concurrentMark.cpp 170.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
39 40 41
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
42 43 44 45 46 47
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
48
#include "runtime/prefetch.inline.hpp"
Z
zgu 已提交
49
#include "services/memTracker.hpp"
50

51
// Concurrent marking bit map wrapper
52

53 54
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
55
  _shifter(shifter) {
56 57
  _bmStartWord = 0;
  _bmWordSize = 0;
58 59 60 61 62 63 64 65
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
66 67 68
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
69 70 71 72 73 74 75 76 77 78 79 80
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
81 82 83
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
99
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
100
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
101
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
102
         "size inconsistency");
103 104
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
105 106 107
}
#endif

108 109 110 111
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

183 184 185 186 187 188
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
189
  }
190 191 192 193 194 195 196 197 198 199 200 201
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
202
  _saved_index = -1;
203
  _should_expand = false;
204
  NOT_PRODUCT(_max_depth = 0);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
251 252 253
}

CMMarkStack::~CMMarkStack() {
254
  if (_base != NULL) {
255 256
    _base = NULL;
    _virtual_space.release();
257
  }
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
297
        int  ind = index + i;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
320
    assert(ind < _capacity, "By overflow test above.");
321 322
    _base[ind] = ptr_arr[i];
  }
323
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
324 325 326 327 328 329 330 331 332 333
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
334
    jint  new_ind = index - k;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
360 361
      res = false;
      break;
362 363 364 365 366 367
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

385
void CMMarkStack::oops_do(OopClosure* f) {
386 387 388
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
389 390 391 392 393
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
394
  return _g1h->is_obj_ill(obj);
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

475 476 477 478
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

479 480
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
481 482
}

483 484
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
485 486
  _markBitMap1(log2_intptr(MinObjAlignment)),
  _markBitMap2(log2_intptr(MinObjAlignment)),
487
  _parallel_marking_threads(0),
488
  _max_parallel_marking_threads(0),
489 490 491 492
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
493
  _cleanup_list("Cleanup List"),
494 495 496 497
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
498

499 500 501 502 503 504
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

505
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
506 507
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
508 509
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
510 511 512

  _has_overflown(false),
  _concurrent(false),
513
  _has_aborted(false),
514
  _aborted_gc_id(GCId::undefined()),
515 516
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
517 518 519 520 521 522 523 524

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
525 526 527 528

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
529 530
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
531 532
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
533
    verbose_level = no_verbose;
534 535
  }
  if (verbose_level > high_verbose) {
536
    verbose_level = high_verbose;
537
  }
538 539
  _verbose_level = verbose_level;

540
  if (verbose_low()) {
541
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
542
                           "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
543
  }
544

545 546 547 548 549 550 551 552
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
553 554

  // Create & start a ConcurrentMark thread.
555 556 557
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
558 559 560
  if (_cmThread->osthread() == NULL) {
      vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
  }
561

562
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
563 564
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
565 566

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
567
  satb_qs.set_buffer_size(G1SATBBufferSize);
568

569 570
  _root_regions.init(_g1h, this);

571
  if (ConcGCThreads > ParallelGCThreads) {
572 573
    warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
            "than ParallelGCThreads (" UINTX_FORMAT ").",
574 575
            ConcGCThreads, ParallelGCThreads);
    return;
576 577 578 579
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
580 581 582 583
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
584
  } else {
585 586
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
587 588 589
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
590
    } else if (G1MarkingOverheadPercent > 0) {
591 592
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
593
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
594
      double overall_cm_overhead =
J
johnc 已提交
595 596
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
597 598 599 600 601 602 603 604
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

605
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
606 607 608
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
609 610 611 612
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
613 614 615 616
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

617 618 619 620
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

621
    if (parallel_marking_threads() > 1) {
622
      _cleanup_task_overhead = 1.0;
623
    } else {
624
      _cleanup_task_overhead = marking_task_overhead();
625
    }
626 627 628 629 630 631 632 633 634 635 636
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

637
    guarantee(parallel_marking_threads() > 0, "peace of mind");
638
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
639
         _max_parallel_marking_threads, false, true);
640
    if (_parallel_workers == NULL) {
641
      vm_exit_during_initialization("Failed necessary allocation.");
642 643 644
    } else {
      _parallel_workers->initialize_workers();
    }
645 646
  }

647 648 649 650 651 652 653 654 655
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
656
              mark_stack_size, (uintx) 1, MarkStackSizeMax);
657 658 659 660 661 662 663 664 665 666
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
667
                  MarkStackSize, (uintx) 1, MarkStackSizeMax);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

723
  // so that the call below can read a sensible value
724
  _heap_start = (HeapWord*) heap_rs.base();
725
  set_non_marking_state();
726
  _completed_initialization = true;
727 728 729 730
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
731
  // update _heap_end.
732
  if (!concurrent_marking_in_progress() && !force) return;
733 734

  MemRegion committed = _g1h->g1_committed();
735
  assert(committed.start() == _heap_start, "start shouldn't change");
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

757 758 759 760
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
761

762 763
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
764

765
  if (verbose_low()) {
766
    gclog_or_tty->print_cr("[global] resetting");
767
  }
768 769 770 771

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
772
  for (uint i = 0; i < _max_worker_id; ++i) {
773
    _tasks[i]->reset(_nextMarkBitMap);
774
  }
775 776 777 778 779 780

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

798
void ConcurrentMark::set_concurrency(uint active_tasks) {
799
  assert(active_tasks <= _max_worker_id, "we should not have more");
800 801 802 803 804 805 806

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
807 808 809 810
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
811 812 813

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
814
  for (uint i = 0; i < _max_worker_id; ++i)
815 816 817 818 819 820 821 822
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
823
    assert(!concurrent_marking_in_progress(), "invariant");
824
    assert(out_of_regions(),
825
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
826
                   p2i(_finger), p2i(_heap_end)));
827 828 829 830 831 832 833
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
834
  reset_marking_state();
835 836 837 838 839
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
840 841
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
842 843 844
}

void ConcurrentMark::clearNextBitmap() {
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
867
    if (next > end) {
868
      next = end;
869
    }
870 871 872 873 874 875 876 877 878 879 880 881 882
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

