
3177 3178
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3179
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
3201
                   p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3202 3203 3204 3205 3206 3207 3208 3209

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3210 3211 3212 3213
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3214 3215 3216 3217 3218

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3219 3220 3221 3222 3223 3224 3225 3226
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3227 3228 3229 3230 3231 3232
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3233
    uint hrs_index = hr->hrs_index();
3234 3235
    size_t marked_bytes = 0;

3236
    for (uint i = 0; i < _max_worker_id; i += 1) {
3237 3238 3239 3240 3241 3242 3243
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3244
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3255
        // parameter. It does, however, have an early exit if
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3276
  uint _max_worker_id;
3277 3278 3279 3280 3281 3282
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3283
                           uint max_worker_id,
3284 3285 3286
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3287
    _max_worker_id(max_worker_id),
3288 3289 3290
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3291
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3310
                                           _max_worker_id, n_workers);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3338
  uint max_regions = _g1h->max_regions();
3339
  assert(_max_worker_id > 0, "uninitialized");
3340

3341
  for (uint i = 0; i < _max_worker_id; i += 1) {
3342 3343 3344 3345 3346 3347
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3348
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3349 3350 3351 3352
    task_card_bm->clear();
  }
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3367 3368 3369 3370 3371

  // Note we cannot clear the previous marking bitmap here
  // since VerifyDuringGC verifies the objects marked during
  // a full GC against the previous bitmap.

3372 3373
  // Clear the liveness counting data
  clear_all_count_data();
3374
  // Empty mark stack
3375
  reset_marking_state();
3376
  for (uint i = 0; i < _max_worker_id; ++i) {
3377
    _tasks[i]->clear_region_fields();
3378
  }
3379 3380
  _first_overflow_barrier_sync.abort();
  _second_overflow_barrier_sync.abort();
3381 3382 3383 3384 3385 3386
  const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  if (!gc_id.is_undefined()) {
    // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
    // to detect that it was aborted. Only keep track of the first GC id that we aborted.
    _aborted_gc_id = gc_id;
   }
3387 3388 3389 3390
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3391 3392 3393 3394 3395
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3396 3397 3398

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3399 3400
}

3401 3402 3403 3404 3405 3406 3407
const GCId& ConcurrentMark::concurrent_gc_id() {
  if (has_aborted()) {
    return _aborted_gc_id;
  }
  return _g1h->gc_tracer_cm()->gc_id();
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3444
                "(%8.2f s marking).",
3445
                cmThread()->vtime_accum(),
3446
                cmThread()->vtime_mark_accum());
3447 3448
}

T
tonyp 已提交
3449
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3450 3451 3452
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3453 3454
}

3455 3456
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3457
      p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3458 3459 3460 3461
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3462
// We take a break if someone is trying to stop the world.
3463
bool ConcurrentMark::do_yield_check(uint worker_id) {
P
pliden 已提交
3464
  if (SuspendibleThreadSet::should_yield()) {
3465
    if (worker_id == 0) {
3466
      _g1h->g1_policy()->record_concurrent_pause();
3467
    }
P
pliden 已提交
3468
    SuspendibleThreadSet::yield();
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3482 3483
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3484 3485 3486 3487 3488 3489
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3490
                         p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3491
  for (uint i = 0; i < _max_worker_id; ++i) {
3492
    gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3493
  }
3494
  gclog_or_tty->cr();
3495 3496 3497
}
#endif

3498 3499 3500 3501
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3502
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3503
                           _worker_id, p2i((void*) obj));
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3514 3515 3516 3517 3518 3519 3520 3521 3522
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3523 3524
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3525 3526 3527

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3528 3529
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3530

3531 3532 3533 3534 3535
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

3548 3549 3550 3551 3552
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3553

3554
  if (G1UseConcMarkReferenceProcessing) {
3555
    _ref_processor = g1h->ref_processor_cm();
3556
    assert(_ref_processor != NULL, "should not be NULL");
3557
  }
3558
}
3559 3560

void CMTask::setup_for_region(HeapRegion* hr) {
3561 3562 3563 3564 3565
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3566

