g1CollectedHeap.cpp 250.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
30
#include "classfile/metadataOnStackMark.hpp"
J
johnc 已提交
31
#include "code/codeCache.hpp"
32 33 34 35 36
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
37
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
38 39
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
40
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
41
#include "gc_implementation/g1/g1EvacFailure.hpp"
42
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
43
#include "gc_implementation/g1/g1Log.hpp"
44 45
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
46
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
47
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
48
#include "gc_implementation/g1/g1RemSet.inline.hpp"
49
#include "gc_implementation/g1/g1RootProcessor.hpp"
P
pliden 已提交
50
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
51
#include "gc_implementation/g1/g1YCTypes.hpp"
52
#include "gc_implementation/g1/heapRegion.inline.hpp"
53
#include "gc_implementation/g1/heapRegionRemSet.hpp"
54
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
55
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
56 57 58 59
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
60
#include "gc_implementation/shared/isGCActiveMark.hpp"
61
#include "memory/allocation.hpp"
62 63
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
64
#include "memory/iterator.hpp"
65
#include "memory/referenceProcessor.hpp"
66 67
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
68
#include "runtime/orderAccess.inline.hpp"
69
#include "runtime/vmThread.hpp"
70

71 72
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

73 74 75
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
76
#define YOUNG_LIST_VERBOSE 0
77 78 79 80 81 82
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
83 84 85 86 87
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
88 89 90 91 92 93

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
94 95
  RefineCardTableEntryClosure() : _concurrent(true) { }

96
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
97
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
98 99 100 101 102
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
103
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
104 105 106 107 108 109
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
110

111 112 113 114 115
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
116
  size_t _num_processed;
117 118
  CardTableModRefBS* _ctbs;
  int _histo[256];
119 120

 public:
121
  ClearLoggedCardTableEntryClosure() :
122
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
123 124 125
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
126

127
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
128 129 130 131 132 133 134
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

135 136
    return true;
  }
137 138 139

  size_t num_processed() { return _num_processed; }

140 141 142 143 144 145 146 147 148 149
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

150 151 152 153 154 155
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
156

157
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
158 159
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
160 161
    return true;
  }
162 163

  size_t num_processed() const { return _num_processed; }
164 165
};

166 167 168 169
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
170 171 172 173 174 175 176 177 178
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

179
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
180 181 182 183
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
184
  assert(hr->is_survivor(), "should be flagged as survivor region");
185 186 187 188
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
189
    _survivor_tail = hr;
190 191 192 193 194 195 196 197 198 199
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
200 201 202 203
    // This is called before a Full GC and all the non-empty /
    // non-humongous regions at the end of the Full GC will end up as
    // old anyway.
    list->set_old();
204 205 206 207 208 209 210 211 212 213 214 215 216
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
217
  _survivor_tail = NULL;
218 219 220 221 222 223 224 225 226 227
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

228
  uint length = 0;
229 230 231
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
232
    if (!curr->is_young()) {
233
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
234
                             "incorrectly tagged (y: %d, surv: %d)",
235
                             curr->bottom(), curr->end(),
236
                             curr->is_young(), curr->is_survivor());
237 238 239 240 241 242 243 244 245 246
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
247
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
248 249 250
                           length, _length);
  }

251
  return ret;
252 253
}

254
bool YoungList::check_list_empty(bool check_sample) {
255 256 257
  bool ret = true;

  if (_length != 0) {
258
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

274
  return ret;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
291 292 293 294 295 296 297 298 299 300 301 302
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

303 304 305 306 307 308 309 310 311 312 313 314 315 316
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
317
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
318

319
  int young_index_in_cset = 0;
320 321 322
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
323
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
324 325 326 327 328

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
329
    young_index_in_cset += 1;
330
  }
331
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
332 333
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

334 335
  _head   = _survivor_head;
  _length = _survivor_length;
336
  if (_survivor_head != NULL) {
337 338 339
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
340 341
  }

342 343 344 345
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
346

347
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
348 349 350 351 352

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
353 354
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
355

356
  for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
357 358 359 360 361
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
362
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
363
                             HR_FORMAT_PARAMS(curr),
364 365
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
366
                             curr->age_in_surv_rate_group_cond());
367 368 369 370
      curr = curr->get_next_young_region();
    }
  }

371
  gclog_or_tty->cr();
372 373
}

374 375 376 377
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  OtherRegionsTable::invalidate(start_idx, num_regions);
}

378 379 380
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
  // The from card cache is not the memory that is actually committed. So we cannot
  // take advantage of the zero_filled parameter.
381 382 383
  reset_from_card_cache(start_idx, num_regions);
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

437 438 439 440 441 442 443 444 445 446 447 448
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
449 450 451 452
  if (p == NULL) {
    return false;
  }
  return heap_region_containing(p)->in_collection_set();
453 454 455 456
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
457
// can move in an incremental collection.
458 459
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
460
  return !hr->isHumongous();
461 462
}

463 464
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
465
  CardTableModRefBS* ct_bs = g1_barrier_set();
466 467 468 469 470 471 472 473

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
474 475
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
476 477 478 479 480 481 482 483 484 485 486 487
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
488 489
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
490
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
491 492 493 494
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
            err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
                    redirty.num_processed(), clear.num_processed()));
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

511
HeapRegion*
512
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
513 514 515 516 517
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
518
                               "secondary_free_list has %u entries",
519 520 521 522 523 524 525
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

526
      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
527
             "empty we should have moved at least one entry to the free_list");
528
      HeapRegion* res = _hrm.allocate_free_region(is_old);
529 530 531 532 533 534 535 536
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
537
    // Wait here until we get notified either when (a) there are no
538 539 540 541 542 543 544 545 546 547 548
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
549

550
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
551
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
552 553
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
554

555 556 557 558 559 560 561
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
562
      res = new_region_try_secondary_free_list(is_old);
563 564 565 566 567
      if (res != NULL) {
        return res;
      }
    }
  }
568

569
  res = _hrm.allocate_free_region(is_old);
570

571 572 573 574 575
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
576
    res = new_region_try_secondary_free_list(is_old);
577
  }
578 579 580 581 582 583 584
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

585 586 587 588 589
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
590
    if (expand(word_size * HeapWordSize)) {
591 592
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
593
      // region size, the free list should in theory not be empty.
594
      // In either case allocate_free_region() will check for NULL.
595
      res = _hrm.allocate_free_region(is_old);
596 597
    } else {
      _expand_heap_after_alloc_failure = false;
598
    }
599 600 601 602
  }
  return res;
}

T
tonyp 已提交
603
HeapWord*
604 605
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
606 607
                                                           size_t word_size,
                                                           AllocationContext_t context) {
608
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
T
tonyp 已提交
609 610 611 612
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
613
  uint last = first + num_regions;
T
tonyp 已提交
614 615 616 617 618 619 620 621 622 623

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
624
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
625 626 627
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
628
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
629 630 631 632
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
633
  // should also match the end of the last region in the series.
T
tonyp 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);
659
  first_hr->set_allocation_context(context);
T
tonyp 已提交
660 661 662
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
663
  for (uint i = first + 1; i < last; ++i) {
664
    hr = region_at(i);
T
tonyp 已提交
665
    hr->set_continuesHumongous(first_hr);
666
    hr->set_allocation_context(context);
T
tonyp 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
686 687 688 689 690 691 692 693 694 695 696
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
710
  for (uint i = first + 1; i < last; ++i) {
711
    hr = region_at(i);
T
tonyp 已提交
712 713 714 715 716
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
717
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
718 719 720 721
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
722
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
723 724 725 726 727 728 729
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");
730
  check_bitmaps("Humongous Region Allocation", first_hr);
T
tonyp 已提交
731 732

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
733
  _allocator->increase_used(first_hr->used());
T
tonyp 已提交
734 735 736 737 738
  _humongous_set.add(first_hr);

  return new_obj;
}

739 740 741
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
742
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
743
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
744

745
  verify_region_sets_optional();
746

747
  uint first = G1_NO_HRM_INDEX;
748 749 750 751 752 753 754 755
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
756
      first = hr->hrm_index();
757 758 759 760 761 762 763 764
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
765 766
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
767 768 769 770 771
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
772 773 774
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
775 776
    }
  }
777

778
  if (first == G1_NO_HRM_INDEX) {
779 780 781
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
782 783
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
784 785
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
786 787 788 789 790
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
791

792
      _hrm.expand_at(first, obj_regions);
793 794 795 796 797
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
798
        assert(hr->is_free(), "sanity");
799 800
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
801
      }
802
#endif
803
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
804 805
    } else {
      // Policy: Potentially trigger a defragmentation GC.
806 807
    }
  }
808

T
tonyp 已提交
809
  HeapWord* result = NULL;
810
  if (first != G1_NO_HRM_INDEX) {
811 812
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
T
tonyp 已提交
813
    assert(result != NULL, "it should always return a valid result");
814 815 816 817 818

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
819
  }
820 821

  verify_region_sets_optional();
T
tonyp 已提交
822 823

  return result;
824 825
}

826 827 828
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
829

830 831
  uint dummy_gc_count_before;
  uint dummy_gclocker_retry_count = 0;
832
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
833 834 835
}

HeapWord*
836 837 838
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
839

S
sla 已提交
840
  // Loop until the allocation is satisfied, or unsatisfied after GC.
841 842
  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
    uint gc_count_before;
843

844 845
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
846
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
847
    } else {
848
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
849 850 851 852
    }
    if (result != NULL) {
      return result;
    }
853

854 855
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
856 857
    op.set_allocation_context(AllocationContext::current());

858 859
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
860

861 862 863 864 865 866
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
867
        // Allocations that take place on VM operations do not do any
868 869
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
870 871 872
        dirty_young_block(result, word_size);
      }
      return result;
873
    } else {
874 875 876
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
877 878
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
879 880 881 882 883
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
884
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
885 886 887
    }
  }

888
  ShouldNotReachHere();
889 890 891
  return NULL;
}

892
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
893
                                                   AllocationContext_t context,
894 895
                                                   uint* gc_count_before_ret,
                                                   uint* gclocker_retry_count_ret) {
896 897 898 899 900
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
901

902 903 904 905 906 907 908
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
909
  HeapWord* result = NULL;
910 911
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
912
    uint gc_count_before;
913

914 915
    {
      MutexLockerEx x(Heap_lock);
916 917
      result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                    false /* bot_updates */);
918 919
      if (result != NULL) {
        return result;
920
      }
921