883 884 885
  // Clear the liveness counting data
  clear_all_count_data();

886 887 888
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
889 890 891 892 893 894
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
895
      r->note_start_of_marking();
896 897 898 899 900 901 902 903 904 905 906
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

907
#ifndef PRODUCT
908
  if (G1PrintReachableAtInitialMark) {
909
    print_reachable("at-cycle-start",
910
                    VerifyOption_G1UsePrevMarking, true /* all */);
911
  }
912
#endif
913 914 915

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
916 917 918 919

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
920 921 922 923 924 925
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

926 927 928 929 930 931 932 933
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

934 935 936 937
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
938
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
939 940

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
941 942 943 944
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
945

946 947
  _root_regions.prepare_for_scan();

948 949 950 951 952 953 954
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
974

975
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
976
  if (verbose_low()) {
977
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
978
  }
979

980
  if (concurrent()) {
P
pliden 已提交
981
    SuspendibleThreadSet::leave();
982
  }
983 984 985

  bool barrier_aborted = !_first_overflow_barrier_sync.enter();

986
  if (concurrent()) {
P
pliden 已提交
987
    SuspendibleThreadSet::join();
988
  }
989 990 991
  // at this point everyone should have synced up and not be doing any
  // more work

992
  if (verbose_low()) {
993 994 995 996 997 998 999 1000 1001 1002 1003
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
    }
  }

  if (barrier_aborted) {
    // If the barrier aborted we ignore the overflow condition and
    // just abort the whole marking phase as quickly as possible.
    return;
1004
  }
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
1024
        gclog_or_tty->gclog_stamp(concurrent_gc_id());
1025 1026
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1027 1028 1029 1030 1031 1032 1033
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1034
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1035
  if (verbose_low()) {
1036
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1037
  }
1038

1039
  if (concurrent()) {
P
pliden 已提交
1040
    SuspendibleThreadSet::leave();
1041
  }
1042 1043 1044

  bool barrier_aborted = !_second_overflow_barrier_sync.enter();

1045
  if (concurrent()) {
P
pliden 已提交
1046
    SuspendibleThreadSet::join();
1047
  }
1048
  // at this point everything should be re-initialized and ready to go
1049

1050
  if (verbose_low()) {
1051 1052 1053 1054 1055
    if (barrier_aborted) {
      gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
    } else {
      gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
    }
1056
  }
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1085 1086 1087 1088 1089 1090
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1091
  void work(uint worker_id) {
1092 1093
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1094
    ResourceMark rm;
1095 1096 1097

    double start_vtime = os::elapsedVTime();

P
pliden 已提交
1098
    SuspendibleThreadSet::join();
1099

1100 1101
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1102 1103 1104 1105 1106
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1107 1108 1109
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1110 1111
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1112

1113 1114 1115 1116 1117 1118
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1119
        bool ret = _cm->do_yield_check(worker_id);
1120 1121 1122 1123 1124

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
P
pliden 已提交
1125
          SuspendibleThreadSet::leave();
1126
          os::sleep(Thread::current(), sleep_time_ms, false);
P
pliden 已提交
1127
          SuspendibleThreadSet::join();
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1143
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1144

P
pliden 已提交
1145
    SuspendibleThreadSet::leave();
1146 1147

    double end_vtime = os::elapsedVTime();
1148
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1149 1150 1151 1152 1153 1154 1155 1156 1157
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1158 1159
// Calculates the number of active workers for a concurrent
// phase.
1160
uint ConcurrentMark::calc_parallel_marking_threads() {
1161
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1162
    uint n_conc_workers = 0;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1177 1178
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1179
  }
1180 1181 1182 1183
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1235
    if (use_parallel_marking_threads()) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1249 1250 1251 1252 1253 1254 1255 1256 1257
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1258
  force_overflow_conc()->init();
1259 1260 1261 1262 1263 1264

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1265
  uint active_workers = MAX2(1U, parallel_marking_threads());
1266

1267 1268
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1269 1270

  CMConcurrentMarkingTask markingTask(this, cmThread());
1271
  if (use_parallel_marking_threads()) {
1272 1273 1274 1275
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1276
    _parallel_workers->run_task(&markingTask);
1277
  } else {
1278
    markingTask.work(0);
1279
  }
1280 1281 1282 1283 1284 1285 1286
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1287

1288 1289 1290 1291 1292 1293 1294 1295
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1296 1297
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1298 1299 1300
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1301 1302
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1303 1304
  }

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1319
    if (G1TraceMarkStackOverflow) {
1320
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1321
    }
1322 1323 1324 1325 1326

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1327 1328
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1329 1330 1331 1332 1333
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1334
  } else {
1335 1336 1337 1338
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1339
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1340
    // We're done with marking.
1341 1342
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1343 1344
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1345 1346

    if (VerifyDuringGC) {
1347 1348
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1349 1350
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1351
    }
1352
    assert(!restart_for_overflow(), "sanity");
1353 1354
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1355 1356
  }

1357 1358 1359 1360 1361
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1362 1363 1364 1365 1366 1367 1368
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1369 1370 1371

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1372 1373
}

1374 1375 1376 1377
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1378
  G1CollectedHeap* _g1h;
1379
  ConcurrentMark* _cm;
1380 1381
  CardTableModRefBS* _ct_bs;

1382 1383 1384
  BitMap* _region_bm;
  BitMap* _card_bm;

1385
  // Takes a region that's not empty (i.e., it has at least one
1386 1387 1388 1389 1390 1391 1392
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1393
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1394 1395
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1396
      _region_bm->par_at_put(index, true);
1397 1398
    } else {
      // Starts humongous case: calculate how many regions are part of
1399
      // this humongous region and then set the bit range.
1400
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1401
      _region_bm->par_at_put_range(index, end_index, true);
1402 1403 1404
    }
  }

1405
public:
1406
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1407
                         BitMap* region_bm, BitMap* card_bm):
1408 1409 1410
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1411 1412 1413 1414 1415 1416 1417 1418 1419
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1420
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1421
                         BitMap* region_bm, BitMap* card_bm) :
1422
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1423 1424
    _bm(bm), _region_marked_bytes(0) { }

1425 1426
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1427
    if (hr->continuesHumongous()) {
1428 1429 1430 1431 1432 1433 1434
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1435 1436
      return false;
    }
1437

