g1CollectedHeap.cpp 250.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
J
johnc 已提交
30
#include "code/codeCache.hpp"
31 32 33 34 35
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
36
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
37 38
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
39
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
40
#include "gc_implementation/g1/g1EvacFailure.hpp"
41
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
42
#include "gc_implementation/g1/g1Log.hpp"
43 44
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
45
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
46
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
47
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
48
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
49
#include "gc_implementation/g1/g1YCTypes.hpp"
50
#include "gc_implementation/g1/heapRegion.inline.hpp"
51
#include "gc_implementation/g1/heapRegionRemSet.hpp"
52
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
53
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
54 55 56 57
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
58
#include "gc_implementation/shared/isGCActiveMark.hpp"
59
#include "memory/allocation.hpp"
60 61
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
62
#include "memory/iterator.hpp"
63
#include "memory/referenceProcessor.hpp"
64 65
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
66
#include "runtime/orderAccess.inline.hpp"
67
#include "runtime/vmThread.hpp"
68

69 70
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

71 72 73
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
74
#define YOUNG_LIST_VERBOSE 0
75 76 77 78 79 80
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
81 82 83 84 85
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
86

87 88 89 90 91
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
92 93
// G1ParTask executes g1_process_roots() ->
// SharedHeap::process_roots() which calls eventually to
94
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
95
// SequentialSubTasksDone.  SharedHeap::process_roots() also
96 97 98
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

99 100 101 102 103
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
104 105
  RefineCardTableEntryClosure() : _concurrent(true) { }

106
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
107
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
108 109 110 111 112
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
113
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
114 115 116 117 118 119
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
120

121 122 123 124 125
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
126
  size_t _num_processed;
127 128
  CardTableModRefBS* _ctbs;
  int _histo[256];
129 130

 public:
131
  ClearLoggedCardTableEntryClosure() :
132
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
133 134 135
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
136

137
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
138 139 140 141 142 143 144
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

145 146
    return true;
  }
147 148 149

  size_t num_processed() { return _num_processed; }

150 151 152 153 154 155 156 157 158 159
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

160 161 162 163 164 165
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
166

167
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
168 169
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
170 171
    return true;
  }
172 173

  size_t num_processed() const { return _num_processed; }
174 175
};

176 177 178 179
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
180 181 182 183 184 185 186 187 188
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

189
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
190 191 192 193
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
194
  assert(hr->is_survivor(), "should be flagged as survivor region");
195 196 197 198
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
199
    _survivor_tail = hr;
200 201 202 203 204 205 206 207 208 209
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
210 211 212 213
    // This is called before a Full GC and all the non-empty /
    // non-humongous regions at the end of the Full GC will end up as
    // old anyway.
    list->set_old();
214 215 216 217 218 219 220 221 222 223 224 225 226
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
227
  _survivor_tail = NULL;
228 229 230 231 232 233 234 235 236 237
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

238
  uint length = 0;
239 240 241
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
242
    if (!curr->is_young()) {
243
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
244
                             "incorrectly tagged (y: %d, surv: %d)",
245
                             curr->bottom(), curr->end(),
246
                             curr->is_young(), curr->is_survivor());
247 248 249 250 251 252 253 254 255 256
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
257
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
258 259 260
                           length, _length);
  }

261
  return ret;
262 263
}

264
bool YoungList::check_list_empty(bool check_sample) {
265 266 267
  bool ret = true;

  if (_length != 0) {
268
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

284
  return ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
301 302 303 304 305 306 307 308 309 310 311 312
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
327
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
328

329
  int young_index_in_cset = 0;
330 331 332
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
333
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
334 335 336 337 338

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
339
    young_index_in_cset += 1;
340
  }
341
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
342 343
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

344 345
  _head   = _survivor_head;
  _length = _survivor_length;
346
  if (_survivor_head != NULL) {
347 348 349
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
350 351
  }

352 353 354 355
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
356

357
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
358 359 360 361 362

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
363 364
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
365 366 367 368 369 370 371

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
372
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
373
                             HR_FORMAT_PARAMS(curr),
374 375
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
376
                             curr->age_in_surv_rate_group_cond());
377 378 379 380
      curr = curr->get_next_young_region();
    }
  }

381
  gclog_or_tty->cr();
382 383
}

384 385 386 387 388 389 390 391
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  OtherRegionsTable::invalidate(start_idx, num_regions);
}

void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
  reset_from_card_cache(start_idx, num_regions);
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

445 446 447 448 449 450 451 452 453 454 455 456
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
457 458 459 460
  if (p == NULL) {
    return false;
  }
  return heap_region_containing(p)->in_collection_set();
461 462 463 464
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
465
// can move in an incremental collection.
466 467
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
468
  return !hr->isHumongous();
469 470
}

471 472
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
473
  CardTableModRefBS* ct_bs = g1_barrier_set();
474 475 476 477 478 479 480 481

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
482 483
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
484 485 486 487 488 489 490 491 492 493 494 495
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
496 497
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
498
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
499 500 501 502
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
            err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
                    redirty.num_processed(), clear.num_processed()));
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

519
HeapRegion*
520
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
521 522 523 524 525
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
526
                               "secondary_free_list has %u entries",
527 528 529 530 531 532 533
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

534
      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
535
             "empty we should have moved at least one entry to the free_list");
536
      HeapRegion* res = _hrm.allocate_free_region(is_old);
537 538 539 540 541 542 543 544
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
545
    // Wait here until we get notified either when (a) there are no
546 547 548 549 550 551 552 553 554 555 556
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
557

558
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
559
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
560 561
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
562

563 564 565 566 567 568 569
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
570
      res = new_region_try_secondary_free_list(is_old);
571 572 573 574 575
      if (res != NULL) {
        return res;
      }
    }
  }
576

577
  res = _hrm.allocate_free_region(is_old);
578

579 580 581 582 583
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
584
    res = new_region_try_secondary_free_list(is_old);
585
  }
586 587 588 589 590 591 592
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

593 594 595 596 597
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
598
    if (expand(word_size * HeapWordSize)) {
599 600
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
601
      // region size, the free list should in theory not be empty.
602
      // In either case allocate_free_region() will check for NULL.
603
      res = _hrm.allocate_free_region(is_old);
604 605
    } else {
      _expand_heap_after_alloc_failure = false;
606
    }
607 608 609 610
  }
  return res;
}

T
tonyp 已提交
611
HeapWord*
612 613
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
614 615
                                                           size_t word_size,
                                                           AllocationContext_t context) {
616
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
T
tonyp 已提交
617 618 619 620
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
621
  uint last = first + num_regions;
T
tonyp 已提交
622 623 624 625 626 627 628 629 630 631

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
632
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
633 634 635
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
636
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
637 638 639 640
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
641
  // should also match the end of the last region in the series.
T
tonyp 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);
667
  first_hr->set_allocation_context(context);
T
tonyp 已提交
668 669 670
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
671
  for (uint i = first + 1; i < last; ++i) {
672
    hr = region_at(i);
T
tonyp 已提交
673
    hr->set_continuesHumongous(first_hr);
674
    hr->set_allocation_context(context);
T
tonyp 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
694 695 696 697 698 699 700 701 702 703 704
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
718
  for (uint i = first + 1; i < last; ++i) {
719
    hr = region_at(i);
T
tonyp 已提交
720 721 722 723 724
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
725
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
726 727 728 729
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
730
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
731 732 733 734 735 736 737
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");
738
  check_bitmaps("Humongous Region Allocation", first_hr);
T
tonyp 已提交
739 740

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
741
  _allocator->increase_used(first_hr->used());
T
tonyp 已提交
742 743 744 745 746
  _humongous_set.add(first_hr);

  return new_obj;
}

747 748 749
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
750
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
751
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
752

753
  verify_region_sets_optional();
754

755
  uint first = G1_NO_HRM_INDEX;
756 757 758 759 760 761 762 763
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
764
      first = hr->hrm_index();
765 766 767 768 769 770 771 772
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
773 774
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
775 776 777 778 779
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
780 781 782
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
783 784
    }
  }
785

786
  if (first == G1_NO_HRM_INDEX) {
787 788 789
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
790 791
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
792 793
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
794 795 796 797 798
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
799

800
      _hrm.expand_at(first, obj_regions);
801 802 803 804 805
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
806
        assert(hr->is_free(), "sanity");
807 808
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
809
      }
810
#endif
811
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
812 813
    } else {
      // Policy: Potentially trigger a defragmentation GC.
814 815
    }
  }
816

T
tonyp 已提交
817
  HeapWord* result = NULL;
818
  if (first != G1_NO_HRM_INDEX) {
819 820
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
T
tonyp 已提交
821
    assert(result != NULL, "it should always return a valid result");
822 823 824 825 826

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
827
  }
828 829

  verify_region_sets_optional();
T
tonyp 已提交
830 831

  return result;
832 833
}

834 835 836
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
837

838
  unsigned int dummy_gc_count_before;
839 840
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
841 842 843
}

HeapWord*
844 845 846
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
847

S
sla 已提交
848
  // Loop until the allocation is satisfied, or unsatisfied after GC.
849
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
850
    unsigned int gc_count_before;
851

852 853
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
854
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
855
    } else {
856
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
857 858 859 860
    }
    if (result != NULL) {
      return result;
    }
861

862 863
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
864 865
    op.set_allocation_context(AllocationContext::current());

866 867
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
868

869 870 871 872 873 874
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
875
        // Allocations that take place on VM operations do not do any
876 877
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
878 879 880
        dirty_young_block(result, word_size);
      }
      return result;
881
    } else {
882 883 884
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
885 886
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
887 888 889 890 891
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
892
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
893 894 895
    }
  }