922 923
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
924
      assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
925

926 927
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
928 929
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
930 931
          result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
                                                                                       false /* bot_updates */);
932 933 934 935 936 937
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
938 939 940 941 942 943 944 945 946 947 948 949
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
950 951
      }
    }
952

953 954
    if (should_try_gc) {
      bool succeeded;
955
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
956
                                   GCCause::_g1_inc_collection_pause);
957
      if (result != NULL) {
958
        assert(succeeded, "only way to get back a non-NULL result");
959 960 961
        return result;
      }

962 963 964 965 966
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
967
        *gc_count_before_ret = total_collections();
968 969 970
        return NULL;
      }
    } else {
971 972 973 974 975
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
976 977 978
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
979
      GC_locker::stall_until_clear();
980
      (*gclocker_retry_count_ret) += 1;
981 982
    }

S
sla 已提交
983
    // We can reach here if we were unsuccessful in scheduling a
984 985 986 987 988 989 990
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
991 992
    result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                           false /* bot_updates */);
993
    if (result != NULL) {
994
      return result;
995 996
    }

997 998 999
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1000
      warning("G1CollectedHeap::attempt_allocation_slow() "
1001
              "retries %d times", try_count);
1002 1003 1004
    }
  }

1005 1006
  ShouldNotReachHere();
  return NULL;
1007 1008
}

1009
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1010 1011
                                                        uint* gc_count_before_ret,
                                                        uint* gclocker_retry_count_ret) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1023
  assert_heap_not_locked_and_not_at_safepoint();
1024 1025
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1026

1027 1028 1029 1030 1031
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1032 1033
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1034 1035 1036
    collect(GCCause::_g1_humongous_allocation);
  }

1037 1038 1039 1040 1041
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1042
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1043
    bool should_try_gc;
1044
    uint gc_count_before;
1045

1046
    {
1047
      MutexLockerEx x(Heap_lock);
1048

1049 1050 1051
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
1052
      result = humongous_obj_allocate(word_size, AllocationContext::current());
1053 1054
      if (result != NULL) {
        return result;
1055
      }
1056

1057 1058 1059
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1072 1073 1074
      }
    }

1075 1076 1077 1078
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1079

1080
      bool succeeded;
1081
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
1082
                                   GCCause::_g1_humongous_allocation);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1093
        *gc_count_before_ret = total_collections();
1094
        return NULL;
1095 1096
      }
    } else {
1097 1098 1099 1100 1101
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1102 1103 1104
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1105
      GC_locker::stall_until_clear();
1106
      (*gclocker_retry_count_ret) += 1;
1107 1108
    }

S
sla 已提交
1109
    // We can reach here if we were unsuccessful in scheduling a
1110 1111 1112 1113 1114 1115
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1116 1117
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1118 1119
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1120 1121
    }
  }
1122 1123

  ShouldNotReachHere();
1124
  return NULL;
1125 1126
}

1127
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1128 1129
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
1130
  assert_at_safepoint(true /* should_be_vm_thread */);
1131
  assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1132 1133
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1134

1135
  if (!isHumongous(word_size)) {
1136
    return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1137 1138
                                                      false /* bot_updates */);
  } else {
1139
    HeapWord* result = humongous_obj_allocate(word_size, context);
1140 1141 1142 1143
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1144
  }
1145 1146

  ShouldNotReachHere();
1147 1148 1149
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1150
  G1CollectedHeap* _g1h;
1151 1152
  ModRefBarrierSet* _mr_bs;
public:
1153
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1154 1155
    _g1h(g1h), _mr_bs(mr_bs) {}

1156
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1157 1158
    HeapRegionRemSet* hrrs = r->rem_set();

1159
    if (r->continuesHumongous()) {
J
johnc 已提交
1160 1161 1162
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1163
      return false;
1164
    }
J
johnc 已提交
1165

1166
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1167
    hrrs->clear();
1168 1169 1170 1171 1172 1173
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1174

1175 1176 1177 1178
    return false;
  }
};

1179
void G1CollectedHeap::clear_rsets_post_compaction() {
1180
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1181 1182
  heap_region_iterate(&rs_clear);
}
1183

1184 1185 1186 1187 1188 1189
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190
    _cl(g1->g1_rem_set(), worker_i),
1191 1192 1193
    _worker_i(worker_i),
    _g1h(g1)
  { }
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1212 1213 1214
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215
                                          _g1->workers()->active_workers(),
1216 1217 1218 1219
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1220 1221 1222 1223 1224 1225
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
1226 1227 1228 1229 1230 1231
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->startsHumongous()) {
      if (hr->region_num() == 1) {
        // single humongous region
        _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1232
      } else {
1233
        _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1234
      }
1235 1236 1237 1238 1239 1240
    } else if (hr->continuesHumongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
1241 1242 1243 1244 1245 1246 1247 1248
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1249
void G1CollectedHeap::print_hrm_post_compaction() {
1250 1251 1252 1253
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1254
bool G1CollectedHeap::do_collection(bool explicit_gc,
1255
                                    bool clear_all_soft_refs,
1256
                                    size_t word_size) {
1257 1258
  assert_at_safepoint(true /* should_be_vm_thread */);

1259
  if (GC_locker::check_active_before_gc()) {
1260
    return false;
1261 1262
  }

S
sla 已提交
1263
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1264
  gc_timer->register_gc_start();
S
sla 已提交
1265 1266 1267 1268

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1269
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1270 1271
  ResourceMark rm;

1272
  print_heap_before_gc();
S
sla 已提交
1273
  trace_heap_before_gc(gc_tracer);
1274

1275
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1276

1277
  verify_region_sets_optional();
1278

1279 1280 1281 1282 1283
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1284 1285 1286 1287
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1288
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1289
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1290

1291
    {
1292
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1312

1313 1314 1315
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1316

1317
      assert(used() == recalculate_used(), "Should be equal");
1318

1319
      verify_before_gc();
1320

1321
      check_bitmaps("Full GC Start");
S
sla 已提交
1322
      pre_full_gc_dump(gc_timer);
1323

1324
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1325

1326 1327 1328 1329 1330
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1331

1332 1333 1334 1335
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1336

1337
      // Make sure we'll choose a new allocation region afterwards.
1338 1339
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
1340
      g1_rem_set()->cleanupHRRS();
1341

1342 1343 1344 1345
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1346

1347 1348 1349 1350 1351 1352 1353
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1354

1355 1356
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1357

1358 1359 1360
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1361

1362 1363
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1364

1365 1366
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1367

1368 1369
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1370

1371 1372 1373 1374 1375
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1376

1377
      assert(num_free_regions() == 0, "we should not have added any free regions");
1378
      rebuild_region_sets(false /* free_list_only */);
1379

1380 1381 1382
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1383

1384
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1385

1386
      MemoryService::track_memory_usage();
1387

1388 1389
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1390

1391 1392
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1393
      MetaspaceAux::verify_metrics();
1394

1395 1396 1397 1398 1399 1400
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1401

1402 1403
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1404
      // sets, and clear all cards.  Later we will rebuild remembered
1405 1406 1407
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1408

1409 1410
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1411

1412 1413 1414 1415
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1416

1417
        print_hrm_post_compaction();
1418 1419
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1420

1421 1422 1423 1424
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1425
      }
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1463

J
johnc 已提交
1464 1465 1466
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1467 1468 1469
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1470

1471 1472 1473
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1474

1475 1476
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
1477
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1478

1479 1480 1481 1482 1483
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1484

1485 1486
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1487

1488
      _hrm.verify_optional();
1489
      verify_region_sets_optional();
1490

1491 1492
      verify_after_gc();

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

1505 1506 1507
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1508

1509
      clear_cset_fast_test();
1510

1511
      _allocator->init_mutator_alloc_region();
1512

1513 1514
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1515

1516 1517 1518
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1519

1520 1521 1522 1523 1524
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1525

1526 1527
      gc_epilogue(true);
    }
1528

1529
    if (G1Log::finer()) {
1530
      g1_policy()->print_detailed_heap_transition(true /* full */);
1531
    }
1532 1533

    print_heap_after_gc();
S
sla 已提交
1534 1535 1536
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1537

1538
    gc_timer->register_gc_end();
S
sla 已提交
1539
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1540
  }
1541

1542
  return true;
1543 1544 1545
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1546 1547 1548 1549 1550 1551 1552 1553
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1566 1567 1568 1569
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1570
  // We don't have floating point command-line arguments
1571
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1572
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1573
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1574 1575
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1612

1613
  if (capacity_after_gc < minimum_desired_capacity) {
1614 1615
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1626 1627

    // No expansion, now see if we want to shrink
1628
  } else if (capacity_after_gc > maximum_desired_capacity) {
1629 1630
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1631 1632 1633 1634 1635 1636 1637 1638 1639
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1640 1641 1642 1643 1644 1645
    shrink(shrink_bytes);
  }
}


HeapWord*
1646
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1647
                                           AllocationContext_t context,
1648
                                           bool* succeeded) {
1649
  assert_at_safepoint(true /* should_be_vm_thread */);
1650 1651 1652

  *succeeded = true;
  // Let's attempt the allocation first.
1653 1654
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
1655 1656
                                    context,
                                    false /* expect_null_mutator_alloc_region */);
1657 1658 1659 1660
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1661 1662 1663 1664 1665

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
1666
  result = expand_and_allocate(word_size, context);
1667
  if (result != NULL) {
1668
    assert(*succeeded, "sanity");
1669 1670 1671
    return result;
  }

1672 1673 1674 1675 1676 1677 1678 1679
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1680

1681 1682
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1683 1684
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1685
  if (result != NULL) {
1686
    assert(*succeeded, "sanity");
1687 1688 1689
    return result;
  }

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1701 1702
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1703
  if (result != NULL) {
1704
    assert(*succeeded, "sanity");
1705 1706 1707
    return result;
  }

1708
  assert(!collector_policy()->should_clear_all_soft_refs(),
1709
         "Flag should have been handled and cleared prior to this point");
1710

1711 1712 1713 1714
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1715
  assert(*succeeded, "sanity");
1716 1717 1718 1719 1720 1721 1722 1723
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

1724
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1725 1726 1727
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1728

1729
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1730 1731 1732 1733 1734
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1735
  if (expand(expand_bytes)) {
1736
    _hrm.verify_optional();
1737 1738
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1739 1740
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
1741
  }
1742
  return NULL;
1743 1744
}