1438 1439
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1440

1441
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1442
           err_msg("Preconditions not met - "
1443
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1444
                   p2i(start), p2i(ntams), p2i(hr->end())));
1445

1446
    // Find the first marked object at or after "start".
1447
    start = _bm->getNextMarkedWordAddress(start, ntams);
1448

1449 1450
    size_t marked_bytes = 0;

1451
    while (start < ntams) {
1452 1453
      oop obj = oop(start);
      int obj_sz = obj->size();
1454
      HeapWord* obj_end = start + obj_sz;
1455

1456
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1468

1469 1470
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1471 1472

      // Add the size of this object to the number of marked bytes.
1473
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1474

1475
      // Find the next marked object after this one.
1476
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1477
    }
1478 1479 1480

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1495 1496 1497

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1498 1499 1500 1501
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1502
      set_bit_for_region(hr);
1503
    }
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1521
  G1CollectedHeap* _g1h;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1534
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1535 1536 1537 1538 1539
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1540 1541
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1579
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1590
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1591 1592 1593 1594 1595

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1596 1597 1598 1599
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1617 1618 1619 1620
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1621
        }
1622
        failures += 1;
1623 1624 1625
      }
    }

1626 1627 1628
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1629
                             HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1630 1631 1632 1633 1634 1635
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1636
    // find the first violating region by returning true.
1637 1638
    return false;
  }
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
};

class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1687
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1704

1705
  int failures() const { return _failures; }
1706 1707
};

1708 1709 1710 1711 1712 1713
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1714

1715
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1716
 public:
1717
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1718 1719
                              BitMap* region_bm,
                              BitMap* card_bm) :
1720
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1738
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1739 1740 1741 1742 1743 1744

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1767
    }
1768 1769 1770 1771 1772 1773 1774 1775 1776

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1777 1778 1779 1780

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1781 1782 1783 1784
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1785
  uint    _n_workers;
1786

1787
public:
1788 1789 1790 1791 1792
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1793
    // Use the value already set as the number of active threads
1794
    // in the call to run_task().
1795 1796 1797 1798
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1799
    } else {
1800
      _n_workers = 1;
1801
    }
1802 1803
  }

1804
  void work(uint worker_id) {
1805 1806
    assert(worker_id < _n_workers, "invariant");

1807
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1808 1809 1810
                                                _actual_region_bm,
                                                _actual_card_bm);

1811
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1812 1813 1814
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1815
                                            HeapRegion::FinalCountClaimValue);
1816
    } else {
1817
      _g1h->heap_region_iterate(&final_update_cl);
1818 1819 1820 1821 1822 1823 1824 1825 1826
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  size_t _max_live_bytes;
1827
  uint _regions_claimed;
1828
  size_t _freed_bytes;
T
tonyp 已提交
1829
  FreeRegionList* _local_cleanup_list;
1830 1831
  HeapRegionSetCount _old_regions_removed;
  HeapRegionSetCount _humongous_regions_removed;
T
tonyp 已提交
1832
  HRRSCleanupTask* _hrrs_cleanup_task;
1833 1834 1835 1836 1837
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1838
                             FreeRegionList* local_cleanup_list,
1839
                             HRRSCleanupTask* hrrs_cleanup_task) :
1840
    _g1(g1),
1841 1842 1843 1844
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
1845 1846
    _old_regions_removed(),
    _humongous_regions_removed(),
1847 1848
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1849
  size_t freed_bytes() { return _freed_bytes; }
1850 1851
  const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1852

1853
  bool doHeapRegion(HeapRegion *hr) {
1854 1855 1856
    if (hr->continuesHumongous()) {
      return false;
    }
1857 1858
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1859 1860 1861 1862 1863
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

    if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
      _freed_bytes += hr->used();
      hr->set_containing_set(NULL);
      if (hr->isHumongous()) {
        assert(hr->startsHumongous(), "we should only see starts humongous");
        _humongous_regions_removed.increment(1u, hr->capacity());
        _g1->free_humongous_region(hr, _local_cleanup_list, true);
      } else {
        _old_regions_removed.increment(1u, hr->capacity());
        _g1->free_region(hr, _local_cleanup_list, true);
      }
    } else {
      hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
    }

1880 1881 1882 1883
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1884 1885 1886
    }
    return false;
  }
1887 1888

  size_t max_live_bytes() { return _max_live_bytes; }
1889
  uint regions_claimed() { return _regions_claimed; }
1890 1891 1892 1893 1894 1895
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1896

1897 1898 1899 1900
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1901 1902
  FreeRegionList* _cleanup_list;

1903 1904
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1905
                   FreeRegionList* cleanup_list) :
1906
    AbstractGangTask("G1 note end"), _g1h(g1h),
1907
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1908

1909
  void work(uint worker_id) {
1910
    double start = os::elapsedTime();
T
tonyp 已提交
1911 1912
    FreeRegionList local_cleanup_list("Local Cleanup List");
    HRRSCleanupTask hrrs_cleanup_task;
1913
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
T
tonyp 已提交
1914
                                           &hrrs_cleanup_task);
1915
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1916
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1917
                                            _g1h->workers()->active_workers(),
1918
                                            HeapRegion::NoteEndClaimValue);
1919 1920 1921 1922 1923
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1924
    // Now update the lists
1925
    _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1926 1927
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1928
      _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1929 1930
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
1942
        FreeRegionListIterator iter(&local_cleanup_list);
1943 1944 1945 1946 1947 1948
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

1949
      _cleanup_list->add_ordered(&local_cleanup_list);
T
tonyp 已提交
1950 1951 1952
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1968
    _region_bm(region_bm), _card_bm(card_bm) { }
1969

1970
  void work(uint worker_id) {
1971
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1972
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1973
                       HeapRegion::ScrubRemSetClaimValue);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1993 1994
  g1h->verify_region_sets_optional();

1995 1996 1997
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1998 1999
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
2000 2001
  }

2002 2003 2004 2005 2006
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
2007 2008
  HeapRegionRemSet::reset_for_cleanup_tasks();

2009
  uint n_workers;
2010

2011
  // Do counting once more with the world stopped for good measure.
2012 2013
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