896
  ShouldNotReachHere();
897 898 899
  return NULL;
}

900
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
901 902 903
                                                   AllocationContext_t context,
                                                   unsigned int *gc_count_before_ret,
                                                   int* gclocker_retry_count_ret) {
904 905 906 907 908
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
909

910 911 912 913 914 915 916
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
917
  HeapWord* result = NULL;
918 919 920
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
921

922 923
    {
      MutexLockerEx x(Heap_lock);
924 925
      result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                    false /* bot_updates */);
926 927
      if (result != NULL) {
        return result;
928
      }
929

930 931
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
932
      assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
933

934 935
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
936 937
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
938 939
          result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
                                                                                       false /* bot_updates */);
940 941 942 943 944 945
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
946 947 948 949 950 951 952 953 954 955 956 957
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
958 959
      }
    }
960

961 962
    if (should_try_gc) {
      bool succeeded;
963 964
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
965
      if (result != NULL) {
966
        assert(succeeded, "only way to get back a non-NULL result");
967 968 969
        return result;
      }

970 971 972 973 974
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
975
        *gc_count_before_ret = total_collections();
976 977 978
        return NULL;
      }
    } else {
979 980 981 982 983
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
984 985 986
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
987
      GC_locker::stall_until_clear();
988
      (*gclocker_retry_count_ret) += 1;
989 990
    }

S
sla 已提交
991
    // We can reach here if we were unsuccessful in scheduling a
992 993 994 995 996 997 998
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
999 1000
    result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                           false /* bot_updates */);
1001
    if (result != NULL) {
1002
      return result;
1003 1004
    }

1005 1006 1007
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1008
      warning("G1CollectedHeap::attempt_allocation_slow() "
1009
              "retries %d times", try_count);
1010 1011 1012
    }
  }

1013 1014
  ShouldNotReachHere();
  return NULL;
1015 1016
}

1017
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1018 1019
                                                        unsigned int * gc_count_before_ret,
                                                        int* gclocker_retry_count_ret) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1031
  assert_heap_not_locked_and_not_at_safepoint();
1032 1033
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1034

1035 1036 1037 1038 1039
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1040 1041
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1042 1043 1044
    collect(GCCause::_g1_humongous_allocation);
  }

1045 1046 1047 1048 1049
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1050
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1051
    bool should_try_gc;
1052
    unsigned int gc_count_before;
1053

1054
    {
1055
      MutexLockerEx x(Heap_lock);
1056

1057 1058 1059
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
1060
      result = humongous_obj_allocate(word_size, AllocationContext::current());
1061 1062
      if (result != NULL) {
        return result;
1063
      }
1064

1065 1066 1067
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1080 1081 1082
      }
    }

1083 1084 1085 1086
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1087

1088
      bool succeeded;
1089 1090
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1101
        *gc_count_before_ret = total_collections();
1102
        return NULL;
1103 1104
      }
    } else {
1105 1106 1107 1108 1109
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1110 1111 1112
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1113
      GC_locker::stall_until_clear();
1114
      (*gclocker_retry_count_ret) += 1;
1115 1116
    }

S
sla 已提交
1117
    // We can reach here if we were unsuccessful in scheduling a
1118 1119 1120 1121 1122 1123
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1124 1125
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1126 1127
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1128 1129
    }
  }
1130 1131

  ShouldNotReachHere();
1132
  return NULL;
1133 1134
}

1135
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136 1137
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
1138
  assert_at_safepoint(true /* should_be_vm_thread */);
1139
  assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1140 1141
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1142

1143
  if (!isHumongous(word_size)) {
1144
    return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1145 1146
                                                      false /* bot_updates */);
  } else {
1147
    HeapWord* result = humongous_obj_allocate(word_size, context);
1148 1149 1150 1151
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1152
  }
1153 1154

  ShouldNotReachHere();
1155 1156 1157
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1158
  G1CollectedHeap* _g1h;
1159 1160
  ModRefBarrierSet* _mr_bs;
public:
1161
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1162 1163
    _g1h(g1h), _mr_bs(mr_bs) {}

1164
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1165 1166
    HeapRegionRemSet* hrrs = r->rem_set();

1167
    if (r->continuesHumongous()) {
J
johnc 已提交
1168 1169 1170
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1171
      return false;
1172
    }
J
johnc 已提交
1173

1174
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1175
    hrrs->clear();
1176 1177 1178 1179 1180 1181
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1182

1183 1184 1185 1186
    return false;
  }
};

1187
void G1CollectedHeap::clear_rsets_post_compaction() {
1188
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1189 1190
  heap_region_iterate(&rs_clear);
}
1191

1192 1193 1194 1195 1196 1197
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1198
    _cl(g1->g1_rem_set(), worker_i),
1199 1200 1201
    _worker_i(worker_i),
    _g1h(g1)
  { }
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1220 1221 1222
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1223
                                          _g1->workers()->active_workers(),
1224 1225 1226 1227
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1228 1229 1230 1231 1232 1233
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
1234 1235 1236 1237 1238 1239
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->startsHumongous()) {
      if (hr->region_num() == 1) {
        // single humongous region
        _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1240
      } else {
1241
        _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1242
      }
1243 1244 1245 1246 1247 1248
    } else if (hr->continuesHumongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
1249 1250 1251 1252 1253 1254 1255 1256
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1257
void G1CollectedHeap::print_hrm_post_compaction() {
1258 1259 1260 1261
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1262
bool G1CollectedHeap::do_collection(bool explicit_gc,
1263
                                    bool clear_all_soft_refs,
1264
                                    size_t word_size) {
1265 1266
  assert_at_safepoint(true /* should_be_vm_thread */);

1267
  if (GC_locker::check_active_before_gc()) {
1268
    return false;
1269 1270
  }

S
sla 已提交
1271
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1272
  gc_timer->register_gc_start();
S
sla 已提交
1273 1274 1275 1276

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1277
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1278 1279
  ResourceMark rm;

1280
  print_heap_before_gc();
S
sla 已提交
1281
  trace_heap_before_gc(gc_tracer);
1282

1283
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1284

1285
  verify_region_sets_optional();
1286

1287 1288 1289 1290 1291
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1292 1293 1294 1295
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1296
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1297 1298
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1299

1300
    {
1301
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1321

1322 1323 1324
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1325

1326
      assert(used() == recalculate_used(), "Should be equal");
1327

1328
      verify_before_gc();
1329

1330
      check_bitmaps("Full GC Start");
S
sla 已提交
1331
      pre_full_gc_dump(gc_timer);
1332

1333
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1334

1335 1336 1337 1338 1339
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1340

1341 1342 1343 1344
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1345

1346
      // Make sure we'll choose a new allocation region afterwards.
1347 1348
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
1349
      g1_rem_set()->cleanupHRRS();
1350

1351 1352 1353 1354
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1355

1356 1357 1358 1359 1360 1361 1362
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1363

1364 1365
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1366

1367 1368 1369
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1370

1371 1372
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1373

1374 1375
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1376

1377 1378
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1379

1380 1381 1382 1383 1384
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1385

1386
      assert(num_free_regions() == 0, "we should not have added any free regions");
1387
      rebuild_region_sets(false /* free_list_only */);
1388

1389 1390 1391
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1392

1393
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1394

1395
      MemoryService::track_memory_usage();
1396

1397 1398
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1399

1400 1401
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1402
      MetaspaceAux::verify_metrics();
1403

1404 1405 1406 1407 1408 1409
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1410

1411 1412
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1413
      // sets, and clear all cards.  Later we will rebuild remembered
1414 1415 1416
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1417

1418 1419
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1420

1421 1422 1423 1424
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1425

1426
        print_hrm_post_compaction();
1427 1428
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1429

1430 1431 1432 1433
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1434
      }
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1472

J
johnc 已提交
1473 1474 1475
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1476 1477 1478
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1479

1480 1481 1482
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1483

1484 1485
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
1486
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1487

1488 1489 1490 1491 1492
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1493

1494 1495
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1496

1497
      _hrm.verify_optional();
1498
      verify_region_sets_optional();
1499

1500 1501
      verify_after_gc();

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

1514 1515 1516
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1517

1518
      clear_cset_fast_test();
1519

1520
      _allocator->init_mutator_alloc_region();
1521

1522 1523
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1524

1525 1526 1527
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1528

1529 1530 1531 1532 1533
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1534

1535 1536
      gc_epilogue(true);
    }
1537

1538
    if (G1Log::finer()) {
1539
      g1_policy()->print_detailed_heap_transition(true /* full */);
1540
    }
1541 1542

    print_heap_after_gc();
S
sla 已提交
1543 1544 1545
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1546

1547
    gc_timer->register_gc_end();
S
sla 已提交
1548
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1549
  }
1550

1551
  return true;
1552 1553 1554
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1555 1556 1557 1558 1559 1560 1561 1562
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1575 1576 1577 1578
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1579
  // We don't have floating point command-line arguments
1580
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1581
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1582
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1583 1584
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1621

1622
  if (capacity_after_gc < minimum_desired_capacity) {
1623 1624
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1635 1636

    // No expansion, now see if we want to shrink
1637
  } else if (capacity_after_gc > maximum_desired_capacity) {
1638 1639
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1640 1641 1642 1643 1644 1645 1646 1647 1648
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1649 1650 1651 1652 1653 1654
    shrink(shrink_bytes);
  }
}


HeapWord*
1655
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1656
                                           AllocationContext_t context,
1657
                                           bool* succeeded) {
1658
  assert_at_safepoint(true /* should_be_vm_thread */);
1659 1660 1661

  *succeeded = true;
  // Let's attempt the allocation first.
1662 1663
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
1664 1665
                                    context,
                                    false /* expect_null_mutator_alloc_region */);
1666 1667 1668 1669
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1670 1671 1672 1673 1674