1745 1746
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1747 1748
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1749 1750 1751 1752 1753
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1754

1755
  if (is_maximal_no_gc()) {
1756 1757 1758 1759 1760 1761
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1762 1763
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");
1764

1765
  uint expanded_by = _hrm.expand_by(regions_to_expand);
1766

1767 1768
  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1769
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1770
    g1_policy()->record_new_heap_size(num_regions());
1771
  } else {
1772 1773 1774
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1775 1776 1777
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
1778
        _hrm.available() >= regions_to_expand) {
1779
      // We had head room...
1780
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1781 1782
    }
  }
1783
  return regions_to_expand > 0;
1784 1785
}

1786
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1787 1788 1789 1790
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1791 1792
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

1793
  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1794
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1795 1796 1797 1798 1799 1800

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1801 1802
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
1803
    g1_policy()->record_new_heap_size(num_regions());
1804 1805 1806 1807
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1808 1809 1810 1811
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1812 1813
  verify_region_sets_optional();

1814 1815 1816
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
1817
  _allocator->abandon_gc_alloc_regions();
1818

1819 1820 1821
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1822
  tear_down_region_sets(true /* free_list_only */);
1823
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1824
  rebuild_region_sets(true /* free_list_only */);
1825

1826
  _hrm.verify_optional();
1827
  verify_region_sets_optional();
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1840
  _dirty_card_queue_set(false),
J
johnc 已提交
1841
  _into_cset_dirty_card_queue_set(false),
1842 1843 1844 1845
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1846
  _bot_shared(NULL),
S
sla 已提交
1847
  _evac_failure_scan_stack(NULL),
1848
  _mark_in_progress(false),
1849
  _cg1r(NULL),
1850
  _g1mm(NULL),
1851 1852
  _refine_cte_cl(NULL),
  _full_collection(false),
1853 1854 1855
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1856
  _humongous_reclaim_candidates(),
1857
  _has_humongous_reclaim_candidates(false),
1858
  _free_regions_coming(false),
1859 1860
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1861 1862
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1863
  _expand_heap_after_alloc_failure(true),
1864
  _surviving_young_words(NULL),
1865 1866
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1867
  _concurrent_cycle_started(false),
1868
  _heap_summary_sent(false),
1869
  _in_cset_fast_test(),
1870 1871
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1872 1873 1874 1875 1876 1877 1878
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1879

1880
  _allocator = G1Allocator::create_allocator(_g1h);
1881 1882
  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1883 1884 1885
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1886
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1887 1888
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1889
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1890
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
S
sla 已提交
1891
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1892

1893 1894 1895 1896
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1897
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1898
  }
1899 1900
  clear_cset_start_regions();

1901 1902 1903
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1904 1905 1906
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

1907 1908 1909
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
                                                                 size_t size,
                                                                 size_t translation_factor) {
1910
  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1911
  // Allocate a new reserved space, preferring to use large pages.
1912
  ReservedSpace rs(size, preferred_page_size);
1913 1914 1915 1916 1917 1918 1919 1920 1921
  G1RegionToSpaceMapper* result  =
    G1RegionToSpaceMapper::create_mapper(rs,
                                         size,
                                         rs.alignment(),
                                         HeapRegion::GrainBytes,
                                         translation_factor,
                                         mtGC);
  if (TracePageSizes) {
    gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1922
                           description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1923 1924 1925 1926
  }
  return result;
}

1927
jint G1CollectedHeap::initialize() {
1928
  CollectedHeap::pre_initialize();
1929 1930
  os::enable_vtime();

1931 1932
  G1Log::init();

1933 1934 1935 1936
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1937 1938 1939 1940
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1941 1942 1943 1944 1945 1946 1947 1948 1949
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1950
  size_t heap_alignment = collector_policy()->heap_alignment();
1951 1952 1953 1954

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1955
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1956

1957 1958 1959
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1960 1961

  // Reserve the maximum.
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

1974
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1975
                                                 heap_alignment);
1976 1977

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
1978
  // temporarily think something is in the heap.  (I've actually seen this
1979 1980 1981 1982 1983 1984 1985 1986
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
1987 1988
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1989 1990 1991 1992
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1993
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1994 1995 1996

  // Carve out the G1 part of the heap.

1997
  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1998 1999
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
2000
                                         g1_rs.size(),
2001 2002 2003 2004 2005 2006
                                         UseLargePages ? os::large_page_size() : os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  heap_storage->set_mapping_changed_listener(&_listener);

2007
  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2008
  G1RegionToSpaceMapper* bot_storage =
2009 2010 2011
    create_aux_memory_mapper("Block offset table",
                             G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2012 2013 2014

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
2015 2016 2017
    create_aux_memory_mapper("Card table",
                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2018 2019

  G1RegionToSpaceMapper* card_counts_storage =
2020 2021 2022
    create_aux_memory_mapper("Card counts table",
                             G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2023 2024 2025

  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  G1RegionToSpaceMapper* prev_bitmap_storage =
2026
    create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
2027
  G1RegionToSpaceMapper* next_bitmap_storage =
2028
    create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
2029

2030
  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2031 2032 2033
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);
2034

2035 2036
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2037
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2038 2039 2040
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2041
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2042
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2043
            "too many cards per region");
2044

2045
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2046

2047
  _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2048 2049 2050

  _g1h = this;

2051 2052 2053 2054 2055 2056 2057 2058
  {
    HeapWord* start = _hrm.reserved().start();
    HeapWord* end = _hrm.reserved().end();
    size_t granularity = HeapRegion::GrainBytes;

    _in_cset_fast_test.initialize(start, end, granularity);
    _humongous_reclaim_candidates.initialize(start, end, granularity);
  }
2059

2060 2061
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2062
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2063 2064 2065 2066
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2067 2068 2069 2070 2071
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2072
  // Now expand into the initial heap size.
2073
  if (!expand(init_byte_size)) {
2074
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2075 2076
    return JNI_ENOMEM;
  }
2077 2078 2079 2080 2081 2082

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2083
                                               G1SATBProcessCompletedThreshold,
2084
                                               Shared_SATB_Q_lock);
2085

2086 2087
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2088
                                                DirtyCardQ_FL_lock,
2089 2090
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2091 2092
                                                Shared_DirtyCardQ_lock);

2093 2094 2095 2096 2097 2098 2099
  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());
J
johnc 已提交
2100 2101 2102

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2103 2104
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2105 2106 2107 2108 2109 2110
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2111 2112 2113 2114
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2115 2116
  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
2117
  HeapRegion* dummy_region = _hrm.get_dummy_region();
2118

2119 2120 2121
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
2122 2123
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
2124 2125 2126 2127
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

2128
  _allocator->init_mutator_alloc_region();
2129

2130 2131
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2132
  _g1mm = new G1MonitoringSupport(this);
2133

P
pliden 已提交
2134 2135
  G1StringDedup::initialize();

2136 2137 2138
  return JNI_OK;
}

2139
void G1CollectedHeap::stop() {
2140 2141
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2142
  // that are destroyed during shutdown.
2143 2144 2145 2146 2147
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2148 2149
}

2150 2151 2152 2153
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2154
void G1CollectedHeap::ref_processing_init() {
2155 2156
  // Reference processing in G1 currently works as follows:
  //
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2189

2190 2191
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2206
                           &_is_alive_closure_cm);
2207 2208 2209 2210 2211
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2212
    new ReferenceProcessor(mr,    // span
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2223
                           &_is_alive_closure_stw);
2224 2225
                                // is alive closure
                                // (for efficiency/performance)
2226 2227 2228
}

size_t G1CollectedHeap::capacity() const {
2229
  return _hrm.length() * HeapRegion::GrainBytes;
2230 2231
}

2232 2233 2234 2235
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
2236
    uint first_index = hr->hrm_index() + 1;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2277 2278 2279
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2280
                                                 uint worker_i) {
2281
  // Clean cards in the hot card cache
2282 2283
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2284

2285
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2286
  size_t n_completed_buffers = 0;
J
johnc 已提交
2287
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2288 2289
    n_completed_buffers++;
  }
2290
  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2291 2292 2293 2294 2295 2296 2297
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
2298
  return _allocator->used();
2299 2300
}

2301
size_t G1CollectedHeap::used_unlocked() const {
2302
  return _allocator->used_unlocked();
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2319 2320
  double recalculate_used_start = os::elapsedTime();

2321
  SumUsedClosure blk;
2322
  heap_region_iterate(&blk);
2323 2324

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2325 2326 2327
  return blk.result();
}

2328
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2329 2330 2331 2332
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
2333
    case GCCause::_update_allocation_context_stats_inc: return true;
2334
    case GCCause::_wb_conc_mark:            return true;
2335 2336
    default:                                return false;
  }
2337 2338
}

2339 2340 2341 2342 2343 2344 2345 2346 2347
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
2348 2349
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2372 2373
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2374 2375 2376 2377 2378
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2379 2380 2381 2382 2383 2384 2385 2386
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2387
  assert(concurrent ||
2388 2389 2390 2391 2392
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2393 2394

  // This is the case for the outer caller, i.e. the concurrent cycle.
2395
  assert(!concurrent ||
2396
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2397
         err_msg("for outer caller (concurrent cycle): "
2398 2399 2400
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2401

2402
  _old_marking_cycles_completed += 1;
2403

2404 2405 2406
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2407
  // incorrectly see that a marking cycle is still in progress.
2408
  if (concurrent) {
2409 2410 2411
    _cmThread->clear_in_progress();
  }

2412 2413 2414 2415 2416 2417 2418
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2419
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2432

2433
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2434 2435
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

2436
    // Clear state variables to prepare for the next concurrent cycle.
S
sla 已提交
2437
    _concurrent_cycle_started = false;
2438
    _heap_summary_sent = false;
S
sla 已提交
2439 2440 2441 2442 2443
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    // This function can be called when:
    //  the cleanup pause is run
    //  the concurrent cycle is aborted before the cleanup pause.
    //  the concurrent cycle is aborted after the cleanup pause,
    //   but before the concurrent cycle end has been registered.
    // Make sure that we only send the heap information once.
    if (!_heap_summary_sent) {
      trace_heap_after_gc(_gc_tracer_cm);
      _heap_summary_sent = true;
    }
S
sla 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2473
void G1CollectedHeap::collect(GCCause::Cause cause) {
2474
  assert_heap_not_locked();
2475

2476 2477 2478
  uint gc_count_before;
  uint old_marking_count_before;
  uint full_gc_count_before;
2479 2480 2481 2482 2483 2484 2485
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2486

2487 2488
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2489
      full_gc_count_before = total_full_collections();
2490
      old_marking_count_before = _old_marking_cycles_started;
2491 2492 2493 2494 2495 2496
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2497
      VM_G1IncCollectionPause op(gc_count_before,
2498
                                 0,     /* word_size */
2499
                                 true,  /* should_initiate_conc_mark */
2500 2501
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2502
      op.set_allocation_context(AllocationContext::current());
2503

2504
      VMThread::execute(&op);
2505
      if (!op.pause_succeeded()) {
2506
        if (old_marking_count_before == _old_marking_cycles_started) {
2507
          retry_gc = op.should_retry_gc();
2508 2509 2510 2511 2512
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2513 2514 2515 2516 2517 2518

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2519
      }
2520
    } else {
2521
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2534
        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2535 2536
        VMThread::execute(&op);
      }
2537
    }
2538
  } while (retry_gc);
2539 2540 2541
}

bool G1CollectedHeap::is_in(const void* p) const {
2542
  if (_hrm.reserved().contains(p)) {
2543
    // Given that we know that p is in the reserved space,
S
stefank 已提交
2544 2545 2546
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2547 2548
    return hr->is_in(p);
  } else {
2549
    return false;
2550 2551 2552
  }
}

2553 2554 2555
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
2556
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2557 2558 2559 2560 2561 2562 2563 2564
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

2565 2566
// Iteration functions.