2014
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2015
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2016 2017
           "sanity check");

2018 2019
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2020
    assert(g1h->n_par_threads() == n_workers,
2021
           "Should not have been reset");
2022
    g1h->workers()->run_task(&g1_par_count_task);
2023
    // Done with the parallel phase so reset to 0.
2024
    g1h->set_par_threads(0);
2025

2026
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2027
           "sanity check");
2028
  } else {
2029
    n_workers = 1;
2030 2031 2032
    g1_par_count_task.work(0);
  }

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2062 2063 2064 2065 2066 2067 2068
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2069 2070 2071 2072 2073
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2074 2075 2076 2077 2078 2079
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2080
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2081
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2082
    g1h->set_par_threads((int)n_workers);
2083 2084
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2085 2086 2087

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2088 2089 2090
  } else {
    g1_par_note_end_task.work(0);
  }
2091
  g1h->check_gc_time_stamps();
2092 2093 2094 2095 2096 2097 2098

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2099 2100 2101 2102 2103 2104

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2105
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2106
      g1h->set_par_threads((int)n_workers);
2107 2108
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2109 2110 2111 2112

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2124
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2125 2126 2127 2128 2129

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2130
  if (G1Log::fine()) {
2131 2132 2133 2134 2135 2136
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2137 2138 2139 2140
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2141 2142 2143 2144
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2145 2146 2147 2148
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2149
  if (VerifyDuringGC) {
2150 2151
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2152 2153
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2154
  }
2155 2156

  g1h->verify_region_sets_optional();
S
sla 已提交
2157
  g1h->trace_heap_after_concurrent_cycle();
2158 2159 2160 2161 2162
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2163 2164
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

2165
  _cleanup_list.verify_optional();
T
tonyp 已提交
2166
  FreeRegionList tmp_free_list("Tmp Free List");
2167 2168 2169

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2170
                           "cleanup list has %u entries",
2171 2172 2173 2174 2175 2176 2177
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
2178
    assert(hr != NULL, "Got NULL from a non-empty list");
2179
    hr->par_clear();
2180
    tmp_free_list.add_ordered(hr);
2181 2182 2183 2184 2185 2186 2187

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2188
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2189 2190 2191
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2192 2193
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2194
                               tmp_free_list.length(),
2195 2196 2197 2198 2199
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2200
        g1h->secondary_free_list_add(&tmp_free_list);
2201 2202 2203 2204 2205 2206 2207
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2208 2209 2210
      }
    }
  }
T
tonyp 已提交
2211
  assert(tmp_free_list.is_empty(), "post-condition");
2212 2213
}

2214 2215
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2216

2217 2218 2219 2220 2221
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2222

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2236 2237 2238 2239 2240
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2241
 public:
2242 2243 2244
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2245
    assert(_ref_counter_limit > 0, "sanity");
2246
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2247 2248 2249 2250 2251 2252 2253 2254 2255
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2256
      if (_cm->verbose_high()) {
2257
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2258
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2259
                               _task->worker_id(), p2i(p), p2i((void*) obj));
2260
      }
2261 2262 2263 2264 2265

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2282 2283 2284
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2285 2286
                                 false      /* do_termination */,
                                 _is_serial);
2287 2288 2289 2290
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2291
      if (_cm->verbose_high()) {
2292
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2293
      }
2294 2295 2296 2297
    }
  }
};

2298 2299 2300 2301 2302 2303 2304 2305
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2306
  ConcurrentMark* _cm;
2307
  CMTask*         _task;
2308
  bool            _is_serial;
2309
 public:
2310 2311 2312
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2313
  }
2314 2315 2316

  void do_void() {
    do {
2317
      if (_cm->verbose_high()) {
2318 2319
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2320
      }
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2338 2339

      _task->do_marking_step(1000000000.0 /* something very large */,
2340 2341
                             true         /* do_termination */,
                             _is_serial);
2342 2343 2344 2345
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2346 2347 2348 2349
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2350 2351 2352 2353 2354 2355 2356
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2357
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2358 2359 2360
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2361 2362
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2363 2364 2365 2366 2367 2368

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2369
class G1CMRefProcTaskProxy: public AbstractGangTask {
2370 2371 2372 2373 2374 2375
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2376
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2377
                     G1CollectedHeap* g1h,
2378
                     ConcurrentMark* cm) :
2379
    AbstractGangTask("Process reference objects in parallel"),
2380
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2381 2382 2383
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2384

2385
  virtual void work(uint worker_id) {
2386
    CMTask* task = _cm->task(worker_id);
2387
    G1CMIsAliveClosure g1_is_alive(_g1h);
2388 2389
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2390

2391
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2392 2393 2394
  }
};

2395
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2396
  assert(_workers != NULL, "Need parallel worker threads.");
2397
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2398

2399
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2400

2401 2402 2403 2404 2405
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2406 2407 2408 2409 2410
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2411
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2412 2413 2414 2415
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2416
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2417
    AbstractGangTask("Enqueue reference objects in parallel"),
2418
    _enq_task(enq_task) { }
2419

2420 2421
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2422 2423 2424
  }
};

2425
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2426
  assert(_workers != NULL, "Need parallel worker threads.");
2427
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2428

2429
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2430

2431 2432 2433 2434 2435 2436 2437
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2438 2439 2440 2441 2442
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2443
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2454 2455 2456
  ResourceMark rm;
  HandleMark   hm;

2457 2458 2459 2460 2461 2462 2463 2464
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2465
    if (G1Log::finer()) {
2466 2467
      gclog_or_tty->put(' ');
    }
2468
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2469

2470
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2471

2472 2473
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2474

2475
    // Set the soft reference policy
2476 2477
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2502
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2503

2504
    // Parallel processing task executor.
2505
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2506
                                              g1h->workers(), active_workers);
2507
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2508

2509 2510 2511 2512
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2513 2514 2515 2516 2517 2518 2519
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2520 2521 2522 2523 2524
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
2525 2526
                                          g1h->gc_timer_cm(),
                                          concurrent_gc_id());
S
sla 已提交
2527
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2528

2529 2530 2531
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2532

2533 2534
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2535

2536
    if (_markStack.overflow()) {
2537
      // This should have been done already when we tried to push an
2538 2539 2540
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2541