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
1675
  result = expand_and_allocate(word_size, context);
1676
  if (result != NULL) {
1677
    assert(*succeeded, "sanity");
1678 1679 1680
    return result;
  }

1681 1682 1683 1684 1685 1686 1687 1688
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1689

1690 1691
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1692 1693
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1694
  if (result != NULL) {
1695
    assert(*succeeded, "sanity");
1696 1697 1698
    return result;
  }

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1710 1711
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1712
  if (result != NULL) {
1713
    assert(*succeeded, "sanity");
1714 1715 1716
    return result;
  }

1717
  assert(!collector_policy()->should_clear_all_soft_refs(),
1718
         "Flag should have been handled and cleared prior to this point");
1719

1720 1721 1722 1723
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1724
  assert(*succeeded, "sanity");
1725 1726 1727 1728 1729 1730 1731 1732
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

1733
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1734 1735 1736
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1737

1738
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1739 1740 1741 1742 1743
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1744
  if (expand(expand_bytes)) {
1745
    _hrm.verify_optional();
1746 1747
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1748 1749
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
1750
  }
1751
  return NULL;
1752 1753
}

1754 1755
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1756 1757
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1758 1759 1760 1761 1762
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1763

1764
  if (is_maximal_no_gc()) {
1765 1766 1767 1768 1769 1770
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1771 1772
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");
1773

1774
  uint expanded_by = _hrm.expand_by(regions_to_expand);
1775

1776 1777
  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1778
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1779
    g1_policy()->record_new_heap_size(num_regions());
1780
  } else {
1781 1782 1783
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1784 1785 1786
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
1787
        _hrm.available() >= regions_to_expand) {
1788
      // We had head room...
1789
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1790 1791
    }
  }
1792
  return regions_to_expand > 0;
1793 1794
}

1795
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1796 1797 1798 1799
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1800 1801
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

1802
  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1803
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1804 1805 1806 1807 1808 1809

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1810 1811
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
1812
    g1_policy()->record_new_heap_size(num_regions());
1813 1814 1815 1816
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1817 1818 1819 1820
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1821 1822
  verify_region_sets_optional();

1823 1824 1825
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
1826
  _allocator->abandon_gc_alloc_regions();
1827

1828 1829 1830
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1831
  tear_down_region_sets(true /* free_list_only */);
1832
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1833
  rebuild_region_sets(true /* free_list_only */);
1834

1835
  _hrm.verify_optional();
1836
  verify_region_sets_optional();
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1849
  _dirty_card_queue_set(false),
J
johnc 已提交
1850
  _into_cset_dirty_card_queue_set(false),
1851 1852 1853 1854
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1855 1856
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1857
  _evac_failure_scan_stack(NULL),
1858
  _mark_in_progress(false),
1859
  _cg1r(NULL),
1860
  _g1mm(NULL),
1861 1862
  _refine_cte_cl(NULL),
  _full_collection(false),
1863 1864 1865
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1866 1867
  _humongous_is_live(),
  _has_humongous_reclaim_candidates(false),
1868
  _free_regions_coming(false),
1869 1870
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1871 1872
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1873
  _expand_heap_after_alloc_failure(true),
1874
  _surviving_young_words(NULL),
1875 1876
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1877
  _concurrent_cycle_started(false),
1878
  _in_cset_fast_test(),
1879 1880
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1881 1882 1883 1884 1885 1886 1887
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1888 1889 1890
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1891

1892
  _allocator = G1Allocator::create_allocator(_g1h);
1893 1894
  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1895 1896 1897
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1898
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1899 1900
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1901 1902
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1903
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1904

1905 1906 1907 1908
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1909
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1910
  }
1911 1912
  clear_cset_start_regions();

1913 1914 1915
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1916 1917 1918 1919
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1920
  CollectedHeap::pre_initialize();
1921 1922
  os::enable_vtime();

1923 1924
  G1Log::init();

1925 1926 1927 1928
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1929 1930 1931 1932
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1933 1934 1935 1936 1937 1938 1939 1940 1941
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1942
  size_t heap_alignment = collector_policy()->heap_alignment();
1943 1944 1945 1946

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1947
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1948

1949 1950 1951
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1952 1953

  // Reserve the maximum.
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

1966
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1967
                                                 heap_alignment);
1968 1969

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
1970
  // temporarily think something is in the heap.  (I've actually seen this
1971 1972 1973 1974 1975 1976 1977 1978
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
1979 1980
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1981 1982 1983 1984
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1985
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1986 1987 1988

  // Carve out the G1 part of the heap.

1989
  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
                                         UseLargePages ? os::large_page_size() : os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  heap_storage->set_mapping_changed_listener(&_listener);

  // Reserve space for the block offset table. We do not support automatic uncommit
  // for the card table at this time. BOT only.
  ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* bot_storage =
    G1RegionToSpaceMapper::create_mapper(bot_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
    G1RegionToSpaceMapper::create_mapper(cardtable_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for the card counts table.
  ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* card_counts_storage =
    G1RegionToSpaceMapper::create_mapper(card_counts_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for prev and next bitmap.
  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());

  ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* prev_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

  ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* next_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

2044
  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2045 2046 2047
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);
2048

2049 2050
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2051
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2052 2053 2054
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2055
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2056
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2057
            "too many cards per region");
2058

2059
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2060

2061
  _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2062 2063 2064

  _g1h = this;

2065 2066
  _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2067

2068 2069
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2070
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2071 2072 2073 2074
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2075 2076 2077 2078 2079
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2080
  // Now expand into the initial heap size.
2081
  if (!expand(init_byte_size)) {
2082
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2083 2084
    return JNI_ENOMEM;
  }
2085 2086 2087 2088 2089 2090

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2091
                                               G1SATBProcessCompletedThreshold,
2092
                                               Shared_SATB_Q_lock);
2093

2094 2095
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2096
                                                DirtyCardQ_FL_lock,
2097 2098
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2099 2100
                                                Shared_DirtyCardQ_lock);

2101 2102 2103 2104 2105 2106 2107
  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());
J
johnc 已提交
2108 2109 2110

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2111 2112
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2113 2114 2115 2116 2117 2118
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2119 2120 2121 2122
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2123 2124
  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
2125
  HeapRegion* dummy_region = _hrm.get_dummy_region();
2126

2127 2128 2129
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
2130 2131
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
2132 2133 2134 2135
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

2136
  _allocator->init_mutator_alloc_region();
2137

2138 2139
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2140
  _g1mm = new G1MonitoringSupport(this);
2141

P
pliden 已提交
2142 2143
  G1StringDedup::initialize();

2144 2145 2146
  return JNI_OK;
}

2147
void G1CollectedHeap::stop() {
2148 2149
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2150
  // that are destroyed during shutdown.
2151 2152 2153 2154 2155
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2156 2157
}

2158 2159 2160 2161 2162
void G1CollectedHeap::clear_humongous_is_live_table() {
  guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  _humongous_is_live.clear();
}

2163 2164 2165 2166
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2167
void G1CollectedHeap::ref_processing_init() {
2168 2169
  // Reference processing in G1 currently works as follows:
  //
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2202

2203 2204
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2219
                           &_is_alive_closure_cm);
2220 2221 2222 2223 2224
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2225
    new ReferenceProcessor(mr,    // span
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2236
                           &_is_alive_closure_stw);
2237 2238
                                // is alive closure
                                // (for efficiency/performance)
2239 2240 2241
}

size_t G1CollectedHeap::capacity() const {
2242
  return _hrm.length() * HeapRegion::GrainBytes;
2243 2244
}

2245 2246 2247 2248
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
2249
    uint first_index = hr->hrm_index() + 1;
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2290 2291 2292
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2293
                                                 uint worker_i) {
2294
  // Clean cards in the hot card cache
2295 2296
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2297

2298 2299
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2300
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2301 2302
    n_completed_buffers++;
  }
2303
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2304 2305 2306 2307 2308 2309 2310
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
2311
  return _allocator->used();
2312 2313
}

2314
size_t G1CollectedHeap::used_unlocked() const {
2315
  return _allocator->used_unlocked();
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2332 2333
  double recalculate_used_start = os::elapsedTime();

2334
  SumUsedClosure blk;
2335
  heap_region_iterate(&blk);
2336 2337

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2338 2339 2340
  return blk.result();
}

2341
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2342 2343 2344 2345
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
2346
    case GCCause::_update_allocation_context_stats_inc: return true;
2347 2348
    default:                                return false;
  }
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358 2359
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
2360 2361
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2384 2385
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2386 2387 2388 2389 2390
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2391 2392 2393 2394 2395 2396 2397 2398
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2399
  assert(concurrent ||
2400 2401 2402 2403 2404
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2405 2406

  // This is the case for the outer caller, i.e. the concurrent cycle.
2407
  assert(!concurrent ||
2408
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2409
         err_msg("for outer caller (concurrent cycle): "
2410 2411 2412
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2413

2414
  _old_marking_cycles_completed += 1;
2415

2416 2417 2418
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2419
  // incorrectly see that a marking cycle is still in progress.
2420
  if (concurrent) {
2421 2422 2423
    _cmThread->clear_in_progress();
  }

2424 2425 2426 2427 2428 2429 2430
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2431
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2444

2445
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2474
void G1CollectedHeap::collect(GCCause::Cause cause) {
2475
  assert_heap_not_locked();
2476

2477
  unsigned int gc_count_before;
2478
  unsigned int old_marking_count_before;
2479 2480 2481 2482 2483 2484 2485
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2486

2487 2488
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2489
      old_marking_count_before = _old_marking_cycles_started;
2490 2491 2492 2493 2494 2495
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2496
      VM_G1IncCollectionPause op(gc_count_before,
2497
                                 0,     /* word_size */
2498
                                 true,  /* should_initiate_conc_mark */
2499 2500
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2501
      op.set_allocation_context(AllocationContext::current());
2502

2503
      VMThread::execute(&op);
2504
      if (!op.pause_succeeded()) {
2505
        if (old_marking_count_before == _old_marking_cycles_started) {
2506
          retry_gc = op.should_retry_gc();
2507 2508 2509 2510 2511
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2512 2513 2514 2515 2516 2517

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2518
      }
2519
    } else {
2520
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2533
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2534 2535
        VMThread::execute(&op);
      }
2536
    }
2537
  } while (retry_gc);
2538 2539 2540
}

bool G1CollectedHeap::is_in(const void* p) const {
2541
  if (_hrm.reserved().contains(p)) {
2542
    // Given that we know that p is in the reserved space,
S
stefank 已提交
2543 2544 2545
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2546 2547
    return hr->is_in(p);
  } else {
2548
    return false;
2549 2550 2551
  }
}

2552 2553 2554
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
2555
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2556 2557 2558 2559 2560 2561 2562 2563
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

2564 2565
// Iteration functions.