2567
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2568 2569

class IterateOopClosureRegionClosure: public HeapRegionClosure {
2570
  ExtendedOopClosure* _cl;
2571
public:
2572
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2573
  bool doHeapRegion(HeapRegion* r) {
2574
    if (!r->continuesHumongous()) {
2575 2576 2577 2578 2579 2580
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2581
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2582
  IterateOopClosureRegionClosure blk(cl);
2583
  heap_region_iterate(&blk);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2600
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2601
  IterateObjectClosureRegionClosure blk(cl);
2602
  heap_region_iterate(&blk);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2619
  heap_region_iterate(&blk);
2620 2621
}

2622
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2623
  _hrm.iterate(cl);
2624 2625 2626 2627
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2628
                                                 uint worker_id,
2629 2630
                                                 uint num_workers,
                                                 jint claim_value) const {
2631
  _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2632 2633
}

2634 2635 2636 2637 2638 2639 2640 2641
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2642
void G1CollectedHeap::reset_heap_region_claim_values() {
2643 2644 2645 2646
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2647 2648 2649 2650 2651
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2652 2653 2654 2655 2656 2657 2658 2659 2660
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2661
  uint _failures;
2662
  HeapRegion* _sh_region;
2663

2664 2665 2666 2667 2668
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2669
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2670
                             "claim value = %d, should be %d",
2671 2672
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2673 2674 2675 2676 2677 2678 2679 2680
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2681
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2682
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2683
                               HR_FORMAT_PARAMS(r),
2684 2685 2686 2687 2688 2689 2690
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2691
  uint failures() { return _failures; }
2692 2693 2694 2695 2696 2697 2698
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2699 2700

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2701 2702 2703
private:
  jint _claim_value;
  uint _failures;
2704 2705 2706

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2707
    _claim_value(claim_value), _failures(0) { }
2708

2709
  uint failures() { return _failures; }
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2730 2731
#endif // ASSERT

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2744

2745 2746
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2747
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2775
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2776
    uint cs_size = g1_policy()->cset_region_length();
2777
    uint active_workers = workers()->active_workers();
2778 2779 2780 2781
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2782 2783
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2784 2785 2786 2787 2788 2789 2790 2791 2792

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2793
    for (uint i = start_ind; i < end_ind; i++) {
2794 2795 2796
      result = result->next_in_collection_set();
    }
  }
2797 2798 2799 2800 2801 2802 2803 2804 2805

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2806 2807 2808
  return result;
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2823 2824 2825 2826 2827
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

2850
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2851
  HeapRegion* result = _hrm.next_region_in_heap(from);
2852
  while (result != NULL && result->isHumongous()) {
2853
    result = _hrm.next_region_in_heap(result);
2854
  }
2855
  return result;
2856 2857 2858
}

Space* G1CollectedHeap::space_containing(const void* addr) const {
2859
  return heap_region_containing(addr);
2860 2861 2862 2863
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
2864
  return sp->block_start(addr);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2893 2894 2895 2896 2897 2898
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2899
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
2900
  // since we can't allow tlabs to grow big enough to accommodate
2901 2902
  // humongous objects.

2903
  HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
B
brutisso 已提交
2904
  size_t max_tlab = max_tlab_size() * wordSize;
2905
  if (hr == NULL) {
B
brutisso 已提交
2906
    return max_tlab;
2907
  } else {
B
brutisso 已提交
2908
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2909 2910 2911 2912
  }
}

size_t G1CollectedHeap::max_capacity() const {
2913
  return _hrm.reserved().byte_size();
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

2973
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3009
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3108
class VerifyLivenessOopClosure: public OopClosure {
3109 3110
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3111
public:
3112 3113 3114
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3115 3116 3117 3118 3119
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3120
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3121
              "Dead object referenced by a not dead object");
3122 3123 3124 3125
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3126
private:
3127 3128 3129
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3130
  VerifyOption _vo;
3131
public:
3132 3133 3134 3135 3136
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3137 3138 3139
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3140
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3141
    assert(o != NULL, "Huh?");
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3154
      o->oop_iterate_no_header(&isLive);
3155 3156 3157 3158
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3194
private:
3195 3196 3197
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3198
public:
3199 3200 3201
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3202 3203
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3204
      _vo(vo),
3205 3206 3207 3208 3209
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3210

3211
  bool doHeapRegion(HeapRegion* r) {
3212
    if (!r->continuesHumongous()) {
3213
      bool failures = false;
3214
      r->verify(_vo, &failures);
3215 3216 3217
      if (failures) {
        _failures = true;
      } else {
3218
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3219
        r->object_iterate(&not_dead_yet_cl);
3220 3221 3222 3223 3224 3225 3226
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3227
                                 not_dead_yet_cl.live_bytes());
3228 3229 3230 3231 3232 3233
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3234 3235
        }
      }
3236
    }
3237
    return false; // stop the region iteration if we hit a failure
3238 3239 3240
  }
};

J
johnc 已提交
3241
// This is the task used for parallel verification of the heap regions
3242 3243 3244 3245

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3246 3247
  VerifyOption     _vo;
  bool             _failures;
3248 3249

public:
3250 3251 3252
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3253
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3254
    AbstractGangTask("Parallel verify task"),
3255
    _g1h(g1h),
3256
    _vo(vo),
3257 3258 3259 3260 3261
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3262

3263
  void work(uint worker_id) {
3264
    HandleMark hm;
3265
    VerifyRegionClosure blk(true, _vo);
3266
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3267
                                          _g1h->workers()->active_workers(),
3268
                                          HeapRegion::ParVerifyClaimValue);
3269 3270 3271
    if (blk.failures()) {
      _failures = true;
    }
3272 3273 3274
  }
};

J
johnc 已提交
3275
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3276
  if (SafepointSynchronize::is_at_safepoint()) {
3277
    assert(Thread::current()->is_VM_thread(),
3278
           "Expected to be executed serially by the VM thread at this point");
3279

J
johnc 已提交
3280 3281
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
3282
    VerifyKlassClosure klassCl(this, &rootsCl);
3283
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3284

3285
    // We apply the relevant closures to all the oops in the
3286 3287
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
3288 3289
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3290

3291 3292 3293 3294 3295 3296
    {
      G1RootProcessor root_processor(this);
      root_processor.process_all_roots(&rootsCl,
                                       &cldCl,
                                       &blobsCl);
    }
3297

J
johnc 已提交
3298
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3309
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3310 3311 3312 3313
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3314
      G1ParVerifyTask task(this, vo);
3315 3316 3317 3318
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3319 3320 3321
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3322 3323 3324
      if (task.failures()) {
        failures = true;
      }
3325

3326 3327
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3328 3329 3330 3331 3332 3333 3334 3335
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3336
      VerifyRegionClosure blk(false, vo);
3337
      heap_region_iterate(&blk);
3338 3339 3340
      if (blk.failures()) {
        failures = true;
      }
3341
    }
3342
    if (!silent) gclog_or_tty->print("RemSet ");
3343
    rem_set()->verify();
3344

P
pliden 已提交
3345 3346 3347 3348 3349
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3350 3351
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3352 3353 3354 3355
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3356
      gclog_or_tty->cr();
3357
#ifndef PRODUCT
3358
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3359
        concurrent_mark()->print_reachable("at-verification-failure",
3360
                                           vo, false /* all */);
3361
      }
3362
#endif
3363 3364 3365
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3366
  } else {
P
pliden 已提交
3367 3368 3369 3370 3371 3372 3373
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3374 3375 3376
  }
}

J
johnc 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3438
void G1CollectedHeap::print_on(outputStream* st) const {
3439 3440
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3441
            capacity()/K, used_unlocked()/K);
3442
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3443 3444 3445
            _hrm.reserved().start(),
            _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
            _hrm.reserved().end());
3446
  st->cr();
3447
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3448 3449 3450 3451 3452 3453
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3454
  st->cr();
3455
  MetaspaceAux::print_on(st);
3456 3457
}

3458 3459 3460 3461 3462
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3463 3464 3465 3466 3467
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3468
  PrintRegionClosure blk(st);
3469
  heap_region_iterate(&blk);
3470 3471
}

3472 3473 3474 3475 3476 3477 3478 3479 3480
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3481
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3482
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3483
    workers()->print_worker_threads_on(st);
3484
  }
T
tonyp 已提交
3485
  _cmThread->print_on(st);
3486
  st->cr();
T
tonyp 已提交
3487 3488
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3489 3490 3491
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3492 3493 3494
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3495
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3496 3497 3498
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3499
  _cg1r->threads_do(tc);
P
pliden 已提交
3500 3501 3502
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3503 3504 3505 3506 3507 3508 3509 3510 3511
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3512
  if (G1SummarizeRSetStats) {
3513 3514
    g1_rem_set()->print_summary_info();
  }
3515
  if (G1SummarizeConcMark) {
3516 3517 3518 3519 3520 3521
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3550
    gclog_or_tty->print_cr("%s", msg);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3572 3573 3574 3575 3576 3577 3578
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3579
  // always_do_update_barrier = false;
3580 3581
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3582
  accumulate_statistics_all_tlabs();
3583
  ensure_parsability(true);
3584 3585 3586 3587 3588