3567
  if (_cm->verbose_low()) {
3568
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3569
                           _worker_id, p2i(hr));
3570
  }
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3583
    if (_cm->verbose_low()) {
3584
      gclog_or_tty->print_cr("[%u] found an empty region "
3585
                             "["PTR_FORMAT", "PTR_FORMAT")",
3586
                             _worker_id, p2i(bottom), p2i(limit));
3587
    }
3588 3589 3590 3591 3592 3593 3594
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3595
    assert(limit >= _finger, "peace of mind");
3596
  } else {
3597
    assert(limit < _region_limit, "only way to get here");
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3615
  assert(_curr_region != NULL, "invariant");
3616
  if (_cm->verbose_low()) {
3617
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3618
                           _worker_id, p2i(_curr_region));
3619
  }
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3631 3632 3633 3634 3635 3636 3637 3638 3639
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3640
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3641
  guarantee(nextMarkBitMap != NULL, "invariant");
3642

3643
  if (_cm->verbose_low()) {
3644
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3645
  }
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3689 3690 3691
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3692 3693 3694 3695
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3696
  if (has_aborted()) return;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3713
  if (!concurrent()) return;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3726
  if (_words_scanned >= _words_scanned_limit) {
3727
    ++_clock_due_to_scanning;
3728 3729
  }
  if (_refs_reached >= _refs_reached_limit) {
3730
    ++_clock_due_to_marking;
3731
  }
3732 3733 3734 3735 3736 3737

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3738
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3739
                        "scanned = %d%s, refs reached = %d%s",
3740
                        _worker_id, last_interval_ms,
3741 3742 3743 3744
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3745 3746 3747 3748
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
P
pliden 已提交
3749
  if (SuspendibleThreadSet::should_yield()) {
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3762
    _has_timed_out = true;
3763 3764 3765 3766 3767 3768 3769 3770
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3771
    if (_cm->verbose_low()) {
3772 3773
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3774
    }
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3797
  if (_cm->verbose_medium()) {
3798
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3799
  }
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3825
      if (_cm->verbose_low()) {
3826 3827
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3828
      }
3829 3830 3831 3832
      set_has_aborted();
    } else {
      // the transfer was successful

3833
      if (_cm->verbose_medium()) {
3834 3835
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3836
      }
3837
      statsOnly( int tmp_size = _cm->mark_stack_size();
3838
                 if (tmp_size > _global_max_size) {
3839
                   _global_max_size = tmp_size;
3840
                 }
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3855 3856
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3857 3858 3859 3860
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3861
    if (_cm->verbose_medium()) {
3862 3863
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3864
    }
3865 3866 3867 3868
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3869
      assert(success, "invariant");
3870 3871 3872
    }

    statsOnly( int tmp_size = _task_queue->size();
3873
               if (tmp_size > _local_max_size) {
3874
                 _local_max_size = tmp_size;
3875
               }
3876 3877 3878 3879 3880 3881 3882 3883
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3884
  if (has_aborted()) return;
3885 3886 3887 3888 3889

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3890
  if (partially) {
3891
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3892
  } else {
3893
    target_size = 0;
3894
  }
3895 3896

  if (_task_queue->size() > target_size) {
3897
    if (_cm->verbose_high()) {
3898
      gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3899
                             _worker_id, target_size);
3900
    }
3901 3902 3903 3904 3905 3906

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3907
      if (_cm->verbose_high()) {
3908
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3909
                               p2i((void*) obj));
3910
      }
3911

3912
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3913
      assert(!_g1h->is_on_master_free_list(
3914
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3915 3916 3917

      scan_object(obj);

3918
      if (_task_queue->size() <= target_size || has_aborted()) {
3919
        ret = false;
3920
      } else {
3921
        ret = _task_queue->pop_local(obj);
3922
      }
3923 3924
    }

3925
    if (_cm->verbose_high()) {
3926 3927
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3928
    }
3929 3930 3931 3932
  }
}

void CMTask::drain_global_stack(bool partially) {
3933
  if (has_aborted()) return;
3934 3935 3936

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3937
  assert(partially || _task_queue->size() == 0, "invariant");
3938 3939 3940 3941 3942 3943 3944 3945

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3946
  if (partially) {
3947
    target_size = _cm->partial_mark_stack_size_target();
3948
  } else {
3949
    target_size = 0;
3950
  }
3951 3952

  if (_cm->mark_stack_size() > target_size) {
3953
    if (_cm->verbose_low()) {
3954
      gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3955
                             _worker_id, target_size);
3956
    }
3957 3958 3959 3960 3961 3962

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3963
    if (_cm->verbose_low()) {
3964
      gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3965
                             _worker_id, _cm->mark_stack_size());
3966
    }
3967 3968 3969 3970 3971 3972 3973 3974
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3975
  if (has_aborted()) return;
3976 3977 3978 3979 3980 3981 3982 3983 3984