2566
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2567 2568

class IterateOopClosureRegionClosure: public HeapRegionClosure {
2569
  ExtendedOopClosure* _cl;
2570
public:
2571
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2572
  bool doHeapRegion(HeapRegion* r) {
2573
    if (!r->continuesHumongous()) {
2574 2575 2576 2577 2578 2579
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2580
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2581
  IterateOopClosureRegionClosure blk(cl);
2582
  heap_region_iterate(&blk);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2599
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2600
  IterateObjectClosureRegionClosure blk(cl);
2601
  heap_region_iterate(&blk);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2618
  heap_region_iterate(&blk);
2619 2620
}

2621
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2622
  _hrm.iterate(cl);
2623 2624 2625 2626
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2627
                                                 uint worker_id,
2628 2629
                                                 uint num_workers,
                                                 jint claim_value) const {
2630
  _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2631 2632
}

2633 2634 2635 2636 2637 2638 2639 2640
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2641
void G1CollectedHeap::reset_heap_region_claim_values() {
2642 2643 2644 2645
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2646 2647 2648 2649 2650
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2651 2652 2653 2654 2655 2656 2657 2658 2659
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2660
  uint _failures;
2661
  HeapRegion* _sh_region;
2662

2663 2664 2665 2666 2667
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2668
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2669
                             "claim value = %d, should be %d",
2670 2671
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2672 2673 2674 2675 2676 2677 2678 2679
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2680
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2681
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2682
                               HR_FORMAT_PARAMS(r),
2683 2684 2685 2686 2687 2688 2689
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2690
  uint failures() { return _failures; }
2691 2692 2693 2694 2695 2696 2697
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2698 2699

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2700 2701 2702
private:
  jint _claim_value;
  uint _failures;
2703 2704 2705

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2706
    _claim_value(claim_value), _failures(0) { }
2707

2708
  uint failures() { return _failures; }
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2729 2730
#endif // ASSERT

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2743

2744 2745
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2746
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2774
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2775
    uint cs_size = g1_policy()->cset_region_length();
2776
    uint active_workers = workers()->active_workers();
2777 2778 2779 2780
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2781 2782
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2783 2784 2785 2786 2787 2788 2789 2790 2791

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2792
    for (uint i = start_ind; i < end_ind; i++) {
2793 2794 2795
      result = result->next_in_collection_set();
    }
  }
2796 2797 2798 2799 2800 2801 2802 2803 2804

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2805 2806 2807
  return result;
}

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2822 2823 2824 2825 2826
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

2849
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2850
  HeapRegion* result = _hrm.next_region_in_heap(from);
2851
  while (result != NULL && result->isHumongous()) {
2852
    result = _hrm.next_region_in_heap(result);
2853
  }
2854
  return result;
2855 2856 2857
}

Space* G1CollectedHeap::space_containing(const void* addr) const {
2858
  return heap_region_containing(addr);
2859 2860 2861 2862
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
2863
  return sp->block_start(addr);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2892 2893 2894 2895 2896 2897
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2898
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
2899
  // since we can't allow tlabs to grow big enough to accommodate
2900 2901
  // humongous objects.

2902
  HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
B
brutisso 已提交
2903
  size_t max_tlab = max_tlab_size() * wordSize;
2904
  if (hr == NULL) {
B
brutisso 已提交
2905
    return max_tlab;
2906
  } else {
B
brutisso 已提交
2907
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2908 2909 2910 2911
  }
}

size_t G1CollectedHeap::max_capacity() const {
2912
  return _hrm.reserved().byte_size();
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

2972
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3008
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3107
class VerifyLivenessOopClosure: public OopClosure {
3108 3109
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3110
public:
3111 3112 3113
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3114 3115 3116 3117 3118
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3119
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3120
              "Dead object referenced by a not dead object");
3121 3122 3123 3124
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3125
private:
3126 3127 3128
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3129
  VerifyOption _vo;
3130
public:
3131 3132 3133 3134 3135
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3136 3137 3138
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3139
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3140
    assert(o != NULL, "Huh?");
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3153
      o->oop_iterate_no_header(&isLive);
3154 3155 3156 3157
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3193
private:
3194 3195 3196
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3197
public:
3198 3199 3200
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3201 3202
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3203
      _vo(vo),
3204 3205 3206 3207 3208
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3209

3210
  bool doHeapRegion(HeapRegion* r) {
3211
    if (!r->continuesHumongous()) {
3212
      bool failures = false;
3213
      r->verify(_vo, &failures);
3214 3215 3216
      if (failures) {
        _failures = true;
      } else {
3217
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3218
        r->object_iterate(&not_dead_yet_cl);
3219 3220 3221 3222 3223 3224 3225
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3226
                                 not_dead_yet_cl.live_bytes());
3227 3228 3229 3230 3231 3232
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3233 3234
        }
      }
3235
    }
3236
    return false; // stop the region iteration if we hit a failure
3237 3238 3239
  }
};

J
johnc 已提交
3240
// This is the task used for parallel verification of the heap regions
3241 3242 3243 3244

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3245 3246
  VerifyOption     _vo;
  bool             _failures;
3247 3248

public:
3249 3250 3251
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3252
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3253
    AbstractGangTask("Parallel verify task"),
3254
    _g1h(g1h),
3255
    _vo(vo),
3256 3257 3258 3259 3260
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3261

3262
  void work(uint worker_id) {
3263
    HandleMark hm;
3264
    VerifyRegionClosure blk(true, _vo);
3265
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3266
                                          _g1h->workers()->active_workers(),
3267
                                          HeapRegion::ParVerifyClaimValue);
3268 3269 3270
    if (blk.failures()) {
      _failures = true;
    }
3271 3272 3273
  }
};

J
johnc 已提交
3274
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3275
  if (SafepointSynchronize::is_at_safepoint()) {
3276
    assert(Thread::current()->is_VM_thread(),
3277
           "Expected to be executed serially by the VM thread at this point");
3278

J
johnc 已提交
3279 3280
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
3281
    VerifyKlassClosure klassCl(this, &rootsCl);
3282
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3283

3284
    // We apply the relevant closures to all the oops in the
3285 3286
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
3287 3288
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3289 3290 3291 3292 3293 3294

    process_all_roots(true,            // activate StrongRootsScope
                      SO_AllCodeCache, // roots scanning options
                      &rootsCl,
                      &cldCl,
                      &blobsCl);
3295

J
johnc 已提交
3296
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3307
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3308 3309 3310 3311
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3312
      G1ParVerifyTask task(this, vo);
3313 3314 3315 3316
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3317 3318 3319
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3320 3321 3322
      if (task.failures()) {
        failures = true;
      }
3323

3324 3325
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3326 3327 3328 3329 3330 3331 3332 3333
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3334
      VerifyRegionClosure blk(false, vo);
3335
      heap_region_iterate(&blk);
3336 3337 3338
      if (blk.failures()) {
        failures = true;
      }
3339
    }
3340
    if (!silent) gclog_or_tty->print("RemSet ");
3341
    rem_set()->verify();
3342

P
pliden 已提交
3343 3344 3345 3346 3347
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3348 3349
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3350 3351 3352 3353
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3354
      gclog_or_tty->cr();
3355
#ifndef PRODUCT
3356
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3357
        concurrent_mark()->print_reachable("at-verification-failure",
3358
                                           vo, false /* all */);
3359
      }
3360
#endif
3361 3362 3363
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3364
  } else {
P
pliden 已提交
3365 3366 3367 3368 3369 3370 3371
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3372 3373 3374
  }
}

J
johnc 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3436
void G1CollectedHeap::print_on(outputStream* st) const {
3437 3438
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3439
            capacity()/K, used_unlocked()/K);
3440
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3441 3442 3443
            _hrm.reserved().start(),
            _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
            _hrm.reserved().end());
3444
  st->cr();
3445
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3446 3447 3448 3449 3450 3451
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3452
  st->cr();
3453
  MetaspaceAux::print_on(st);
3454 3455
}

3456 3457 3458 3459 3460
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3461 3462 3463 3464 3465
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3466
  PrintRegionClosure blk(st);
3467
  heap_region_iterate(&blk);
3468 3469
}