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3589 3590
}

3591
void G1CollectedHeap::gc_epilogue(bool full) {
3592 3593 3594 3595 3596

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3597
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3598 3599
  }

3600 3601 3602 3603 3604
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3605
  // always_do_update_barrier = true;
3606

B
brutisso 已提交
3607
  resize_all_tlabs();
3608
  allocation_context_stats().update(full);
B
brutisso 已提交
3609

3610 3611 3612
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3613 3614
}

3615
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3616
                                               uint gc_count_before,
3617 3618
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3619
  assert_heap_not_locked_and_not_at_safepoint();
3620
  g1_policy()->record_stop_world_start();
3621 3622 3623 3624
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3625
                             gc_cause);
3626 3627

  op.set_allocation_context(AllocationContext::current());
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3638 3639 3640 3641
}

void
G1CollectedHeap::doConcurrentMark() {
3642 3643 3644 3645
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3661 3662 3663 3664
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3665 3666 3667
}

size_t G1CollectedHeap::cards_scanned() {
3668
  return g1_rem_set()->cardsScanned();
3669 3670
}

3671 3672 3673 3674
class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;
3675 3676 3677

  DirtyCardQueue _dcq;

3678 3679 3680
  // We don't nominate objects with many remembered set entries, on
  // the assumption that such objects are likely still live.
  bool is_remset_small(HeapRegion* region) const {
3681
    HeapRegionRemSet* const rset = region->rem_set();
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
    return G1EagerReclaimHumongousObjectsWithStaleRefs
      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
      : rset->is_empty();
  }

  bool is_typeArray_region(HeapRegion* region) const {
    return oop(region->bottom())->is_typeArray();
  }

  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
    assert(region->startsHumongous(), "Must start a humongous object");

    // Candidate selection must satisfy the following constraints
    // while concurrent marking is in progress:
    //
    // * In order to maintain SATB invariants, an object must not be
    // reclaimed if it was allocated before the start of marking and
    // has not had its references scanned.  Such an object must have
    // its references (including type metadata) scanned to ensure no
    // live objects are missed by the marking process.  Objects
    // allocated after the start of concurrent marking don't need to
    // be scanned.
    //
    // * An object must not be reclaimed if it is on the concurrent
    // mark stack.  Objects allocated after the start of concurrent
    // marking are never pushed on the mark stack.
    //
    // Nominating only objects allocated after the start of concurrent
    // marking is sufficient to meet both constraints.  This may miss
    // some objects that satisfy the constraints, but the marking data
    // structures don't support efficiently performing the needed
    // additional tests or scrubbing of the mark stack.
    //
    // However, we presently only nominate is_typeArray() objects.
    // A humongous object containing references induces remembered
    // set entries on other regions.  In order to reclaim such an
    // object, those remembered sets would need to be cleaned up.
    //
    // We also treat is_typeArray() objects specially, allowing them
    // to be reclaimed even if allocated before the start of
    // concurrent mark.  For this we rely on mark stack insertion to
    // exclude is_typeArray() objects, preventing reclaiming an object
    // that is in the mark stack.  We also rely on the metadata for
    // such objects to be built-in and so ensured to be kept live.
    // Frequent allocation and drop of large binary blobs is an
    // important use case for eager reclaim, and this special handling
    // may reduce needed headroom.

    return is_typeArray_region(region) && is_remset_small(region);
3731 3732
  }

3733
 public:
3734 3735 3736 3737
  RegisterHumongousWithInCSetFastTestClosure()
  : _total_humongous(0),
    _candidate_humongous(0),
    _dcq(&JavaThread::dirty_card_queue_set()) {
3738 3739 3740 3741 3742 3743 3744 3745
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

3746 3747 3748
    bool is_candidate = humongous_region_is_candidate(g1h, r);
    uint rindex = r->hrm_index();
    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3749
    if (is_candidate) {
3750 3751 3752 3753 3754 3755 3756
      _candidate_humongous++;
      g1h->register_humongous_region_with_in_cset_fast_test(rindex);
      // Is_candidate already filters out humongous object with large remembered sets.
      // If we have a humongous object with a few remembered sets, we simply flush these
      // remembered set entries into the DCQS. That will result in automatic
      // re-evaluation of their remembered set entries during the following evacuation
      // phase.
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
      if (!r->rem_set()->is_empty()) {
        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
        HeapRegionRemSetIterator hrrs(r->rem_set());
        size_t card_index;
        while (hrrs.has_next(card_index)) {
          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
          if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
            *card_ptr = CardTableModRefBS::dirty_card_val();
            _dcq.enqueue(card_ptr);
          }
        }
3770 3771 3772
        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
               err_msg("Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
               hrrs.n_yielded(), r->rem_set()->occupied()));
3773 3774 3775
        r->rem_set()->clear_locked();
      }
      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3776 3777 3778 3779 3780 3781 3782 3783
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }
3784 3785

  void flush_rem_set_entries() { _dcq.flush(); }
3786 3787 3788
};

void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3789 3790
  if (!G1EagerReclaimHumongousObjects) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3791 3792
    return;
  }
3793
  double time = os::elapsed_counter();
3794

3795
  // Collect reclaim candidate information and register candidates with cset.
3796 3797
  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);
3798 3799 3800 3801

  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
                                                                  cl.total_humongous(),
3802 3803 3804
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

3805 3806
  // Finally flush all remembered set entries to re-check into the global DCQS.
  cl.flush_rem_set_entries();
3807 3808
}

3809 3810
void
G1CollectedHeap::setup_surviving_young_words() {
3811 3812
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3813
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3814
  if (_surviving_young_words == NULL) {
3815
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3816 3817
                          "Not enough space for young surv words summary.");
  }
3818
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3819
#ifdef ASSERT
3820
  for (uint i = 0;  i < array_length; ++i) {
3821
    assert( _surviving_young_words[i] == 0, "memset above" );
3822
  }
3823
#endif // !ASSERT
3824 3825 3826 3827 3828
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3829 3830
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3831
    _surviving_young_words[i] += surv_young_words[i];
3832
  }
3833 3834 3835 3836 3837
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3838
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3839 3840 3841
  _surviving_young_words = NULL;
}

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3859 3860 3861
    return false;
  }
};
3862
#endif // ASSERT
3863

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3875
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3886
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3887 3888 3889 3890 3891 3892
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3893 3894 3895 3896 3897
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3898
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3899 3900

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3901
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3927
  gclog_or_tty->flush();
3928 3929
}

3930
bool
3931
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3932 3933 3934
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3935
  if (GC_locker::check_active_before_gc()) {
3936
    return false;
3937 3938
  }

3939
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3940 3941 3942

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3943
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3944 3945
  ResourceMark rm;

3946
  print_heap_before_gc();
S
sla 已提交
3947
  trace_heap_before_gc(_gc_tracer_stw);
3948

3949
  verify_region_sets_optional();
3950
  verify_dirty_young_regions();
3951

3952 3953 3954 3955 3956 3957 3958 3959
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3960

3961 3962
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3963

3964 3965 3966 3967
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3968

3969 3970
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3971 3972
    EvacuationInfo evacuation_info;

3973 3974 3975
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3976
      increment_old_marking_cycles_started();
S
sla 已提交
3977
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3978
    }
S
sla 已提交
3979 3980 3981

    _gc_tracer_stw->report_yc_type(yc_type());

3982
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3983

3984
    uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3985
                                workers()->active_workers() : 1);
3986
    double pause_start_sec = os::elapsedTime();
3987
    g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3988
    log_gc_header();
3989

3990
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3991
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3992

T
tonyp 已提交
3993 3994 3995 3996 3997 3998
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3999
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
4000
      append_secondary_free_list_if_not_empty_with_lock();
4001
    }
4002

J
johnc 已提交
4003 4004 4005
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
4006

4007 4008 4009 4010
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

4011 4012 4013 4014 4015
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
4016
      increment_gc_time_stamp();
4017

4018
      verify_before_gc();
4019
      check_bitmaps("GC Start");
4020

4021
      COMPILER2_PRESENT(DerivedPointerTable::clear());
4022

4023 4024 4025
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
4026

4027 4028 4029
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
4040
        _allocator->release_mutator_alloc_region();
4041 4042 4043 4044 4045 4046

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4047 4048 4049 4050 4051 4052
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4053 4054
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4055
        double sample_start_time_sec = os::elapsedTime();
4056

4057
#if YOUNG_LIST_VERBOSE
4058 4059 4060
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4061 4062
#endif // YOUNG_LIST_VERBOSE

4063
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4064

4065 4066 4067 4068 4069 4070
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4071
        double wait_time_ms = 0.0;
4072 4073
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4074
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4075
        }
4076
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4077

4078
#if YOUNG_LIST_VERBOSE
4079 4080
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4081
#endif // YOUNG_LIST_VERBOSE
4082

4083 4084 4085
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4086

4087
#if YOUNG_LIST_VERBOSE
4088 4089 4090
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4091
#endif // YOUNG_LIST_VERBOSE
4092

S
sla 已提交
4093
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4094

4095 4096 4097 4098 4099 4100 4101
        // Make sure the remembered sets are up to date. This needs to be
        // done before register_humongous_regions_with_cset(), because the
        // remembered sets are used there to choose eager reclaim candidates.
        // If the remembered sets are not up to date we might miss some
        // entries that need to be handled.
        g1_rem_set()->cleanupHRRS();

4102 4103
        register_humongous_regions_with_in_cset_fast_test();

4104 4105
        assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");

4106
        _cm->note_start_of_gc();
4107
        // We call this after finalize_cset() to
4108
        // ensure that the CSet has been finalized.
4109
        _cm->verify_no_cset_oops();
4110

4111 4112 4113 4114 4115
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4116 4117 4118
          }
        }

4119
#ifdef ASSERT
4120 4121
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4122
#endif // ASSERT
4123

4124
        setup_surviving_young_words();
4125

4126
        // Initialize the GC alloc regions.
4127
        _allocator->init_gc_alloc_regions(evacuation_info);
4128

4129
        // Actually do the work...
S
sla 已提交
4130
        evacuate_collection_set(evacuation_info);
4131