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3985
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3986
    satb_mq_set.set_par_closure(_worker_id, &oc);
3987
  } else {
3988
    satb_mq_set.set_closure(&oc);
3989
  }
3990 3991 3992

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3993
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3994
    while (!has_aborted() &&
3995
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3996
      if (_cm->verbose_medium()) {
3997
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3998
      }
3999 4000 4001 4002 4003 4004
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
4005
      if (_cm->verbose_medium()) {
4006
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4007
      }
4008 4009 4010 4011 4012 4013 4014
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  _draining_satb_buffers = false;

4015 4016 4017
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
4018

4019
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4020
    satb_mq_set.set_par_closure(_worker_id, NULL);
4021
  } else {
4022
    satb_mq_set.set_closure(NULL);
4023
  }
4024 4025 4026 4027 4028 4029 4030

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
4031 4032
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
4058
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

4072 4073
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
4074 4075 4076 4077 4078 4079 4080 4081 4082
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

4083
    The data structures that it uses to do marking work are the
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

4117
      (4) SATB Buffer Queue. This is where completed SATB buffers are
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

4129 4130 4131
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
4132
      (local queues, stacks, fingers etc.)  are re-initialized so that
4133 4134
      when do_marking_step() completes, the marking phase can
      immediately restart.
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4183 4184
 *****************************************************************************/

4185
void CMTask::do_marking_step(double time_target_ms,
4186 4187
                             bool do_termination,
                             bool is_serial) {
4188 4189
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4190 4191

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4192 4193
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4194
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4195

4196 4197
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4208 4209 4210 4211 4212 4213
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4226
  _has_timed_out = false;
4227 4228 4229 4230
  _draining_satb_buffers = false;

  ++_calls;

4231
  if (_cm->verbose_low()) {
4232
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4233
                           "target = %1.2lfms >>>>>>>>>>",
4234
                           _worker_id, _calls, _time_target_ms);
4235
  }
4236 4237 4238 4239 4240

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4241 4242
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4243 4244

  if (_cm->has_overflown()) {
4245 4246 4247 4248
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4264 4265
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4281
      if (_cm->verbose_low()) {
4282
        gclog_or_tty->print_cr("[%u] we're scanning part "
4283
                               "["PTR_FORMAT", "PTR_FORMAT") "
4284
                               "of region "HR_FORMAT,
4285
                               _worker_id, p2i(_finger), p2i(_region_limit),
4286
                               HR_FORMAT_PARAMS(_curr_region));
4287
      }
4288

4289 4290
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4291

4292 4293 4294 4295 4296 4297 4298
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4299
      // If the iteration is successful, give up the region.
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4314 4315 4316
        giveup_current_region();
        regular_clock_call();
      } else {
4317
        assert(has_aborted(), "currently the only way to do so");
4318 4319 4320 4321 4322
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4323
        assert(_finger != NULL, "invariant");
4324 4325 4326 4327 4328 4329 4330 4331

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4332
        assert(_finger < _region_limit, "invariant");
4333
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4334 4335
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4336
          giveup_current_region();
4337
        } else {
4338
          move_finger_to(new_finger);
4339
        }
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4357 4358 4359 4360
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4361
      if (_cm->verbose_low()) {
4362
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4363
      }
4364
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4365 4366 4367 4368
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4369
        if (_cm->verbose_low()) {
4370
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4371
                                 "region "PTR_FORMAT,
4372
                                 _worker_id, p2i(claimed_region));
4373
        }
4374 4375

        setup_for_region(claimed_region);
4376
        assert(_curr_region == claimed_region, "invariant");
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4387 4388
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4389 4390 4391 4392 4393
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4394
    // tasks might be pushing objects to it concurrently.
4395 4396
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4397

4398
    if (_cm->verbose_low()) {
4399
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4400
    }
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4413
  if (do_stealing && !has_aborted()) {
4414 4415 4416 4417
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4418
    // tasks might be pushing objects to it concurrently.
4419 4420
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4421

4422
    if (_cm->verbose_low()) {
4423
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4424
    }
4425 4426 4427 4428 4429

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4430
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4431
        if (_cm->verbose_medium()) {
4432
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4433
                                 _worker_id, p2i((void*) obj));
4434
        }
4435 4436 4437

        statsOnly( ++_steals );