2542 2543 2544
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2545

2546
    rp->verify_no_references_recorded();
2547
    assert(!rp->discovery_enabled(), "Post condition");
2548 2549
  }

2550 2551 2552 2553 2554
  if (has_overflown()) {
    // We can not trust g1_is_alive if the marking stack overflowed
    return;
  }

2555 2556 2557
  g1h->unlink_string_and_symbol_table(&g1_is_alive,
                                      /* process_strings */ false, // currently strings are always roots
                                      /* process_symbols */ true);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
2568 2569
  ConcurrentMark* _cm;
  bool            _is_serial;
2570
public:
2571
  void work(uint worker_id) {
2572 2573
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2574 2575
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2576 2577
      task->record_start_time();
      do {
2578
        task->do_marking_step(1000000000.0 /* something very large */,
2579 2580
                              true         /* do_termination       */,
                              _is_serial);
2581 2582 2583 2584 2585 2586 2587
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2588 2589
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2590
    _cm->terminator()->reset_for_reuse(active_workers);
2591
  }
2592 2593 2594 2595 2596 2597 2598 2599 2600
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2601
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2602
    G1CollectedHeap::StrongRootsScope srs(g1h);
2603
    // this is remark, so we'll use up all active threads
2604
    uint active_workers = g1h->workers()->active_workers();
2605 2606
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2607
      active_workers = (uint) ParallelGCThreads;
2608 2609
      g1h->workers()->set_active_workers(active_workers);
    }
2610
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2611 2612 2613 2614
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2615

2616 2617 2618 2619
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2620
    g1h->set_par_threads(active_workers);
2621 2622 2623
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2624
    G1CollectedHeap::StrongRootsScope srs(g1h);
2625
    uint active_workers = 1;
2626
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2627

2628 2629 2630 2631 2632 2633 2634 2635
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2636 2637
    remarkTask.work(0);
  }
2638
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2639 2640 2641 2642 2643
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2644 2645 2646 2647

  print_stats();
}

2648 2649
#ifndef PRODUCT

2650
class PrintReachableOopClosure: public OopClosure {
2651 2652 2653
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2654
  VerifyOption     _vo;
2655
  bool             _all;
2656 2657

public:
2658 2659
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2660
                           bool          all) :
2661
    _g1h(G1CollectedHeap::heap()),
2662
    _out(out), _vo(vo), _all(all) { }
2663

2664 2665
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2666

2667 2668
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2669 2670 2671
    const char* str = NULL;
    const char* str2 = "";

2672 2673 2674 2675 2676
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2677
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2678
      guarantee(hr != NULL, "invariant");
2679 2680
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2681 2682

      if (over_tams) {
2683 2684
        str = " >";
        if (marked) {
2685
          str2 = " AND MARKED";
2686
        }
2687 2688
      } else if (marked) {
        str = " M";
2689
      } else {
2690
        str = " NOT";
2691
      }
2692 2693
    }

2694
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2695
                   p2i(p), p2i((void*) obj), str, str2);
2696 2697 2698
  }
};

2699
class PrintReachableObjectClosure : public ObjectClosure {
2700
private:
2701 2702 2703 2704 2705
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2706 2707

public:
2708 2709
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2710 2711
                              bool          all,
                              HeapRegion*   hr) :
2712 2713
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2714

2715
  void do_object(oop o) {
2716 2717
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2718 2719 2720 2721
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
2722
                     p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2723
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2724
      o->oop_iterate_no_header(&oopCl);
2725
    }
2726 2727 2728
  }
};

2729
class PrintReachableRegionClosure : public HeapRegionClosure {
2730
private:
2731 2732 2733 2734
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2735 2736 2737 2738 2739 2740

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2741
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2742
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2743
                   "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2744 2745 2746 2747 2748 2749
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
2750
      _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2751
      _out->cr();
2752
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2753 2754 2755
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2756 2757 2758 2759

    return false;
  }

2760 2761
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2762
                              bool          all) :
2763
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2764 2765
};

2766
void ConcurrentMark::print_reachable(const char* str,
2767
                                     VerifyOption vo,
2768 2769 2770
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2794
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2795 2796
  out->cr();

2797
  out->print_cr("--- ITERATING OVER REGIONS");
2798
  out->cr();
2799
  PrintReachableRegionClosure rcl(out, vo, all);
2800
  _g1h->heap_region_iterate(&rcl);
2801
  out->cr();
2802

2803
  gclog_or_tty->print_cr("  done");
2804
  gclog_or_tty->flush();
2805 2806
}

2807 2808
#endif // PRODUCT

2809
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2810 2811 2812
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2813 2814 2815
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2816 2817 2818
  _nextMarkBitMap->clearRange(mr);
}

2819 2820 2821 2822 2823
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2824
HeapRegion*
2825
ConcurrentMark::claim_region(uint worker_id) {
2826 2827 2828 2829 2830 2831
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2832
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2858 2859 2860 2861
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2862
    if (verbose_low()) {
2863
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2864 2865
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2866
                             worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2867
    }
2868

2869 2870
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2871 2872 2873 2874 2875
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2876
      assert(_finger >= end, "the finger should have moved forward");
2877

2878
      if (verbose_low()) {
2879
        gclog_or_tty->print_cr("[%u] we were successful with region = "
2880
                               PTR_FORMAT, worker_id, p2i(curr_region));
2881
      }
2882 2883

      if (limit > bottom) {
2884
        if (verbose_low()) {
2885
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2886
                                 "returning it ", worker_id, p2i(curr_region));
2887
        }
2888 2889
        return curr_region;
      } else {
2890 2891
        assert(limit == bottom,
               "the region limit should be at bottom");
2892
        if (verbose_low()) {
2893
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2894
                                 "returning NULL", worker_id, p2i(curr_region));
2895
        }
2896 2897 2898 2899 2900
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2901
      assert(_finger > finger, "the finger should have moved forward");
2902
      if (verbose_low()) {
2903
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2904 2905
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2906
                               worker_id, p2i(_finger), p2i(finger));
2907
      }
2908 2909 2910 2911 2912 2913 2914 2915 2916

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2945
                      p2i((void*) obj), phase_str(), _info));
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2966