S
sla 已提交
4132
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4133 4134 4135

        eagerly_reclaim_humongous_regions();

4136
        g1_policy()->clear_collection_set();
4137

4138
        cleanup_surviving_young_words();
4139

4140 4141
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4142

4143
        clear_cset_fast_test();
4144

4145
        _young_list->reset_sampled_info();
4146

4147 4148 4149 4150 4151 4152
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4153 4154

#if YOUNG_LIST_VERBOSE
4155 4156
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4157
#endif // YOUNG_LIST_VERBOSE
4158

4159
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4160 4161
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4162

4163
        _young_list->reset_auxilary_lists();
4164

4165
        if (evacuation_failed()) {
4166
          _allocator->set_used(recalculate_used());
S
sla 已提交
4167 4168 4169 4170 4171 4172
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4173 4174 4175
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
4176
          _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4177
        }
4178

4179
        if (g1_policy()->during_initial_mark_pause()) {
4180 4181 4182
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4183 4184
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4185 4186 4187
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4188
        }
4189

4190
        allocate_dummy_regions();
4191

4192
#if YOUNG_LIST_VERBOSE
4193 4194 4195
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4196
#endif // YOUNG_LIST_VERBOSE
4197

4198
        _allocator->init_mutator_alloc_region();
4199 4200 4201 4202 4203

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4204 4205
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4206
            if (!expand(expand_bytes)) {
4207
              // We failed to expand the heap. Cannot do anything about it.
4208
            }
4209 4210 4211
          }
        }

S
sla 已提交
4212
        // We redo the verification but now wrt to the new CSet which
4213
        // has just got initialized after the previous CSet was freed.
4214
        _cm->verify_no_cset_oops();
4215 4216
        _cm->note_end_of_gc();

4217 4218 4219 4220 4221
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4222
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4249
        verify_after_gc();
4250
        check_bitmaps("GC End");
4251

4252 4253
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4254

4255 4256
        // CM reference discovery will be re-enabled if necessary.
      }
4257

4258 4259 4260 4261 4262 4263
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4264
#ifdef TRACESPINNING
4265
      ParallelTaskTerminator::print_termination_counts();
4266
#endif
4267

4268 4269
      gc_epilogue(false);
    }
4270

4271 4272 4273
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4274
    // It is not yet to safe to tell the concurrent mark to
4275 4276 4277
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4278

4279
    _hrm.verify_optional();
4280 4281 4282 4283
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4284

4285
    print_heap_after_gc();
S
sla 已提交
4286
    trace_heap_after_gc(_gc_tracer_stw);
4287

4288 4289 4290 4291 4292
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4293

S
sla 已提交
4294 4295
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4296
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4297 4298
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4310
    // SuspendibleThreadSet::desynchronize().
4311 4312 4313
    doConcurrentMark();
  }

4314
  return true;
4315 4316 4317 4318 4319
}

void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4320
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4321 4322 4323 4324 4325 4326 4327
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4328
  delete _evac_failure_scan_stack;
4329 4330 4331
  _evac_failure_scan_stack = NULL;
}

4332 4333
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4334

4335 4336
  double remove_self_forwards_start = os::elapsedTime();

4337
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4338

4339 4340 4341 4342
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4343
  } else {
4344
    rsfp_task.work(0);
4345
  }
4346 4347 4348 4349 4350 4351 4352

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4353 4354

  // Now restore saved marks, if any.
4355 4356 4357 4358 4359 4360
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4361
  }
4362 4363
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4364 4365

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4383
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4384
                                               oop old) {
4385 4386 4387
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4388 4389 4390 4391
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4392 4393 4394
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4395

S
sla 已提交
4396 4397
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4416 4417 4418 4419 4420 4421 4422
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4433
    _hr_printer.evac_failure(r);
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4447 4448 4449 4450
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4451 4452
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4453 4454 4455
  }
}

4456
void G1ParCopyHelper::mark_object(oop obj) {
4457
  assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4458 4459

  // We know that the object is not moving so it's safe to read its size.
4460
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4461 4462
}

4463
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4464 4465 4466 4467
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

4468 4469
  assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4470 4471 4472 4473 4474

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4475
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4476 4477
}

4478 4479 4480 4481 4482 4483 4484
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4485
template <G1Barrier barrier, G1Mark do_mark_object>
4486
template <class T>
4487
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4488 4489 4490 4491 4492 4493 4494
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4495

4496 4497
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4498 4499
  const InCSetState state = _g1->in_cset_state(obj);
  if (state.is_in_cset()) {
4500
    oop forwardee;
4501 4502 4503
    markOop m = obj->mark();
    if (m->is_marked()) {
      forwardee = (oop) m->decode_pointer();
4504
    } else {
4505
      forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4506 4507 4508
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
4509
    if (do_mark_object != G1MarkNone && forwardee != obj) {
4510 4511 4512
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4513
    }
4514

4515
    if (barrier == G1BarrierKlass) {
4516
      do_klass_barrier(p, forwardee);
4517
    }
4518
  } else {
4519
    if (state.is_humongous()) {
4520 4521
      _g1->set_humongous_is_live(obj);
    }
4522
    // The object is not in collection set. If we're a root scanning
4523 4524
    // closure during an initial mark pause then attempt to mark the object.
    if (do_mark_object == G1MarkFromRoot) {
4525
      mark_object(obj);
4526
    }
4527
  }
4528

4529
  if (barrier == G1BarrierEvac) {
4530
    _par_scan_state->update_rs(_from, p, _worker_id);
4531
  }
4532 4533
}

4534 4535
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4556
  void do_void();
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4574
    pss->steal_and_trim_queue(queues());
4575 4576
  } while (!offer_termination());
}
4577

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4604 4605 4606 4607
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
4608
  G1RootProcessor*       _root_processor;
4609
  ParallelTaskTerminator _terminator;
4610
  uint _n_workers;
4611 4612 4613 4614 4615

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

public:
4616
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4617 4618 4619
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4620
      _root_processor(root_processor),
4621 4622
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4623 4624 4625 4626 4627 4628 4629 4630
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4631 4632 4633
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
4634
    _root_processor->set_num_workers(active_workers);
4635 4636 4637 4638
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
  // Helps out with CLD processing.
  //
  // During InitialMark we need to:
  // 1) Scavenge all CLDs for the young GC.
  // 2) Mark all objects directly reachable from strong CLDs.
  template <G1Mark do_mark_object>
  class G1CLDClosure : public CLDClosure {
    G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
    G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
    G1KlassScanClosure                                _klass_in_cld_closure;
    bool                                              _claim;

   public:
    G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
                 bool only_young, bool claim)
        : _oop_closure(oop_closure),
          _oop_in_klass_closure(oop_closure->g1(),
                                oop_closure->pss(),
                                oop_closure->rp()),
          _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
          _claim(claim) {

    }

    void do_cld(ClassLoaderData* cld) {
      cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
    }
  };

4668 4669
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4670

4671
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4672

4673 4674 4675
    {
      ResourceMark rm;
      HandleMark   hm;
4676

4677
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4678

4679
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4680
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4681

4682
      pss.set_evac_failure_closure(&evac_failure_cl);
4683

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;
4707 4708

      bool trace_metadata = false;
4709

4710 4711
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
4712 4713
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
4714 4715 4716
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
4717
          trace_metadata = true;
4718 4719 4720 4721
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
4722 4723 4724 4725 4726
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
4727
      }
4728

4729
      pss.start_strong_roots();
4730

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
      _root_processor->evacuate_roots(strong_root_cl,
                                      weak_root_cl,
                                      strong_cld_cl,
                                      weak_cld_cl,
                                      trace_metadata,
                                      worker_id);

      G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
      _root_processor->scan_remembered_sets(&push_heap_rs_cl,
                                            weak_root_cl,
                                            worker_id);
4742
      pss.end_strong_roots();
4743

4744 4745 4746 4747
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
4748 4749 4750 4751 4752
        double elapsed_sec = os::elapsedTime() - start;
        double term_sec = pss.term_time();
        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4753 4754 4755 4756 4757 4758 4759 4760
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4761

4762
      assert(pss.queue_is_empty(), "should be empty");
4763

4764 4765 4766
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4767
    }
4768
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4769 4770 4771
  }
};

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4785 4786

  bool _do_in_parallel;
4787 4788
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4789 4790
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
4791
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4806
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4807 4808
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4809
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4810 4811
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4812 4813 4814 4815 4816 4817 4818 4819

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
                             "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                             "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
4820 4821 4822
  }

  void work(uint worker_id) {
4823
    if (_do_in_parallel) {
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    nmethod* last;

    do {
      *num_claimed_nmethods = 0;

      first = last = (nmethod*)_claimed_nmethod;

      if (first != NULL) {
        for (int i = 0; i < MaxClaimNmethods; i++) {
          last = CodeCache::alive_nmethod(CodeCache::next(last));

          if (last == NULL) {
            break;
          }

          claimed_nmethods[i] = last;
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
5009 5010 5011 5012

    // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
    // Need to retire the buffers now that this thread has stopped cleaning nmethods.
    MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->oop_is_instance());

    return (InstanceKlass*)klass;
  }

public:

  void clean_klass(InstanceKlass* ik) {
5059
    ik->clean_weak_instanceklass_links(_is_alive);
5060

5061 5062 5063
    if (JvmtiExport::has_redefined_a_class()) {
      InstanceKlass::purge_previous_versions(ik);
    }
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

5098
  void pre_work_verification() {
5099 5100 5101
    // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
    assert(Thread::current()->is_VM_thread()
           || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5102 5103 5104 5105 5106 5107
  }

  void post_work_verification() {
    assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  }

5108 5109
  // The parallel work done by all worker threads.
  void work(uint worker_id) {
5110 5111
    pre_work_verification();

5112 5113 5114
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

5115
    // Let the threads mark that the first pass is done.
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
5130 5131

    post_work_verification();
5132 5133 5134 5135 5136 5137 5138 5139
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
5140
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5141
                    workers()->active_workers() : 1);
5142

5143 5144
  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
5145 5146 5147 5148 5149 5150 5151
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                     _g1h->workers()->active_workers() : 1);
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads(n_workers);
      workers()->run_task(&g1_unlink_task);
      set_par_threads(0);
    } else {
      g1_unlink_task.work(0);
    }
5167
  }
P
pliden 已提交
5168 5169 5170 5171

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5172 5173
}

5174 5175 5176 5177 5178 5179 5180
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
5181 5182
    G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5183