3470 3471 3472 3473 3474 3475 3476 3477 3478
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3479
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3480
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3481
    workers()->print_worker_threads_on(st);
3482
  }
T
tonyp 已提交
3483
  _cmThread->print_on(st);
3484
  st->cr();
T
tonyp 已提交
3485 3486
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3487 3488 3489
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3490 3491 3492
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3493
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3494 3495 3496
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3497
  _cg1r->threads_do(tc);
P
pliden 已提交
3498 3499 3500
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3501 3502 3503 3504 3505 3506 3507 3508 3509
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3510
  if (G1SummarizeRSetStats) {
3511 3512
    g1_rem_set()->print_summary_info();
  }
3513
  if (G1SummarizeConcMark) {
3514 3515 3516 3517 3518 3519
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3548
    gclog_or_tty->print_cr("%s", msg);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3570 3571 3572 3573 3574 3575 3576
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3577
  // always_do_update_barrier = false;
3578 3579
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3580
  accumulate_statistics_all_tlabs();
3581
  ensure_parsability(true);
3582 3583 3584 3585 3586

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3587 3588
}

3589
void G1CollectedHeap::gc_epilogue(bool full) {
3590 3591 3592 3593 3594

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3595
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3596 3597
  }

3598 3599 3600 3601 3602
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3603
  // always_do_update_barrier = true;
3604

B
brutisso 已提交
3605
  resize_all_tlabs();
3606
  allocation_context_stats().update(full);
B
brutisso 已提交
3607

3608 3609 3610
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3611 3612
}

3613 3614
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3615 3616
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3617
  assert_heap_not_locked_and_not_at_safepoint();
3618
  g1_policy()->record_stop_world_start();
3619 3620 3621 3622
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3623
                             gc_cause);
3624 3625

  op.set_allocation_context(AllocationContext::current());
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3636 3637 3638 3639
}

void
G1CollectedHeap::doConcurrentMark() {
3640 3641 3642 3643
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3659 3660 3661 3662
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3663 3664 3665
}

size_t G1CollectedHeap::cards_scanned() {
3666
  return g1_rem_set()->cardsScanned();
3667 3668
}

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  HeapRegion* region = region_at(index);
  assert(region->startsHumongous(), "Must start a humongous object");
  return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
}

class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;
 public:
  RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

3689
    uint region_idx = r->hrm_index();
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
    bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
    // Is_candidate already filters out humongous regions with some remembered set.
    // This will not lead to humongous object that we mistakenly keep alive because
    // during young collection the remembered sets will only be added to.
    if (is_candidate) {
      g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
      _candidate_humongous++;
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }
};

void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
    return;
  }

  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

  if (_has_humongous_reclaim_candidates) {
    clear_humongous_is_live_table();
  }
}

3724 3725
void
G1CollectedHeap::setup_surviving_young_words() {
3726 3727
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3728
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3729
  if (_surviving_young_words == NULL) {
3730
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3731 3732
                          "Not enough space for young surv words summary.");
  }
3733
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3734
#ifdef ASSERT
3735
  for (uint i = 0;  i < array_length; ++i) {
3736
    assert( _surviving_young_words[i] == 0, "memset above" );
3737
  }
3738
#endif // !ASSERT
3739 3740 3741 3742 3743
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3744 3745
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3746
    _surviving_young_words[i] += surv_young_words[i];
3747
  }
3748 3749 3750 3751 3752
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3753
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3754 3755 3756
  _surviving_young_words = NULL;
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3774 3775 3776
    return false;
  }
};
3777
#endif // ASSERT
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3790
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3801
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3802 3803 3804 3805 3806 3807
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3808 3809 3810 3811 3812
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3813
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3814 3815

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3816
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3842
  gclog_or_tty->flush();
3843 3844
}

3845
bool
3846
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3847 3848 3849
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3850
  if (GC_locker::check_active_before_gc()) {
3851
    return false;
3852 3853
  }

3854
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3855 3856 3857

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3858
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3859 3860
  ResourceMark rm;

3861
  print_heap_before_gc();
S
sla 已提交
3862
  trace_heap_before_gc(_gc_tracer_stw);
3863

3864
  verify_region_sets_optional();
3865
  verify_dirty_young_regions();
3866

3867 3868 3869 3870 3871 3872 3873 3874
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3875

3876 3877
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3878

3879 3880 3881 3882
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3883

3884 3885
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3886 3887
    EvacuationInfo evacuation_info;

3888 3889 3890
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3891
      increment_old_marking_cycles_started();
S
sla 已提交
3892
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3893
    }
S
sla 已提交
3894 3895 3896

    _gc_tracer_stw->report_yc_type(yc_type());

3897
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3898

3899 3900
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3901 3902
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3903
    log_gc_header();
3904

3905
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3906
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3907

T
tonyp 已提交
3908 3909 3910 3911 3912 3913
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3914
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3915
      append_secondary_free_list_if_not_empty_with_lock();
3916
    }
3917

J
johnc 已提交
3918 3919 3920
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3921

3922 3923 3924 3925
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3926 3927 3928 3929 3930
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3931
      increment_gc_time_stamp();
3932

3933
      verify_before_gc();
3934
      check_bitmaps("GC Start");
3935

3936
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3937

3938 3939 3940
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3941

3942 3943 3944
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3945

3946 3947 3948 3949 3950 3951 3952 3953 3954
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
3955
        _allocator->release_mutator_alloc_region();
3956 3957 3958 3959 3960 3961

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3962 3963 3964 3965 3966 3967
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3968 3969
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
3970
        double sample_start_time_sec = os::elapsedTime();
3971

3972
#if YOUNG_LIST_VERBOSE
3973 3974 3975
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3976 3977
#endif // YOUNG_LIST_VERBOSE

3978
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3979

3980 3981 3982 3983 3984 3985
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
3986
        double wait_time_ms = 0.0;
3987 3988
        if (waited) {
          double scan_wait_end = os::elapsedTime();
3989
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3990
        }
3991
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3992

3993
#if YOUNG_LIST_VERBOSE
3994 3995
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3996
#endif // YOUNG_LIST_VERBOSE
3997

3998 3999 4000
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4001

4002
#if YOUNG_LIST_VERBOSE
4003 4004 4005
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4006
#endif // YOUNG_LIST_VERBOSE
4007

S
sla 已提交
4008
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4009

4010 4011
        register_humongous_regions_with_in_cset_fast_test();

4012 4013 4014
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4015
        // GC). We also call this after finalize_cset() to
4016 4017 4018 4019 4020 4021
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4022 4023 4024 4025 4026
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4027 4028 4029
          }
        }

4030
#ifdef ASSERT
4031 4032
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4033
#endif // ASSERT
4034

4035
        setup_surviving_young_words();
4036

4037
        // Initialize the GC alloc regions.
4038
        _allocator->init_gc_alloc_regions(evacuation_info);
4039

4040
        // Actually do the work...
S
sla 已提交
4041
        evacuate_collection_set(evacuation_info);
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4053
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4054 4055 4056

        eagerly_reclaim_humongous_regions();

4057
        g1_policy()->clear_collection_set();
4058

4059
        cleanup_surviving_young_words();
4060

4061 4062
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4063

4064
        clear_cset_fast_test();
4065

4066
        _young_list->reset_sampled_info();
4067

4068 4069 4070 4071 4072 4073
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4074 4075

#if YOUNG_LIST_VERBOSE
4076 4077
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4078
#endif // YOUNG_LIST_VERBOSE
4079

4080
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4081 4082
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4083

4084
        _young_list->reset_auxilary_lists();
4085

4086
        if (evacuation_failed()) {
4087
          _allocator->set_used(recalculate_used());
S
sla 已提交
4088 4089 4090 4091 4092 4093
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4094 4095 4096
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
4097
          _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4098
        }
4099

4100
        if (g1_policy()->during_initial_mark_pause()) {
4101 4102 4103
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4104 4105
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4106 4107 4108
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4109
        }
4110

4111
        allocate_dummy_regions();
4112

4113
#if YOUNG_LIST_VERBOSE
4114 4115 4116
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4117
#endif // YOUNG_LIST_VERBOSE
4118

4119
        _allocator->init_mutator_alloc_region();
4120 4121 4122 4123 4124

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4125 4126
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4127
            if (!expand(expand_bytes)) {
4128
              // We failed to expand the heap. Cannot do anything about it.
4129
            }
4130 4131 4132
          }
        }

S
sla 已提交
4133
        // We redo the verification but now wrt to the new CSet which
4134 4135 4136 4137 4138 4139 4140
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4141 4142 4143 4144 4145
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4146
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4173
        verify_after_gc();
4174
        check_bitmaps("GC End");
4175

4176 4177
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4178

4179 4180
        // CM reference discovery will be re-enabled if necessary.
      }
4181

4182 4183 4184 4185 4186 4187
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4188
#ifdef TRACESPINNING
4189
      ParallelTaskTerminator::print_termination_counts();
4190
#endif
4191

4192 4193
      gc_epilogue(false);
    }
4194

4195 4196 4197
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4198
    // It is not yet to safe to tell the concurrent mark to
4199 4200 4201
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4202

4203
    _hrm.verify_optional();
4204 4205 4206 4207
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4208

4209
    print_heap_after_gc();
S
sla 已提交
4210
    trace_heap_after_gc(_gc_tracer_stw);
4211

4212 4213 4214 4215 4216
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4217

S
sla 已提交
4218 4219
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4220
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4221 4222
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4234
    // SuspendibleThreadSet::desynchronize().
4235 4236 4237
    doConcurrentMark();
  }

4238
  return true;
4239 4240
}

4241 4242 4243 4244 4245
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4246
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4247 4248
      break;
    case GCAllocForTenured:
4249
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4250 4251 4252
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4253
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4254 4255
      break;
  }
4256 4257 4258 4259 4260 4261

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4262 4263
}

4264 4265 4266
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4267
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4268 4269 4270 4271 4272 4273 4274
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4275
  delete _evac_failure_scan_stack;
4276 4277 4278
  _evac_failure_scan_stack = NULL;
}

