g1CollectedHeap.cpp 226.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
34
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
35
#include "gc_implementation/g1/g1EvacFailure.hpp"
36
#include "gc_implementation/g1/g1Log.hpp"
37 38 39
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
40
#include "gc_implementation/g1/heapRegion.inline.hpp"
41 42 43 44 45 46 47
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
48
#include "memory/referenceProcessor.hpp"
49 50 51 52
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
53

54 55
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

56 57 58
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
59
#define YOUNG_LIST_VERBOSE 0
60 61 62 63 64 65
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
66 67 68 69 70
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
71

72 73 74 75 76 77 78 79 80 81 82 83
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
// SharedHeap::process_strong_roots() which calls eventuall to
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

84 85 86 87 88 89 90 91 92 93 94 95 96 97
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
98 99 100 101 102 103
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

170 171 172 173 174 175 176 177
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

178 179 180 181
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
182 183 184 185 186 187 188 189 190
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

191
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
192 193 194 195
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
196
  assert(hr->is_survivor(), "should be flagged as survivor region");
197 198 199 200
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
201
    _survivor_tail = hr;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
226
  _survivor_tail = NULL;
227 228 229 230 231 232 233 234 235 236
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

237
  uint length = 0;
238 239 240
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
241
    if (!curr->is_young()) {
242
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
243
                             "incorrectly tagged (y: %d, surv: %d)",
244
                             curr->bottom(), curr->end(),
245
                             curr->is_young(), curr->is_survivor());
246 247 248 249 250 251 252 253 254 255
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
256
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
257 258 259
                           length, _length);
  }

260
  return ret;
261 262
}

263
bool YoungList::check_list_empty(bool check_sample) {
264 265 266
  bool ret = true;

  if (_length != 0) {
267
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

283
  return ret;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
300 301 302 303 304 305 306 307 308 309 310 311
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

312 313 314 315 316 317 318 319 320 321 322 323 324 325
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
326
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
327

328
  int young_index_in_cset = 0;
329 330 331
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
332
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
333 334 335 336 337

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
338
    young_index_in_cset += 1;
339
  }
340
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
341 342
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

343 344
  _head   = _survivor_head;
  _length = _survivor_length;
345
  if (_survivor_head != NULL) {
346 347 348
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
349 350
  }

351 352 353 354
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
355

356
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
357 358 359 360 361

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
362 363
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
364 365 366 367 368 369 370

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
371 372
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
373 374
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
375
                             curr->age_in_surv_rate_group_cond());
376 377 378 379 380 381 382
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

436
void G1CollectedHeap::stop_conc_gc_threads() {
437
  _cg1r->stop();
438 439 440
  _cmThread->stop();
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
     // perm gen (or null)
     return false;
  } else {
    return !hr->isHumongous();
  }
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

523
HeapRegion*
T
tonyp 已提交
524
G1CollectedHeap::new_region_try_secondary_free_list() {
525 526 527 528 529
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
530
                               "secondary_free_list has %u entries",
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
561

562
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
563
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
564 565
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
566

567 568 569 570 571 572 573
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
574
      res = new_region_try_secondary_free_list();
575 576 577 578 579 580 581 582 583 584 585
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
586
    res = new_region_try_secondary_free_list();
587
  }
588 589 590 591 592 593 594
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

595 596 597 598 599
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
600
    if (expand(word_size * HeapWordSize)) {
601 602 603 604 605 606 607
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty. So
      // it would probably be OK to use remove_head(). But the extra
      // check for NULL is unlikely to be a performance issue here (we
      // just expanded the heap!) so let's just be conservative and
      // use remove_head_or_null().
608
      res = _free_list.remove_head_or_null();
609 610
    } else {
      _expand_heap_after_alloc_failure = false;
611
    }
612 613 614 615
  }
  return res;
}

616 617
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
618 619 620
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

621
  uint first = G1_NULL_HRS_INDEX;
622 623 624 625
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
626
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
627 628 629
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
630
      first = G1_NULL_HRS_INDEX;
631 632 633 634 635 636 637 638 639 640 641
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
642
    append_secondary_free_list_if_not_empty_with_lock();
643 644

    if (free_regions() >= num_regions) {
645 646
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
647
        for (uint i = first; i < first + num_regions; ++i) {
648
          HeapRegion* hr = region_at(i);
649
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
650
          assert(is_on_master_free_list(hr), "sanity");
651 652 653 654 655 656 657 658 659
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
660
HeapWord*
661 662
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
663
                                                           size_t word_size) {
664
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
665 666 667 668
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
669
  uint last = first + num_regions;
T
tonyp 已提交
670 671 672 673 674 675 676 677 678 679

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
680
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
681 682 683
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
684
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
719
  for (uint i = first + 1; i < last; ++i) {
720
    hr = region_at(i);
T
tonyp 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
741 742 743 744 745 746 747 748 749 750 751
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
765
  for (uint i = first + 1; i < last; ++i) {
766
    hr = region_at(i);
T
tonyp 已提交
767 768 769 770 771
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
772
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
773 774 775 776
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
777
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

793 794 795
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
796
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
797
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
798

799
  verify_region_sets_optional();
800

801 802 803 804 805
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
806
  if (first == G1_NULL_HRS_INDEX) {
807
    // The only thing we can do now is attempt expansion.
808
    if (fs + x_num >= num_regions) {
809 810 811 812 813 814 815 816 817 818
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