5184
    RedirtyLoggedCardTableEntryClosure cl;
5185 5186 5187 5188 5189 5190
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

5191
    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5192
  }
5193 5194 5195 5196 5197
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5210 5211 5212 5213 5214 5215 5216 5217

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5248
  void do_oop(oop* p) {
5249
    oop obj = *p;
5250
    assert(obj != NULL, "the caller should have filtered out NULL values");
5251

5252 5253
    const InCSetState cset_state = _g1->in_cset_state(obj);
    if (!cset_state.is_in_cset_or_humongous()) {
5254 5255
      return;
    }
5256
    if (cset_state.is_in_cset()) {
5257 5258
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
5259 5260
    } else {
      assert(!obj->is_forwarded(), "invariant" );
5261 5262
      assert(cset_state.is_humongous(),
             err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5263
      _g1->set_humongous_is_live(obj);
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

5293
    if (_g1h->is_in_cset_or_humongous(obj)) {
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5308
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5309
      // the referent object and update the pointer, while avoiding
5310 5311 5312 5313 5314
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5315
        assert(!Metaspace::contains((const void*)p),
5316
               err_msg("Unexpectedly found a pointer from metadata: "
5317
                              PTR_FORMAT, p));
5318
        _copy_non_heap_obj_cl->do_oop(p);
5319 5320
      }
    }
5321
  }
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5356
  FlexibleWorkGang*  _workers;
5357 5358 5359 5360
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5361
                        FlexibleWorkGang* workers,
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5398
  virtual void work(uint worker_id) {
5399 5400 5401 5402 5403 5404
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5405
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Keep alive closure.
5422
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5423 5424 5425 5426 5427

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5428
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5463 5464
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5465 5466 5467
  }
};

S
sla 已提交
5468
// Driver routine for parallel reference enqueueing.
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5493
  uint _n_workers;
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5504
  void work(uint worker_id) {
5505 5506 5507
    ResourceMark rm;
    HandleMark   hm;

5508
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5509 5510 5511 5512
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5513
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5531
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5532 5533 5534

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5535 5536
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5537 5538 5539 5540

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5541
    assert(0 <= worker_id && worker_id < limit, "sanity");
5542 5543 5544
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5545
    for (uint idx = worker_id; idx < limit; idx += stride) {
5546
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5567
    assert(pss.queue_is_empty(), "should be");
5568 5569 5570 5571
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5572
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5588
  // As a result the copy closure would not have been applied to the
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5599
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5600 5601
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5602

J
johnc 已提交
5603 5604 5605 5606
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5625
  G1ParScanThreadState            pss(this, 0, NULL);
5626 5627 5628 5629 5630 5631 5632 5633

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5634
  assert(pss.queue_is_empty(), "pre-condition");
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
  }

  // Keep alive closure.
5648
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5649 5650 5651 5652 5653 5654 5655

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5656
  ReferenceProcessorStats stats;
5657 5658
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5659 5660 5661 5662
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5663 5664
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5665 5666
  } else {
    // Parallel reference processing
J
johnc 已提交
5667 5668
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5669

J
johnc 已提交
5670
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5671 5672 5673 5674
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5675 5676
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5677 5678
  }

S
sla 已提交
5679
  _gc_tracer_stw->report_gc_reference_stats(stats);
5680 5681

  // We have completed copying any necessary live referent objects.
5682
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5683 5684

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5685
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5686 5687 5688
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5689
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5701
    // Parallel reference enqueueing
5702

J
johnc 已提交
5703 5704 5705 5706
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5707

J
johnc 已提交
5708
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5709 5710 5711 5712 5713 5714 5715 5716 5717
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5718
  // and could significantly increase the pause time.
5719 5720

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5721
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5722 5723
}

S
sla 已提交
5724
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5725
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5726
  _evacuation_failed = false;
5727

5728 5729 5730
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5731
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5732 5733 5734 5735 5736

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5737

5738
  uint n_workers;
5739 5740 5741 5742 5743 5744 5745 5746
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5747
    workers()->set_active_workers(n_workers);
5748 5749 5750 5751 5752 5753 5754
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

5755 5756 5757 5758 5759

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5760
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5761 5762
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5763

5764
  {
5765 5766
    G1RootProcessor root_processor(this);
    G1ParTask g1_par_task(this, _task_queues, &root_processor);
5767 5768 5769 5770
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (g1_policy()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
5787
    // for the G1RootProcessor object. We record the current
5788
    // elapsed time before closing the scope so that time
5789
    // taken for the destructor is NOT included in the
5790
    // reported parallel time.
5791 5792
  }

5793 5794
  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();

5795
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5796
  phase_times->record_par_time(par_time_ms);
5797 5798 5799

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5800
  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5801

5802
  set_par_threads(0);
5803

5804 5805 5806 5807 5808
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5809
  process_discovered_references(n_workers);
5810

5811
  if (G1StringDedup::is_enabled()) {
5812 5813
    double fixup_start = os::elapsedTime();

5814
    G1STWIsAliveClosure is_alive(this);
5815
    G1KeepAliveClosure keep_alive(this);
5816 5817 5818 5819
    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);

    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
    phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5820
  }
5821

5822
  _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5823
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5824

5825 5826 5827 5828 5829
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5830

5831 5832
  purge_code_root_memory();

J
johnc 已提交
5833 5834 5835 5836 5837
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5838 5839 5840 5841
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5842 5843 5844 5845 5846

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5847 5848
  }

5849 5850 5851
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5852
  // the act of enqueueing entries on to the pending list
5853 5854 5855
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5856
  enqueue_discovered_references(n_workers);
5857

5858
  redirty_logged_cards();
5859 5860 5861
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5862 5863
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5864 5865
                                  bool par,
                                  bool locked) {
5866
  assert(!hr->is_free(), "the region should not be free");
5867
  assert(!hr->is_empty(), "the region should not be empty");
5868
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5869 5870
  assert(free_list != NULL, "pre-condition");

5871 5872 5873 5874 5875
  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

5876 5877 5878 5879 5880 5881
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5882
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5883
  free_list->add_ordered(hr);
5884 5885 5886 5887 5888 5889 5890 5891 5892
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5893 5894 5895
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5896
  hr->clear_humongous();
5897
  free_region(hr, free_list, par);
5898

5899
  uint i = hr->hrm_index() + 1;
5900
  while (i < last_index) {
5901
    HeapRegion* curr_hr = region_at(i);
5902
    assert(curr_hr->continuesHumongous(), "invariant");
5903
    curr_hr->clear_humongous();
5904
    free_region(curr_hr, free_list, par);
5905 5906
    i += 1;
  }
5907 5908 5909 5910 5911
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
5912
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5913 5914
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
5915
  }
5916 5917 5918 5919 5920 5921 5922

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5923
    _hrm.insert_list_into_free_list(list);
5924 5925 5926
  }
}

5927
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5928
  _allocator->decrease_used(bytes);
5929 5930
}

5931
class G1ParCleanupCTTask : public AbstractGangTask {
5932
  G1SATBCardTableModRefBS* _ct_bs;
5933
  G1CollectedHeap* _g1h;
5934
  HeapRegion* volatile _su_head;
5935
public:
5936
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5937
                     G1CollectedHeap* g1h) :
5938
    AbstractGangTask("G1 Par Cleanup CT Task"),
5939
    _ct_bs(ct_bs), _g1h(g1h) { }
5940

5941
  void work(uint worker_id) {
5942 5943 5944 5945 5946
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5947

5948
  void clear_cards(HeapRegion* r) {
5949
    // Cards of the survivors should have already been dirtied.
5950
    if (!r->is_survivor()) {
5951 5952 5953 5954 5955
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5956 5957
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5958
  G1CollectedHeap* _g1h;
5959
  G1SATBCardTableModRefBS* _ct_bs;
5960
public:
5961
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5962
    : _g1h(g1h), _ct_bs(ct_bs) { }
5963
  virtual bool doHeapRegion(HeapRegion* r) {
5964
    if (r->is_survivor()) {
5965
      _g1h->verify_dirty_region(r);
5966
    } else {
5967
      _g1h->verify_not_dirty_region(r);
5968 5969 5970 5971
    }
    return false;
  }
};
5972

5973 5974
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
5975
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
5988
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5989
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5990 5991 5992 5993 5994
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
5995 5996
}

5997
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5998
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5999
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6000
    verify_dirty_region(hr);
6001 6002 6003 6004 6005 6006
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
            err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
                           bitmap_name, result);
    gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
                           bitmap_name, tams, end);
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
    gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) return false;

    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}
6087

6088 6089 6090 6091 6092 6093 6094 6095 6096
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
 private:
  bool _failures;
 public:
  G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    uint i = hr->hrm_index();
    InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
6097 6098 6099
    if (hr->isHumongous()) {
      if (hr->in_collection_set()) {
        gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
6100 6101
        _failures = true;
        return true;
6102 6103 6104
      }
      if (cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
6105 6106
        _failures = true;
        return true;
6107 6108 6109
      }
      if (hr->continuesHumongous() && cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
6110 6111
        _failures = true;
        return true;
6112 6113 6114 6115
      }
    } else {
      if (cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
6116 6117
        _failures = true;
        return true;
6118 6119 6120 6121
      }
      if (hr->in_collection_set() != cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
                               hr->in_collection_set(), cset_state.value(), i);
6122 6123
       _failures = true;
       return true;
6124 6125 6126 6127 6128
      }
      if (cset_state.is_in_cset()) {
        if (hr->is_young() != (cset_state.is_young())) {
          gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
                                 hr->is_young(), cset_state.value(), i);
6129 6130
          _failures = true;
          return true;
6131 6132 6133 6134
        }
        if (hr->is_old() != (cset_state.is_old())) {
          gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
                                 hr->is_old(), cset_state.value(), i);
6135 6136
          _failures = true;
          return true;
6137 6138 6139
        }
      }
    }
6140
    return false;
6141
  }
6142 6143 6144 6145 6146 6147 6148 6149

  bool failures() const { return _failures; }
};

bool G1CollectedHeap::check_cset_fast_test() {
  G1CheckCSetFastTableClosure cl;
  _hrm.iterate(&cl);
  return !cl.failures();
6150
}
6151
#endif // PRODUCT
6152

6153
void G1CollectedHeap::cleanUpCardTable() {
6154
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6155 6156
  double start = os::elapsedTime();

J
johnc 已提交
6157 6158 6159
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6160