2967 2968
  virtual void do_object(oop obj) {
    do_object_work(obj);
2969
  }
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2982

2983 2984 2985 2986 2987 2988
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2989
    for (uint i = 0; i < _max_worker_id; i += 1) {
2990
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2991
      CMTaskQueue* queue = _task_queues->queue(i);
2992 2993
      queue->oops_do(&cl);
    }
2994 2995
  }

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3024
                        p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3025 3026 3027
    }

    // Verify the task fingers
3028
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3029 3030 3031 3032 3033 3034 3035 3036 3037
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3038
                          p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3039 3040 3041
      }
    }
  }
3042
}
3043
#endif // PRODUCT
3044

3045 3046 3047
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3048
  G1CollectedHeap* _g1h;
3049
  ConcurrentMark* _cm;
3050
  CardTableModRefBS* _ct_bs;
3051
  BitMap* _cm_card_bm;
3052
  uint _max_worker_id;
3053 3054

 public:
3055
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3056
                              BitMap* cm_card_bm,
3057
                              uint max_worker_id) :
3058 3059
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3060
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
3082
                   p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3083 3084 3085 3086 3087 3088 3089 3090

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3091 3092 3093 3094
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3095 3096 3097 3098 3099

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3100 3101 3102 3103 3104 3105 3106 3107
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3108 3109 3110 3111 3112 3113
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3114
    uint hrs_index = hr->hrs_index();
3115 3116
    size_t marked_bytes = 0;

3117
    for (uint i = 0; i < _max_worker_id; i += 1) {
3118 3119 3120 3121 3122 3123 3124
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3125
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3136
        // parameter. It does, however, have an early exit if
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3157
  uint _max_worker_id;
3158 3159 3160 3161 3162 3163
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3164
                           uint max_worker_id,
3165 3166 3167
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3168
    _max_worker_id(max_worker_id),
3169 3170 3171
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3172
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3191
                                           _max_worker_id, n_workers);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3219
  uint max_regions = _g1h->max_regions();
3220
  assert(_max_worker_id > 0, "uninitialized");
3221

3222
  for (uint i = 0; i < _max_worker_id; i += 1) {
3223 3224 3225 3226 3227 3228
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3229
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3230 3231 3232 3233
    task_card_bm->clear();
  }
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3248 3249
  // Clear the liveness counting data
  clear_all_count_data();
3250
  // Empty mark stack
3251
  reset_marking_state();
3252
  for (uint i = 0; i < _max_worker_id; ++i) {
3253
    _tasks[i]->clear_region_fields();
3254
  }
3255 3256
  _first_overflow_barrier_sync.abort();
  _second_overflow_barrier_sync.abort();
3257 3258 3259 3260 3261 3262
  const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  if (!gc_id.is_undefined()) {
    // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
    // to detect that it was aborted. Only keep track of the first GC id that we aborted.
    _aborted_gc_id = gc_id;
   }
3263 3264 3265 3266
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3267 3268 3269 3270 3271
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3272 3273 3274

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3275 3276
}

3277 3278 3279 3280 3281 3282 3283
const GCId& ConcurrentMark::concurrent_gc_id() {
  if (has_aborted()) {
    return _aborted_gc_id;
  }
  return _g1h->gc_tracer_cm()->gc_id();
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3320
                "(%8.2f s marking).",
3321
                cmThread()->vtime_accum(),
3322
                cmThread()->vtime_mark_accum());
3323 3324
}

T
tonyp 已提交
3325
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3326 3327 3328
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3329 3330
}

3331 3332
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3333
      p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3334 3335 3336 3337
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3338
// We take a break if someone is trying to stop the world.
3339
bool ConcurrentMark::do_yield_check(uint worker_id) {
P
pliden 已提交
3340
  if (SuspendibleThreadSet::should_yield()) {
3341
    if (worker_id == 0) {
3342
      _g1h->g1_policy()->record_concurrent_pause();
3343
    }
P
pliden 已提交
3344
    SuspendibleThreadSet::yield();
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3358 3359
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3360 3361 3362 3363 3364 3365
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3366
                         p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3367
  for (uint i = 0; i < _max_worker_id; ++i) {
3368
    gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3369
  }
3370
  gclog_or_tty->cr();
3371 3372 3373
}
#endif

3374 3375 3376 3377
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3378
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3379
                           _worker_id, p2i((void*) obj));
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3390 3391 3392 3393 3394 3395 3396 3397 3398
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3399 3400
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3401 3402 3403

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3404 3405
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3406

3407 3408 3409 3410 3411
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3438 3439 3440 3441 3442
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3443

3444
  if (G1UseConcMarkReferenceProcessing) {
3445
    _ref_processor = g1h->ref_processor_cm();
3446
    assert(_ref_processor != NULL, "should not be NULL");
3447
  }
3448
}
3449 3450

void CMTask::setup_for_region(HeapRegion* hr) {
3451 3452 3453 3454 3455
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3456

3457
  if (_cm->verbose_low()) {
3458
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3459
                           _worker_id, p2i(hr));
3460
  }
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3473
    if (_cm->verbose_low()) {
3474
      gclog_or_tty->print_cr("[%u] found an empty region "
3475
                             "["PTR_FORMAT", "PTR_FORMAT")",
3476
                             _worker_id, p2i(bottom), p2i(limit));
3477
    }
3478 3479 3480 3481 3482 3483 3484
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3485
    assert(limit >= _finger, "peace of mind");
3486
  } else {
3487
    assert(limit < _region_limit, "only way to get here");
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3505
  assert(_curr_region != NULL, "invariant");
3506
  if (_cm->verbose_low()) {
3507
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3508
                           _worker_id, p2i(_curr_region));
3509
  }
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3521 3522 3523 3524 3525 3526 3527 3528 3529
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3530
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3531
  guarantee(nextMarkBitMap != NULL, "invariant");
3532

3533
  if (_cm->verbose_low()) {
3534
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3535
  }
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3579 3580 3581
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3582 3583 3584 3585
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3586
  if (has_aborted()) return;
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3603
  if (!concurrent()) return;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3616
  if (_words_scanned >= _words_scanned_limit) {
3617
    ++_clock_due_to_scanning;
3618 3619
  }
  if (_refs_reached >= _refs_reached_limit) {
3620
    ++_clock_due_to_marking;
3621
  }
3622 3623 3624 3625 3626 3627