4279 4280
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4281

4282 4283
  double remove_self_forwards_start = os::elapsedTime();

4284
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4285

4286 4287 4288 4289
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4290
  } else {
4291
    rsfp_task.work(0);
4292
  }
4293 4294 4295 4296 4297 4298 4299

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4300 4301

  // Now restore saved marks, if any.
4302 4303 4304 4305 4306 4307
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4308
  }
4309 4310
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4311 4312

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4330
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4331
                                               oop old) {
4332 4333 4334
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4335 4336 4337 4338
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4339 4340 4341
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4342

S
sla 已提交
4343 4344
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4363 4364 4365 4366 4367 4368 4369
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4380
    _hr_printer.evac_failure(r);
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4394 4395 4396 4397
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4398 4399
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4400 4401 4402 4403
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4404 4405
                                                  size_t word_size,
                                                  AllocationContext_t context) {
4406
  if (purpose == GCAllocForSurvived) {
4407
    HeapWord* result = survivor_attempt_allocation(word_size, context);
4408 4409
    if (result != NULL) {
      return result;
4410
    } else {
4411 4412
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
4413
      return old_attempt_allocation(word_size, context);
4414
    }
4415 4416
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
4417
    HeapWord* result = old_attempt_allocation(word_size, context);
4418 4419
    if (result != NULL) {
      return result;
4420
    } else {
4421 4422
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
4423
      return survivor_attempt_allocation(word_size, context);
4424 4425 4426
    }
  }

4427 4428 4429
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4430 4431
}

4432
void G1ParCopyHelper::mark_object(oop obj) {
4433
  assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4434 4435

  // We know that the object is not moving so it's safe to read its size.
4436
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4437 4438
}

4439
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4440 4441 4442 4443
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

4444 4445
  assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4446 4447 4448 4449 4450

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4451
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4452 4453
}

4454 4455 4456 4457 4458 4459 4460
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4461
template <G1Barrier barrier, G1Mark do_mark_object>
4462
template <class T>
4463
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4464 4465 4466 4467 4468 4469 4470
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4471

4472 4473
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4474 4475 4476
  G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);

  if (state == G1CollectedHeap::InCSet) {
4477
    oop forwardee;
4478
    if (obj->is_forwarded()) {
4479
      forwardee = obj->forwardee();
4480
    } else {
4481
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4482 4483 4484
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
4485
    if (do_mark_object != G1MarkNone && forwardee != obj) {
4486 4487 4488
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4489
    }
4490

4491
    if (barrier == G1BarrierKlass) {
4492
      do_klass_barrier(p, forwardee);
4493
    }
4494
  } else {
4495 4496 4497
    if (state == G1CollectedHeap::IsHumongous) {
      _g1->set_humongous_is_live(obj);
    }
4498
    // The object is not in collection set. If we're a root scanning
4499 4500
    // closure during an initial mark pause then attempt to mark the object.
    if (do_mark_object == G1MarkFromRoot) {
4501
      mark_object(obj);
4502
    }
4503
  }
4504

4505
  if (barrier == G1BarrierEvac) {
4506
    _par_scan_state->update_rs(_from, p, _worker_id);
4507
  }
4508 4509
}

4510 4511
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4532
  void do_void();
4533

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4550
    pss->steal_and_trim_queue(queues());
4551 4552
  } while (!offer_termination());
}
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
class G1CodeBlobClosure : public CodeBlobClosure {
  class HeapRegionGatheringOopClosure : public OopClosure {
    G1CollectedHeap* _g1h;
    OopClosure* _work;
    nmethod* _nm;

    template <typename T>
    void do_oop_work(T* p) {
      _work->do_oop(p);
      T oop_or_narrowoop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(oop_or_narrowoop)) {
        oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
        HeapRegion* hr = _g1h->heap_region_containing_raw(o);
        assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
        hr->add_strong_code_root(_nm);
      }
    }

  public:
    HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}

    void do_oop(oop* o) {
      do_oop_work(o);
    }

    void do_oop(narrowOop* o) {
      do_oop_work(o);
    }

    void set_nm(nmethod* nm) {
      _nm = nm;
    }
  };

  HeapRegionGatheringOopClosure _oc;
public:
  G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      if (!nm->test_set_oops_do_mark()) {
        _oc.set_nm(nm);
        nm->oops_do(&_oc);
        nm->fix_oop_relocations();
      }
    }
  }
};

4630 4631 4632 4633 4634
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4635
  uint _n_workers;
4636 4637 4638 4639 4640

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

public:
4641
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4642 4643 4644
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4645 4646
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4647 4648 4649 4650 4651 4652 4653 4654
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
  // Helps out with CLD processing.
  //
  // During InitialMark we need to:
  // 1) Scavenge all CLDs for the young GC.
  // 2) Mark all objects directly reachable from strong CLDs.
  template <G1Mark do_mark_object>
  class G1CLDClosure : public CLDClosure {
    G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
    G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
    G1KlassScanClosure                                _klass_in_cld_closure;
    bool                                              _claim;

   public:
    G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
                 bool only_young, bool claim)
        : _oop_closure(oop_closure),
          _oop_in_klass_closure(oop_closure->g1(),
                                oop_closure->pss(),
                                oop_closure->rp()),
          _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
          _claim(claim) {

    }

    void do_cld(ClassLoaderData* cld) {
      cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
    }
  };

4698 4699
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4700 4701

    double start_time_ms = os::elapsedTime() * 1000.0;
4702
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4703

4704 4705 4706
    {
      ResourceMark rm;
      HandleMark   hm;
4707

4708
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4709

4710
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4711
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4712

4713
      pss.set_evac_failure_closure(&evac_failure_cl);
4714

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
      G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
      // IM Weak code roots are handled later.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;
      CodeBlobClosure* strong_code_cl;
4743

4744 4745
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
4746 4747 4748
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
        strong_code_cl = &scan_mark_code_cl;
4749 4750 4751 4752 4753 4754 4755
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
4756 4757 4758 4759 4760 4761
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
        strong_code_cl = &scan_only_code_cl;
4762
      }
4763

4764

4765
      G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4766

4767
      pss.start_strong_roots();
4768 4769 4770 4771 4772 4773 4774 4775
      _g1h->g1_process_roots(strong_root_cl,
                             weak_root_cl,
                             &push_heap_rs_cl,
                             strong_cld_cl,
                             weak_cld_cl,
                             strong_code_cl,
                             worker_id);

4776
      pss.end_strong_roots();
4777

4778 4779 4780 4781 4782 4783
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4784
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4785
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4786 4787 4788 4789 4790 4791 4792 4793
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4794

4795
      assert(pss.queue_is_empty(), "should be empty");
4796

4797 4798 4799
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4800 4801
    }

4802
    double end_time_ms = os::elapsedTime() * 1000.0;
4803
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4804 4805 4806 4807 4808
  }
};

// *** Common G1 Evacuation Stuff

4809 4810
// This method is run in a GC worker.

4811 4812
void
G1CollectedHeap::
4813 4814 4815 4816 4817 4818 4819 4820 4821
g1_process_roots(OopClosure* scan_non_heap_roots,
                 OopClosure* scan_non_heap_weak_roots,
                 OopsInHeapRegionClosure* scan_rs,
                 CLDClosure* scan_strong_clds,
                 CLDClosure* scan_weak_clds,
                 CodeBlobClosure* scan_strong_code,
                 uint worker_i) {

  // First scan the shared roots.
4822 4823 4824
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

4825
  bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4826
  bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4827

4828
  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4829
  BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4830

4831 4832 4833 4834 4835
  process_roots(false, // no scoping; this is parallel code
                SharedHeap::SO_None,
                &buf_scan_non_heap_roots,
                &buf_scan_non_heap_weak_roots,
                scan_strong_clds,
4836 4837
                // Unloading Initial Marks handle the weak CLDs separately.
                (trace_metadata ? NULL : scan_weak_clds),
4838
                scan_strong_code);
4839

4840
  // Now the CM ref_processor roots.
4841
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4842 4843 4844 4845 4846
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4847 4848
  }

4849
  if (trace_metadata) {
4850 4851 4852 4853 4854 4855 4856 4857
    // Barrier to make sure all workers passed
    // the strong CLD and strong nmethods phases.
    active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());

    // Now take the complement of the strong CLDs.
    ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  }

4858
  // Finish up any enqueued closure apps (attributed as object copy time).
4859
  buf_scan_non_heap_roots.done();
4860
  buf_scan_non_heap_weak_roots.done();
4861

4862 4863
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
      + buf_scan_non_heap_weak_roots.closure_app_seconds();
4864

4865
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4866

4867
  double ext_root_time_ms =
4868
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4869

4870
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4871

4872 4873 4874
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
4875
  double satb_filtering_ms = 0.0;
4876 4877
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
4878 4879
      double satb_filter_start = os::elapsedTime();

4880
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
4881 4882

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4883
    }
4884
  }
4885
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4886 4887

  // Now scan the complement of the collection set.
4888
  G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4889 4890

  g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4891

4892 4893 4894
  _process_strong_tasks->all_tasks_completed();
}

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4908 4909

  bool _do_in_parallel;
4910 4911
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4912 4913
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
4914
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4929
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4930 4931
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4932
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4933 4934
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4935 4936 4937 4938 4939 4940 4941 4942