6161 6162
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6175 6176
      }
    }
J
johnc 已提交
6177 6178 6179 6180 6181 6182
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6183
  }
6184

6185
  double elapsed = os::elapsedTime() - start;
6186
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6187 6188
}

S
sla 已提交
6189
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6190 6191 6192
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6193 6194 6195
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6196 6197 6198 6199 6200
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6211
    assert(!is_on_master_free_list(cur), "sanity");
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6222 6223 6224 6225
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6226

6227 6228 6229
        start_sec = os::elapsedTime();
        non_young = true;
      }
6230 6231
    }

6232
    rs_lengths += cur->rem_set()->occupied_locked();
6233 6234 6235 6236 6237 6238 6239 6240

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6241
      assert(index != -1, "invariant");
6242
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6243 6244
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6245 6246 6247 6248 6249 6250

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6251 6252
    } else {
      int index = cur->young_index_in_cset();
6253
      assert(index == -1, "invariant");
6254 6255 6256 6257 6258 6259 6260
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6261 6262
      MemRegion used_mr = cur->used_region();

6263
      // And the region is empty.
6264
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6265
      pre_used += cur->used();
6266
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6267 6268
    } else {
      cur->uninstall_surv_rate_group();
6269
      if (cur->is_young()) {
6270
        cur->set_young_index_in_cset(-1);
6271
      }
6272
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6273
      // The region is now considered to be old.
6274
      cur->set_old();
T
tonyp 已提交
6275
      _old_set.add(cur);
S
sla 已提交
6276
      evacuation_info.increment_collectionset_used_after(cur->used());
6277 6278 6279 6280
    }
    cur = next;
  }

S
sla 已提交
6281
  evacuation_info.set_regions_freed(local_free_list.length());
6282 6283 6284 6285 6286
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6287 6288

  if (non_young) {
6289
    non_young_time_ms += elapsed_ms;
6290
  } else {
6291
    young_time_ms += elapsed_ms;
6292
  }
6293

6294 6295
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6296 6297
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6298 6299
}

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

6319 6320 6321
    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
6346 6347 6348 6349
    // - never consider object arrays at this time because they would pose
    // considerable effort for cleaning up the the remembered sets. This is
    // required because stale remembered sets might reference locations that
    // are currently allocated into.
6350
    uint region_idx = r->hrm_index();
6351 6352
    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
        !r->rem_set()->is_empty()) {
6353

6354
      if (G1TraceEagerReclaimHumongousObjects) {
6355
        gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6356
                               region_idx,
6357
                               obj->size()*HeapWordSize,
6358 6359
                               r->bottom(),
                               r->region_num(),
6360 6361
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
6362
                               next_bitmap->isMarked(r->bottom()),
6363 6364
                               g1h->is_humongous_reclaim_candidate(region_idx),
                               obj->is_typeArray()
6365 6366 6367 6368 6369 6370
                              );
      }

      return false;
    }

6371 6372 6373
    guarantee(obj->is_typeArray(),
              err_msg("Only eagerly reclaiming type arrays is supported, but the object "
                      PTR_FORMAT " is not.",
6374 6375
                      r->bottom()));

6376
    if (G1TraceEagerReclaimHumongousObjects) {
6377
      gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6378
                             region_idx,
6379
                             obj->size()*HeapWordSize,
6380 6381 6382 6383
                             r->bottom(),
                             r->region_num(),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
6384
                             next_bitmap->isMarked(r->bottom()),
6385 6386
                             g1h->is_humongous_reclaim_candidate(region_idx),
                             obj->is_typeArray()
6387 6388
                            );
    }
6389 6390 6391 6392
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
    _freed_bytes += r->used();
    r->set_containing_set(NULL);
    _humongous_regions_removed.increment(1u, r->capacity());
    g1h->free_humongous_region(r, _free_region_list, false);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

6417 6418
  if (!G1EagerReclaimHumongousObjects ||
      (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hr_printer = _g1h->hr_printer();
  if (hr_printer->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hr_printer->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6470 6471 6472 6473
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6474 6475
  }

6476 6477
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6478 6479
}

6480
void G1CollectedHeap::reset_free_regions_coming() {
6481 6482
  assert(free_regions_coming(), "pre-condition");

6483 6484 6485 6486
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6487 6488
  }

6489 6490 6491
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6492 6493 6494
  }
}

6495 6496 6497 6498 6499
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6500 6501
  }

6502 6503 6504
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6505 6506 6507
  }

  {
6508 6509 6510
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6511 6512 6513
    }
  }

6514 6515 6516
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6542 6543
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6544

6545
  if (check_heap) {
6546 6547 6548 6549 6550 6551 6552 6553
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6554 6555
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6556
  HeapRegionSet *_old_set;
6557

T
tonyp 已提交
6558
public:
6559
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6560

T
tonyp 已提交
6561
  bool doHeapRegion(HeapRegion* r) {
6562
    if (r->is_old()) {
T
tonyp 已提交
6563
      _old_set->remove(r);
6564 6565 6566 6567 6568 6569 6570
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->isHumongous(),
             "it cannot be another type");
T
tonyp 已提交
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6587 6588 6589 6590
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6591
  }
6592
  _hrm.remove_all_free_regions();
6593 6594
}

T
tonyp 已提交
6595 6596 6597
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6598
  HeapRegionSet*   _old_set;
6599
  HeapRegionManager*   _hrm;
T
tonyp 已提交
6600
  size_t          _total_used;
6601

6602
public:
T
tonyp 已提交
6603
  RebuildRegionSetsClosure(bool free_list_only,
6604
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
T
tonyp 已提交
6605
    _free_list_only(free_list_only),
6606 6607
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
T
tonyp 已提交
6608 6609 6610 6611
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6612

6613
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6614 6615 6616 6617 6618 6619
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
6620
      r->set_free();
6621
      r->set_allocation_context(AllocationContext::system());
6622
      _hrm->insert_into_free_list(r);
T
tonyp 已提交
6623 6624 6625 6626 6627 6628
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
6629 6630 6631 6632 6633
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such.
        r->set_old();
T
tonyp 已提交
6634
        _old_set->add(r);
6635
      }
T
tonyp 已提交
6636
      _total_used += r->used();
6637
    }
T
tonyp 已提交
6638

6639 6640 6641
    return false;
  }

T
tonyp 已提交
6642 6643
  size_t total_used() {
    return _total_used;
6644
  }
6645 6646
};

T
tonyp 已提交
6647 6648 6649
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6650 6651 6652 6653
  if (!free_list_only) {
    _young_list->empty_list();
  }

6654
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
T
tonyp 已提交
6655 6656 6657
  heap_region_iterate(&cl);

  if (!free_list_only) {
6658
    _allocator->set_used(cl.total_used());
T
tonyp 已提交
6659
  }
6660 6661
  assert(_allocator->used_unlocked() == recalculate_used(),
         err_msg("inconsistent _allocator->used_unlocked(), "
T
tonyp 已提交
6662
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6663
                 _allocator->used_unlocked(), recalculate_used()));
6664 6665 6666 6667 6668 6669
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6670 6671
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
6672
  return hr->is_in(p);
6673 6674
}

6675 6676
// Methods for the mutator alloc region

6677 6678 6679 6680 6681
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6682 6683
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6684
    HeapRegion* new_alloc_region = new_region(word_size,
6685
                                              false /* is_old */,
6686 6687 6688
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6689
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6690
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
6691 6692 6693 6694 6695 6696 6697 6698 6699
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6700
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6701 6702

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6703
  _allocator->increase_used(allocated_bytes);
6704
  _hr_printer.retire(alloc_region);
6705 6706 6707 6708
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6709 6710
}

6711 6712 6713
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6714
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6715
  uint n_workers = workers()->active_workers();
6716
  assert(UseDynamicNumberOfGCThreads ||
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6727 6728 6729
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6730
                                                 uint count,
6731
                                                 InCSetState dest) {
6732 6733
  assert(FreeList_lock->owned_by_self(), "pre-condition");

6734 6735
  if (count < g1_policy()->max_regions(dest)) {
    const bool is_survivor = (dest.is_young());
6736
    HeapRegion* new_alloc_region = new_region(word_size,
6737
                                              !is_survivor,
6738 6739 6740 6741 6742
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
6743
      new_alloc_region->record_timestamp();
6744
      if (is_survivor) {
6745 6746
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6747
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
6748
      } else {
6749
        new_alloc_region->set_old();
6750
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6751
        check_bitmaps("Old Region Allocation", new_alloc_region);
6752
      }
6753 6754
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6755 6756 6757 6758 6759 6760 6761 6762
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
6763
                                             InCSetState dest) {
6764 6765
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6766
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6767
  if (dest.is_young()) {
6768
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6769 6770
  } else {
    _old_set.add(alloc_region);
6771 6772 6773 6774
  }
  _hr_printer.retire(alloc_region);
}

6775 6776
// Heap region set verification

6777 6778
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6779 6780
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
6781
  HeapRegionManager*   _hrm;
6782 6783

public:
6784 6785 6786
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6787

6788 6789
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
6790 6791
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6792
    _old_count(), _humongous_count(), _free_count(){ }
6793 6794 6795 6796 6797 6798 6799 6800 6801

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6802
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6803
      _humongous_count.increment(1u, hr->capacity());
6804
    } else if (hr->is_empty()) {
6805
      assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6806
      _free_count.increment(1u, hr->capacity());
6807
    } else if (hr->is_old()) {
6808
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6809
      _old_count.increment(1u, hr->capacity());
6810 6811
    } else {
      ShouldNotReachHere();
6812
    }
6813 6814
    return false;
  }
6815

6816
  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6817 6818 6819 6820 6821 6822 6823 6824
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

6825
    guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6826 6827 6828
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6829 6830
};

6831 6832
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6833

6834
  // First, check the explicit lists.
6835
  _hrm.verify();
6836 6837 6838 6839 6840
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6841
    _secondary_free_list.verify_list();
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6857

T
tonyp 已提交
6858 6859 6860 6861
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6862

6863 6864
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6865

6866
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6867
  heap_region_iterate(&cl);
6868
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6869
}
J
johnc 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6882 6883 6884 6885
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6886

6887 6888
      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
J
johnc 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6909 6910 6911 6912 6913
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

6942 6943
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
6944
  G1CodeRootSet::purge();
6945 6946 6947 6948
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

6962
    if (ScavengeRootsInCode) {
J
johnc 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}