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3628
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3629
                        "scanned = %d%s, refs reached = %d%s",
3630
                        _worker_id, last_interval_ms,
3631 3632 3633 3634
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3635 3636 3637 3638
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
P
pliden 已提交
3639
  if (SuspendibleThreadSet::should_yield()) {
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3652
    _has_timed_out = true;
3653 3654 3655 3656 3657 3658 3659 3660
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3661
    if (_cm->verbose_low()) {
3662 3663
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3664
    }
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3687
  if (_cm->verbose_medium()) {
3688
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3689
  }
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3715
      if (_cm->verbose_low()) {
3716 3717
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3718
      }
3719 3720 3721 3722
      set_has_aborted();
    } else {
      // the transfer was successful

3723
      if (_cm->verbose_medium()) {
3724 3725
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3726
      }
3727
      statsOnly( int tmp_size = _cm->mark_stack_size();
3728
                 if (tmp_size > _global_max_size) {
3729
                   _global_max_size = tmp_size;
3730
                 }
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3745 3746
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3747 3748 3749 3750
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3751
    if (_cm->verbose_medium()) {
3752 3753
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3754
    }
3755 3756 3757 3758
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3759
      assert(success, "invariant");
3760 3761 3762
    }

    statsOnly( int tmp_size = _task_queue->size();
3763
               if (tmp_size > _local_max_size) {
3764
                 _local_max_size = tmp_size;
3765
               }
3766 3767 3768 3769 3770 3771 3772 3773
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3774
  if (has_aborted()) return;
3775 3776 3777 3778 3779

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3780
  if (partially) {
3781
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3782
  } else {
3783
    target_size = 0;
3784
  }
3785 3786

  if (_task_queue->size() > target_size) {
3787
    if (_cm->verbose_high()) {
3788
      gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3789
                             _worker_id, target_size);
3790
    }
3791 3792 3793 3794 3795 3796

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3797
      if (_cm->verbose_high()) {
3798
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3799
                               p2i((void*) obj));
3800
      }
3801

3802
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3803
      assert(!_g1h->is_on_master_free_list(
3804
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3805 3806 3807

      scan_object(obj);

3808
      if (_task_queue->size() <= target_size || has_aborted()) {
3809
        ret = false;
3810
      } else {
3811
        ret = _task_queue->pop_local(obj);
3812
      }
3813 3814
    }

3815
    if (_cm->verbose_high()) {
3816 3817
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3818
    }
3819 3820 3821 3822
  }
}

void CMTask::drain_global_stack(bool partially) {
3823
  if (has_aborted()) return;
3824 3825 3826

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3827
  assert(partially || _task_queue->size() == 0, "invariant");
3828 3829 3830 3831 3832 3833 3834 3835

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3836
  if (partially) {
3837
    target_size = _cm->partial_mark_stack_size_target();
3838
  } else {
3839
    target_size = 0;
3840
  }
3841 3842

  if (_cm->mark_stack_size() > target_size) {
3843
    if (_cm->verbose_low()) {
3844
      gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3845
                             _worker_id, target_size);
3846
    }
3847 3848 3849 3850 3851 3852

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3853
    if (_cm->verbose_low()) {
3854
      gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3855
                             _worker_id, _cm->mark_stack_size());
3856
    }
3857 3858 3859 3860 3861 3862 3863 3864
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3865
  if (has_aborted()) return;
3866 3867 3868 3869 3870 3871 3872 3873 3874

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3875
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3876
    satb_mq_set.set_par_closure(_worker_id, &oc);
3877
  } else {
3878
    satb_mq_set.set_closure(&oc);
3879
  }
3880 3881 3882

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3883
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3884
    while (!has_aborted() &&
3885
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3886
      if (_cm->verbose_medium()) {
3887
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3888
      }
3889 3890 3891 3892 3893 3894
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3895
      if (_cm->verbose_medium()) {
3896
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3897
      }
3898 3899 3900 3901 3902 3903 3904
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3905
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3906
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3907
    } else {
3908
      satb_mq_set.iterate_closure_all_threads();
3909
    }
3910 3911 3912 3913
  }

  _draining_satb_buffers = false;

3914 3915 3916
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3917

3918
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3919
    satb_mq_set.set_par_closure(_worker_id, NULL);
3920
  } else {
3921
    satb_mq_set.set_closure(NULL);
3922
  }
3923 3924 3925 3926 3927 3928 3929

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3930 3931
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3957
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

3971 3972
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
3973 3974 3975 3976 3977 3978 3979 3980 3981
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

3982
    The data structures that it uses to do marking work are the
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

4016
      (4) SATB Buffer Queue. This is where completed SATB buffers are
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

4028 4029 4030
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
4031
      (local queues, stacks, fingers etc.)  are re-initialized so that
4032 4033
      when do_marking_step() completes, the marking phase can
      immediately restart.
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4082 4083
 *****************************************************************************/

4084
void CMTask::do_marking_step(double time_target_ms,
4085 4086
                             bool do_termination,
                             bool is_serial) {
4087 4088
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4089 4090

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4091 4092
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4093
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4094

4095 4096
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4107 4108 4109 4110 4111 4112
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4125
  _has_timed_out = false;
4126 4127 4128 4129
  _draining_satb_buffers = false;

  ++_calls;

4130
  if (_cm->verbose_low()) {
4131
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4132
                           "target = %1.2lfms >>>>>>>>>>",
4133
                           _worker_id, _calls, _time_target_ms);
4134
  }
4135 4136 4137 4138 4139

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4140 4141
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4142 4143

  if (_cm->has_overflown()) {
4144 4145 4146 4147
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4163 4164
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4180
      if (_cm->verbose_low()) {
4181
        gclog_or_tty->print_cr("[%u] we're scanning part "
4182
                               "["PTR_FORMAT", "PTR_FORMAT") "
4183
                               "of region "HR_FORMAT,
4184
                               _worker_id, p2i(_finger), p2i(_region_limit),
4185
                               HR_FORMAT_PARAMS(_curr_region));
4186
      }
4187