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
                             "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                             "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
4943 4944 4945
  }

  void work(uint worker_id) {
4946
    if (_do_in_parallel) {
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    nmethod* last;

    do {
      *num_claimed_nmethods = 0;

      first = last = (nmethod*)_claimed_nmethod;

      if (first != NULL) {
        for (int i = 0; i < MaxClaimNmethods; i++) {
          last = CodeCache::alive_nmethod(CodeCache::next(last));

          if (last == NULL) {
            break;
          }

          claimed_nmethods[i] = last;
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->oop_is_instance());

    return (InstanceKlass*)klass;
  }

public:

  void clean_klass(InstanceKlass* ik) {
    ik->clean_implementors_list(_is_alive);
    ik->clean_method_data(_is_alive);

    // G1 specific cleanup work that has
    // been moved here to be done in parallel.
    ik->clean_dependent_nmethods();
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

  // The parallel work done by all worker threads.
  void work(uint worker_id) {
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

5223
    // Let the threads mark that the first pass is done.
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
5246
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5247
                    workers()->active_workers() : 1);
5248

5249 5250
  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
5251 5252 5253 5254 5255 5256 5257
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                     _g1h->workers()->active_workers() : 1);
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads(n_workers);
      workers()->run_task(&g1_unlink_task);
      set_par_threads(0);
    } else {
      g1_unlink_task.work(0);
    }
5273
  }
P
pliden 已提交
5274 5275 5276 5277

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5278 5279
}

5280 5281 5282 5283 5284 5285 5286 5287 5288
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
    double start_time = os::elapsedTime();

5289
    RedirtyLoggedCardTableEntryClosure cl;
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
    timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
    timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  }
5300 5301 5302 5303 5304
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5317 5318 5319 5320 5321 5322 5323 5324

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5355
  void do_oop(oop* p) {
5356
    oop obj = *p;
5357
    assert(obj != NULL, "the caller should have filtered out NULL values");
5358

5359
    G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5360
    if (cset_state == G1CollectedHeap::InNeither) {
5361 5362 5363
      return;
    }
    if (cset_state == G1CollectedHeap::InCSet) {
5364 5365
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
5366 5367 5368 5369 5370
    } else {
      assert(!obj->is_forwarded(), "invariant" );
      assert(cset_state == G1CollectedHeap::IsHumongous,
             err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
      _g1->set_humongous_is_live(obj);
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

5400
    if (_g1h->is_in_cset_or_humongous(obj)) {
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5415
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5416
      // the referent object and update the pointer, while avoiding
5417 5418 5419 5420 5421
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5422
        assert(!Metaspace::contains((const void*)p),
5423
               err_msg("Unexpectedly found a pointer from metadata: "
5424
                              PTR_FORMAT, p));
5425
        _copy_non_heap_obj_cl->do_oop(p);
5426 5427
      }
    }
5428
  }
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5463
  FlexibleWorkGang*  _workers;
5464 5465 5466 5467
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5468
                        FlexibleWorkGang* workers,
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5505
  virtual void work(uint worker_id) {
5506 5507 5508 5509 5510 5511
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5512
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Keep alive closure.
5529
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5530 5531 5532 5533 5534

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5535
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5570 5571
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5572 5573 5574
  }
};

S
sla 已提交
5575
// Driver routine for parallel reference enqueueing.
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5600
  uint _n_workers;
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5611
  void work(uint worker_id) {
5612 5613 5614
    ResourceMark rm;
    HandleMark   hm;

5615
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5616 5617 5618 5619
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5620
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5638
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5639 5640 5641

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5642 5643
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5644 5645 5646 5647

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5648
    assert(0 <= worker_id && worker_id < limit, "sanity");
5649 5650 5651
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5652
    for (uint idx = worker_id; idx < limit; idx += stride) {
5653
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5674
    assert(pss.queue_is_empty(), "should be");
5675 5676 5677 5678
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5679
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5695
  // As a result the copy closure would not have been applied to the
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5706
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5707 5708
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5709

J
johnc 已提交
5710 5711 5712 5713
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5732
  G1ParScanThreadState            pss(this, 0, NULL);
5733 5734 5735 5736 5737 5738 5739 5740

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5741
  assert(pss.queue_is_empty(), "pre-condition");
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
  }

  // Keep alive closure.
5755
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5756 5757 5758 5759 5760 5761 5762

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5763
  ReferenceProcessorStats stats;
5764 5765
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5766 5767 5768 5769
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5770 5771
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5772 5773
  } else {
    // Parallel reference processing
J
johnc 已提交
5774 5775
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5776

J
johnc 已提交
5777
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5778 5779 5780 5781
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5782 5783
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5784 5785
  }

S
sla 已提交
5786
  _gc_tracer_stw->report_gc_reference_stats(stats);
5787 5788

  // We have completed copying any necessary live referent objects.
5789
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5790 5791

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5792
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5793 5794 5795
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5796
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5808
    // Parallel reference enqueueing
5809

J
johnc 已提交
5810 5811 5812 5813
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5814

J
johnc 已提交
5815
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5816 5817 5818 5819 5820 5821 5822 5823 5824
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5825
  // and could significantly increase the pause time.
5826 5827

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5828
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5829 5830
}

S
sla 已提交
5831
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5832
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5833
  _evacuation_failed = false;
5834

5835 5836 5837
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5838
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5839 5840 5841 5842 5843

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5844

5845
  uint n_workers;
5846 5847 5848 5849 5850 5851 5852 5853
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5854
    workers()->set_active_workers(n_workers);
5855 5856 5857 5858 5859 5860 5861 5862
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5863 5864 5865 5866 5867

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5868
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5869 5870
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5871

5872
  {
5873
    StrongRootsScope srs(this);
5874 5875 5876 5877
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (g1_policy()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5898 5899
  }

5900
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5901
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5902 5903 5904

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5905
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5906

5907
  set_par_threads(0);
5908

5909 5910 5911 5912 5913
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5914
  process_discovered_references(n_workers);
5915

5916
  // Weak root processing.
5917
  {
5918
    G1STWIsAliveClosure is_alive(this);
5919 5920
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5921 5922 5923
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5924
  }
5925

5926
  _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5927
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5928

5929 5930 5931 5932 5933
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5934

5935 5936
  purge_code_root_memory();

J
johnc 已提交
5937 5938 5939 5940 5941
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5942 5943 5944 5945
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5946 5947 5948 5949 5950

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5951 5952
  }

5953 5954 5955
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5956
  // the act of enqueueing entries on to the pending list
5957 5958 5959
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5960
  enqueue_discovered_references(n_workers);
5961

5962
  redirty_logged_cards();
5963 5964 5965
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5966 5967
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5968 5969
                                  bool par,
                                  bool locked) {
5970
  assert(!hr->is_free(), "the region should not be free");
5971
  assert(!hr->is_empty(), "the region should not be empty");
5972
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5973 5974
  assert(free_list != NULL, "pre-condition");

5975 5976 5977 5978 5979
  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

5980 5981 5982 5983 5984 5985
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5986
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5987
  free_list->add_ordered(hr);
5988 5989 5990 5991 5992 5993 5994 5995 5996
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5997 5998 5999
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6000
  hr->clear_humongous();
6001
  free_region(hr, free_list, par);
6002

6003
  uint i = hr->hrm_index() + 1;
6004
  while (i < last_index) {
6005
    HeapRegion* curr_hr = region_at(i);
6006
    assert(curr_hr->continuesHumongous(), "invariant");
6007
    curr_hr->clear_humongous();
6008
    free_region(curr_hr, free_list, par);
6009 6010
    i += 1;
  }
6011 6012 6013 6014 6015
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6016
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6017 6018
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6019
  }
6020 6021 6022 6023 6024 6025 6026

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6027
    _hrm.insert_list_into_free_list(list);
6028 6029 6030
  }
}

6031
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6032
  _allocator->decrease_used(bytes);
6033 6034
}

6035
class G1ParCleanupCTTask : public AbstractGangTask {
6036
  G1SATBCardTableModRefBS* _ct_bs;
6037
  G1CollectedHeap* _g1h;
6038
  HeapRegion* volatile _su_head;
6039
public:
6040
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6041
                     G1CollectedHeap* g1h) :
6042
    AbstractGangTask("G1 Par Cleanup CT Task"),
6043
    _ct_bs(ct_bs), _g1h(g1h) { }
6044

6045
  void work(uint worker_id) {
6046 6047 6048 6049 6050
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6051

6052
  void clear_cards(HeapRegion* r) {
6053
    // Cards of the survivors should have already been dirtied.
6054
    if (!r->is_survivor()) {
6055 6056 6057 6058 6059
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6060 6061
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6062
  G1CollectedHeap* _g1h;
6063
  G1SATBCardTableModRefBS* _ct_bs;
6064
public:
6065
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6066
    : _g1h(g1h), _ct_bs(ct_bs) { }
6067
  virtual bool doHeapRegion(HeapRegion* r) {
6068
    if (r->is_survivor()) {
6069
      _g1h->verify_dirty_region(r);
6070
    } else {
6071
      _g1h->verify_not_dirty_region(r);
6072 6073 6074 6075
    }
    return false;
  }
};
6076

6077 6078
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6079
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6092
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6093
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6094 6095 6096 6097 6098
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6099 6100
}

6101
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6102
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6103
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6104
    verify_dirty_region(hr);
6105 6106 6107 6108 6109 6110
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
            err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
                           bitmap_name, result);
    gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
                           bitmap_name, tams, end);
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
    gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) return false;

    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}
#endif // PRODUCT
6192

6193
void G1CollectedHeap::cleanUpCardTable() {
6194
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6195 6196
  double start = os::elapsedTime();

J
johnc 已提交
6197 6198 6199
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6200

6201 6202
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6215 6216
      }
    }
J
johnc 已提交
6217 6218 6219 6220 6221 6222
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6223
  }
6224

6225
  double elapsed = os::elapsedTime() - start;
6226
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6227 6228
}