4438 4439
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4452 4453 4454 4455 4456 4457 4458 4459 4460
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4461 4462
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4463
  if (do_termination && !has_aborted()) {
4464
    // We cannot check whether the global stack is empty, since other
4465
    // tasks might be concurrently pushing objects on it.
4466 4467 4468
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4469

4470
    if (_cm->verbose_low()) {
4471
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4472
    }
4473 4474

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4475

4476 4477 4478
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4479 4480
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4481 4482 4483 4484 4485 4486 4487
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4488
      if (_worker_id == 0) {
4489 4490
        // let's allow task 0 to do this
        if (concurrent()) {
4491
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4492 4493 4494 4495 4496 4497 4498 4499
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4500 4501 4502 4503 4504 4505 4506 4507
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4508

4509
      if (_cm->verbose_low()) {
4510
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4511
      }
4512 4513 4514 4515
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4516
      if (_cm->verbose_low()) {
4517 4518
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4519
      }
4520 4521 4522 4523 4524 4525 4526 4527 4528

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4529
  set_cm_oop_closure(NULL);
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4540
    if (_has_timed_out) {
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4556
      if (_cm->verbose_low()) {
4557
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4558
      }
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4570 4571 4572 4573 4574 4575

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4576 4577 4578 4579
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4580 4581
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4582 4583 4584 4585
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4586
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4587
                             "elapsed = %1.2lfms <<<<<<<<<<",
4588
                             _worker_id, _time_target_ms, elapsed_time_ms);
4589
      if (_cm->has_aborted()) {
4590 4591
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4592
      }
4593 4594
    }
  } else {
4595
    if (_cm->verbose_low()) {
4596
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4597
                             "elapsed = %1.2lfms <<<<<<<<<<",
4598
                             _worker_id, _time_target_ms, elapsed_time_ms);
4599
    }
4600 4601 4602 4603 4604
  }

  _claimed = false;
}

4605
CMTask::CMTask(uint worker_id,
4606
               ConcurrentMark* cm,
4607 4608
               size_t* marked_bytes,
               BitMap* card_bm,
4609 4610 4611
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4612
    _worker_id(worker_id), _cm(cm),
4613 4614 4615 4616
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4617
    _cm_oop_closure(NULL),
4618 4619
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4620 4621
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4622 4623 4624 4625 4626 4627

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4667
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
J
johnc 已提交
4668
    _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
4681 4682
                 p2i(g1_committed.start()), p2i(g1_committed.end()),
                 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4683
                 HeapRegion::GrainBytes);
4684 4685
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4686 4687 4688 4689 4690 4691
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4692
                G1PPRL_BYTE_H_FORMAT
4693 4694
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
J
johnc 已提交
4695 4696
                "used", "prev-live", "next-live", "gc-eff",
                "remset", "code-roots");
4697
  _out->print_cr(G1PPRL_LINE_PREFIX
4698 4699 4700 4701 4702 4703
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4704
                G1PPRL_BYTE_H_FORMAT
4705 4706
                G1PPRL_BYTE_H_FORMAT,
                "", "",
J
johnc 已提交
4707 4708
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
                "(bytes)", "(bytes)");
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4720
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4750
  size_t remset_bytes    = r->rem_set()->mem_size();
J
johnc 已提交
4751 4752
  size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4786
  _total_remset_bytes    += remset_bytes;
J
johnc 已提交
4787
  _total_strong_code_roots_bytes += strong_code_roots_bytes;
4788 4789 4790 4791 4792 4793 4794 4795

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4796
                 G1PPRL_DOUBLE_FORMAT
J
johnc 已提交
4797
                 G1PPRL_BYTE_FORMAT
4798
                 G1PPRL_BYTE_FORMAT,
4799
                 type, p2i(bottom), p2i(end),
J
johnc 已提交
4800 4801
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
                 remset_bytes, strong_code_roots_bytes);
4802 4803 4804 4805 4806

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4807 4808
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4809 4810 4811 4812 4813 4814 4815
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4816
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
J
johnc 已提交
4817 4818
                 G1PPRL_SUM_MB_FORMAT("remset")
                 G1PPRL_SUM_MB_FORMAT("code-roots"),
4819 4820 4821 4822 4823 4824
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4825
                 perc(_total_next_live_bytes, _total_capacity_bytes),
J
johnc 已提交
4826 4827
                 bytes_to_mb(_total_remset_bytes),
                 bytes_to_mb(_total_strong_code_roots_bytes));
4828 4829
  _out->cr();
}