4188 4189
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4190

4191 4192 4193 4194 4195 4196 4197
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4198
      // If the iteration is successful, give up the region.
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4213 4214 4215
        giveup_current_region();
        regular_clock_call();
      } else {
4216
        assert(has_aborted(), "currently the only way to do so");
4217 4218 4219 4220 4221
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4222
        assert(_finger != NULL, "invariant");
4223 4224 4225 4226 4227 4228 4229 4230

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4231
        assert(_finger < _region_limit, "invariant");
4232
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4233 4234
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4235
          giveup_current_region();
4236
        } else {
4237
          move_finger_to(new_finger);
4238
        }
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4256 4257 4258 4259
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4260
      if (_cm->verbose_low()) {
4261
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4262
      }
4263
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4264 4265 4266 4267
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4268
        if (_cm->verbose_low()) {
4269
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4270
                                 "region "PTR_FORMAT,
4271
                                 _worker_id, p2i(claimed_region));
4272
        }
4273 4274

        setup_for_region(claimed_region);
4275
        assert(_curr_region == claimed_region, "invariant");
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4286 4287
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4288 4289 4290 4291 4292
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4293
    // tasks might be pushing objects to it concurrently.
4294 4295
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4296

4297
    if (_cm->verbose_low()) {
4298
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4299
    }
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4312
  if (do_stealing && !has_aborted()) {
4313 4314 4315 4316
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4317
    // tasks might be pushing objects to it concurrently.
4318 4319
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4320

4321
    if (_cm->verbose_low()) {
4322
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4323
    }
4324 4325 4326 4327 4328

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4329
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4330
        if (_cm->verbose_medium()) {
4331
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4332
                                 _worker_id, p2i((void*) obj));
4333
        }
4334 4335 4336

        statsOnly( ++_steals );

4337 4338
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4351 4352 4353 4354 4355 4356 4357 4358 4359
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4360 4361
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4362
  if (do_termination && !has_aborted()) {
4363
    // We cannot check whether the global stack is empty, since other
4364
    // tasks might be concurrently pushing objects on it.
4365 4366 4367
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4368

4369
    if (_cm->verbose_low()) {
4370
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4371
    }
4372 4373

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4374

4375 4376 4377
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4378 4379
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4380 4381 4382 4383 4384 4385 4386
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4387
      if (_worker_id == 0) {
4388 4389
        // let's allow task 0 to do this
        if (concurrent()) {
4390
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4391 4392 4393 4394 4395 4396 4397 4398
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4399 4400 4401 4402 4403 4404 4405 4406
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4407

4408
      if (_cm->verbose_low()) {
4409
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4410
      }
4411 4412 4413 4414
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4415
      if (_cm->verbose_low()) {
4416 4417
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4418
      }
4419 4420 4421 4422 4423 4424 4425 4426 4427

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4428
  set_cm_oop_closure(NULL);
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4439
    if (_has_timed_out) {
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4455
      if (_cm->verbose_low()) {
4456
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4457
      }
4458

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4469 4470 4471 4472 4473 4474

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4475 4476 4477 4478
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4479 4480
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4481 4482 4483 4484
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4485
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4486
                             "elapsed = %1.2lfms <<<<<<<<<<",
4487
                             _worker_id, _time_target_ms, elapsed_time_ms);
4488
      if (_cm->has_aborted()) {
4489 4490
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4491
      }
4492 4493
    }
  } else {
4494
    if (_cm->verbose_low()) {
4495
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4496
                             "elapsed = %1.2lfms <<<<<<<<<<",
4497
                             _worker_id, _time_target_ms, elapsed_time_ms);
4498
    }
4499 4500 4501 4502 4503
  }

  _claimed = false;
}

4504
CMTask::CMTask(uint worker_id,
4505
               ConcurrentMark* cm,
4506 4507
               size_t* marked_bytes,
               BitMap* card_bm,
4508 4509 4510
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4511
    _worker_id(worker_id), _cm(cm),
4512 4513 4514 4515
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4516
    _cm_oop_closure(NULL),
4517 4518
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4519 4520
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4521 4522 4523 4524 4525 4526

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4566
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
J
johnc 已提交
4567
    _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
4580 4581
                 p2i(g1_committed.start()), p2i(g1_committed.end()),
                 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4582
                 HeapRegion::GrainBytes);
4583 4584
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4585 4586 4587 4588 4589 4590
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4591
                G1PPRL_BYTE_H_FORMAT
4592 4593
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
J
johnc 已提交
4594 4595
                "used", "prev-live", "next-live", "gc-eff",
                "remset", "code-roots");
4596
  _out->print_cr(G1PPRL_LINE_PREFIX
4597 4598 4599 4600 4601 4602
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4603
                G1PPRL_BYTE_H_FORMAT
4604 4605
                G1PPRL_BYTE_H_FORMAT,
                "", "",
J
johnc 已提交
4606 4607
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
                "(bytes)", "(bytes)");
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4619
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4649
  size_t remset_bytes    = r->rem_set()->mem_size();
J
johnc 已提交
4650 4651
  size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4685
  _total_remset_bytes    += remset_bytes;
J
johnc 已提交
4686
  _total_strong_code_roots_bytes += strong_code_roots_bytes;
4687 4688 4689 4690 4691 4692 4693 4694

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4695
                 G1PPRL_DOUBLE_FORMAT
J
johnc 已提交
4696
                 G1PPRL_BYTE_FORMAT
4697
                 G1PPRL_BYTE_FORMAT,
4698
                 type, p2i(bottom), p2i(end),
J
johnc 已提交
4699 4700
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
                 remset_bytes, strong_code_roots_bytes);
4701 4702 4703 4704 4705

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4706 4707
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4708 4709 4710 4711 4712 4713 4714
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4715
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
J
johnc 已提交
4716 4717
                 G1PPRL_SUM_MB_FORMAT("remset")
                 G1PPRL_SUM_MB_FORMAT("code-roots"),
4718 4719 4720 4721 4722 4723
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4724
                 perc(_total_next_live_bytes, _total_capacity_bytes),
J
johnc 已提交
4725 4726
                 bytes_to_mb(_total_remset_bytes),
                 bytes_to_mb(_total_strong_code_roots_bytes));
4727 4728
  _out->cr();
}