S
sla 已提交
6229
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6230 6231 6232
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6233 6234 6235
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6236 6237 6238 6239 6240
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6251
    assert(!is_on_master_free_list(cur), "sanity");
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6262 6263 6264 6265
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6266

6267 6268 6269
        start_sec = os::elapsedTime();
        non_young = true;
      }
6270 6271
    }

6272
    rs_lengths += cur->rem_set()->occupied_locked();
6273 6274 6275 6276 6277 6278 6279 6280

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6281
      assert(index != -1, "invariant");
6282
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6283 6284
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6285 6286 6287 6288 6289 6290

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6291 6292
    } else {
      int index = cur->young_index_in_cset();
6293
      assert(index == -1, "invariant");
6294 6295 6296 6297 6298 6299 6300
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6301 6302
      MemRegion used_mr = cur->used_region();

6303
      // And the region is empty.
6304
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6305
      pre_used += cur->used();
6306
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6307 6308
    } else {
      cur->uninstall_surv_rate_group();
6309
      if (cur->is_young()) {
6310
        cur->set_young_index_in_cset(-1);
6311
      }
6312
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6313
      // The region is now considered to be old.
6314
      cur->set_old();
T
tonyp 已提交
6315
      _old_set.add(cur);
S
sla 已提交
6316
      evacuation_info.increment_collectionset_used_after(cur->used());
6317 6318 6319 6320
    }
    cur = next;
  }

S
sla 已提交
6321
  evacuation_info.set_regions_freed(local_free_list.length());
6322 6323 6324 6325 6326
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6327 6328

  if (non_young) {
6329
    non_young_time_ms += elapsed_ms;
6330
  } else {
6331
    young_time_ms += elapsed_ms;
6332
  }
6333

6334 6335
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6336 6337
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6338 6339
}

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

6359 6360 6361
    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
    // - never consider object arrays: while they are a valid target, they have not
    // been observed to be used as temporary objects.
    // - they would also pose considerable effort for cleaning up the the remembered
    // sets.
    // While this cleanup is not strictly necessary to be done (or done instantly),
    // given that their occurrence is very low, this saves us this additional
    // complexity.
6393
    uint region_idx = r->hrm_index();
6394 6395 6396 6397
    if (g1h->humongous_is_live(region_idx) ||
        g1h->humongous_region_is_always_live(region_idx)) {

      if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6398
        gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6399 6400 6401 6402
                               r->isHumongous(),
                               region_idx,
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
6403
                               next_bitmap->isMarked(r->bottom()),
6404
                               g1h->humongous_is_live(region_idx),
6405
                               obj->is_objArray()
6406 6407 6408 6409 6410 6411
                              );
      }

      return false;
    }

6412
    guarantee(!obj->is_objArray(),
6413 6414 6415 6416
              err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
                      r->bottom()));

    if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6417
      gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6418 6419 6420 6421 6422 6423
                             r->isHumongous(),
                             r->bottom(),
                             region_idx,
                             r->region_num(),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
6424
                             next_bitmap->isMarked(r->bottom()),
6425
                             g1h->humongous_is_live(region_idx),
6426
                             obj->is_objArray()
6427 6428
                            );
    }
6429 6430 6431 6432
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
    _freed_bytes += r->used();
    r->set_containing_set(NULL);
    _humongous_regions_removed.increment(1u, r->capacity());
    g1h->free_humongous_region(r, _free_region_list, false);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

  if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hr_printer = _g1h->hr_printer();
  if (hr_printer->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hr_printer->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6509 6510 6511 6512
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6513 6514
  }

6515 6516
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6517 6518
}

6519
void G1CollectedHeap::reset_free_regions_coming() {
6520 6521
  assert(free_regions_coming(), "pre-condition");

6522 6523 6524 6525
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6526 6527
  }

6528 6529 6530
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6531 6532 6533
  }
}

6534 6535 6536 6537 6538
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6539 6540
  }

6541 6542 6543
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6544 6545 6546
  }

  {
6547 6548 6549
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6550 6551 6552
    }
  }

6553 6554 6555
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6581 6582
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6583

6584
  if (check_heap) {
6585 6586 6587 6588 6589 6590 6591 6592
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6593 6594
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6595
  HeapRegionSet *_old_set;
6596

T
tonyp 已提交
6597
public:
6598
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6599

T
tonyp 已提交
6600
  bool doHeapRegion(HeapRegion* r) {
6601
    if (r->is_old()) {
T
tonyp 已提交
6602
      _old_set->remove(r);
6603 6604 6605 6606 6607 6608 6609
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->isHumongous(),
             "it cannot be another type");
T
tonyp 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6626 6627 6628 6629
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6630
  }
6631
  _hrm.remove_all_free_regions();
6632 6633
}

T
tonyp 已提交
6634 6635 6636
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6637
  HeapRegionSet*   _old_set;
6638
  HeapRegionManager*   _hrm;
T
tonyp 已提交
6639
  size_t          _total_used;
6640

6641
public:
T
tonyp 已提交
6642
  RebuildRegionSetsClosure(bool free_list_only,
6643
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
T
tonyp 已提交
6644
    _free_list_only(free_list_only),
6645 6646
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
T
tonyp 已提交
6647 6648 6649 6650
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6651

6652
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6653 6654 6655 6656 6657 6658
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
6659
      r->set_free();
6660
      r->set_allocation_context(AllocationContext::system());
6661
      _hrm->insert_into_free_list(r);
T
tonyp 已提交
6662 6663 6664 6665 6666 6667
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
6668 6669 6670 6671 6672
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such.
        r->set_old();
T
tonyp 已提交
6673
        _old_set->add(r);
6674
      }
T
tonyp 已提交
6675
      _total_used += r->used();
6676
    }
T
tonyp 已提交
6677

6678 6679 6680
    return false;
  }

T
tonyp 已提交
6681 6682
  size_t total_used() {
    return _total_used;
6683
  }
6684 6685
};

T
tonyp 已提交
6686 6687 6688
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6689 6690 6691 6692
  if (!free_list_only) {
    _young_list->empty_list();
  }

6693
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
T
tonyp 已提交
6694 6695 6696
  heap_region_iterate(&cl);

  if (!free_list_only) {
6697
    _allocator->set_used(cl.total_used());
T
tonyp 已提交
6698
  }
6699 6700
  assert(_allocator->used_unlocked() == recalculate_used(),
         err_msg("inconsistent _allocator->used_unlocked(), "
T
tonyp 已提交
6701
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6702
                 _allocator->used_unlocked(), recalculate_used()));
6703 6704 6705 6706 6707 6708
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6709 6710
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
6711
  return hr->is_in(p);
6712 6713
}

6714 6715
// Methods for the mutator alloc region

6716 6717 6718 6719 6720
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6721 6722
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6723
    HeapRegion* new_alloc_region = new_region(word_size,
6724
                                              false /* is_old */,
6725 6726 6727
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6728
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6729
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
6730 6731 6732 6733 6734 6735 6736 6737 6738
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6739
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6740 6741

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6742
  _allocator->increase_used(allocated_bytes);
6743
  _hr_printer.retire(alloc_region);
6744 6745 6746 6747
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6748 6749
}

6750 6751 6752
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6753
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6754
  uint n_workers = workers()->active_workers();
6755
  assert(UseDynamicNumberOfGCThreads ||
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6766 6767 6768
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6769
                                                 uint count,
6770 6771 6772 6773
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6774
    bool survivor = (ap == GCAllocForSurvived);
6775
    HeapRegion* new_alloc_region = new_region(word_size,
6776
                                              !survivor,
6777 6778 6779 6780 6781
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
6782
      new_alloc_region->record_top_and_timestamp();
6783
      if (survivor) {
6784 6785
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6786
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
6787
      } else {
6788
        new_alloc_region->set_old();
6789
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6790
        check_bitmaps("Old Region Allocation", new_alloc_region);
6791
      }
6792 6793
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6805 6806
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6807 6808 6809
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6810 6811
  } else {
    _old_set.add(alloc_region);
6812 6813 6814 6815
  }
  _hr_printer.retire(alloc_region);
}

6816 6817
// Heap region set verification

6818 6819
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6820 6821
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
6822
  HeapRegionManager*   _hrm;
6823 6824

public:
6825 6826 6827
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6828

6829 6830
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
6831 6832
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6833
    _old_count(), _humongous_count(), _free_count(){ }
6834 6835 6836 6837 6838 6839 6840 6841 6842

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6843
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6844
      _humongous_count.increment(1u, hr->capacity());
6845
    } else if (hr->is_empty()) {
6846
      assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6847
      _free_count.increment(1u, hr->capacity());
6848
    } else if (hr->is_old()) {
6849
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6850
      _old_count.increment(1u, hr->capacity());
6851 6852
    } else {
      ShouldNotReachHere();
6853
    }
6854 6855
    return false;
  }
6856

6857
  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6858 6859 6860 6861 6862 6863 6864 6865
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

6866
    guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6867 6868 6869
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6870 6871
};

6872 6873
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6874

6875
  // First, check the explicit lists.
6876
  _hrm.verify();
6877 6878 6879 6880 6881
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6882
    _secondary_free_list.verify_list();
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6898

T
tonyp 已提交
6899 6900 6901 6902
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6903

6904 6905
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6906

6907
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6908
  heap_region_iterate(&cl);
6909
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6910
}
J
johnc 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6923 6924 6925 6926
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6927

6928 6929
      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
J
johnc 已提交
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6950 6951 6952 6953 6954
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

6983 6984
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
6985
  G1CodeRootSet::purge();
6986 6987 6988 6989
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

7003
    if (ScavengeRootsInCode) {
J
johnc 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}