819 820 821 822 823
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
824
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
825 826 827
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
828 829
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
830 831
    }
  }
832

T
tonyp 已提交
833
  HeapWord* result = NULL;
834
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
835 836 837
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
838 839 840 841 842

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
843
  }
844 845

  verify_region_sets_optional();
T
tonyp 已提交
846 847

  return result;
848 849
}

850 851 852
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
853

854 855
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
856 857 858
}

HeapWord*
859 860 861
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
862

863 864 865
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
866

867 868 869
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
870
    } else {
871 872 873 874 875
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
876

877 878 879 880
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
881

882 883 884 885 886 887
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
888
        // Allocations that take place on VM operations do not do any
889 890
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
891 892 893
        dirty_young_block(result, word_size);
      }
      return result;
894 895 896
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
897 898 899 900 901
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
902
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
903 904 905
    }
  }

906
  ShouldNotReachHere();
907 908 909
  return NULL;
}

910 911 912 913 914 915 916
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
917

918 919 920 921 922 923 924
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
925
  HeapWord* result = NULL;
926 927 928
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
929

930 931 932 933 934 935 936
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
937
      }
938

939 940 941
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
942

943 944
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
945 946
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
947 948 949 950 951 952 953 954 955
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
956
        gc_count_before = total_collections();
957 958 959
        should_try_gc = true;
      }
    }
960

961 962
    if (should_try_gc) {
      bool succeeded;
963 964
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
965
        assert(succeeded, "only way to get back a non-NULL result");
966 967 968
        return result;
      }

969 970 971 972 973
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
974
        *gc_count_before_ret = total_collections();
975 976 977 978
        return NULL;
      }
    } else {
      GC_locker::stall_until_clear();
979 980
    }

981 982 983 984 985 986 987 988 989 990
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
991
    if (result != NULL) {
992
      return result;
993 994
    }

995 996 997
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
998
      warning("G1CollectedHeap::attempt_allocation_slow() "
999
              "retries %d times", try_count);
1000 1001 1002
    }
  }

1003 1004
  ShouldNotReachHere();
  return NULL;
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1020
  assert_heap_not_locked_and_not_at_safepoint();
1021 1022
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1023

1024 1025 1026 1027 1028
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1029 1030
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1031 1032 1033
    collect(GCCause::_g1_humongous_allocation);
  }

1034 1035 1036 1037 1038
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1039
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1040
    bool should_try_gc;
1041
    unsigned int gc_count_before;
1042

1043
    {
1044
      MutexLockerEx x(Heap_lock);
1045

1046 1047 1048 1049
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1050 1051
      if (result != NULL) {
        return result;
1052
      }
1053

1054 1055 1056 1057
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
1058
        gc_count_before = total_collections();
1059
        should_try_gc = true;
1060 1061 1062
      }
    }

1063 1064 1065 1066
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1080
        *gc_count_before_ret = total_collections();
1081
        return NULL;
1082 1083
      }
    } else {
1084
      GC_locker::stall_until_clear();
1085 1086
    }

1087 1088 1089 1090 1091 1092 1093
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1094 1095
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1096 1097
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1098 1099
    }
  }
1100 1101

  ShouldNotReachHere();
1102
  return NULL;
1103 1104
}

1105 1106
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1107
  assert_at_safepoint(true /* should_be_vm_thread */);
1108 1109 1110
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1111

1112 1113 1114 1115
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1116 1117 1118 1119 1120
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1121
  }
1122 1123

  ShouldNotReachHere();
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1160 1161 1162 1163 1164 1165
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1166
    _cl(g1->g1_rem_set(), worker_i),
1167 1168 1169
    _worker_i(worker_i),
    _g1h(g1)
  { }
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1188 1189 1190
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1191
                                          _g1->workers()->active_workers(),
1192 1193 1194 1195
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1207
        if (hr->capacity() == HeapRegion::GrainBytes) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1225
bool G1CollectedHeap::do_collection(bool explicit_gc,
1226
                                    bool clear_all_soft_refs,
1227
                                    size_t word_size) {
1228 1229
  assert_at_safepoint(true /* should_be_vm_thread */);

1230
  if (GC_locker::check_active_before_gc()) {
1231
    return false;
1232 1233
  }

1234
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1235 1236
  ResourceMark rm;

1237
  print_heap_before_gc();
1238

T
tonyp 已提交
1239
  HRSPhaseSetter x(HRSPhaseFullGC);
1240
  verify_region_sets_optional();
1241

1242 1243 1244 1245 1246
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1247 1248 1249 1250
  {
    IsGCActiveMark x;

    // Timing
1251 1252
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1253 1254
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1255
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1256
                G1Log::fine(), true, gclog_or_tty);
1257

1258
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1259
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1260

1261 1262 1263
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1264 1265 1266 1267
    // Note: When we have a more flexible GC logging framework that
    // allows us to add optional attributes to a GC log record we
    // could consider timing and reporting how long we wait in the
    // following two methods.
1268
    wait_while_free_regions_coming();
1269 1270 1271 1272 1273 1274 1275
    // If we start the compaction before the CM threads finish
    // scanning the root regions we might trip them over as we'll
    // be moving objects / updating references. So let's wait until
    // they are done. By telling them to abort, they should complete
    // early.
    _cm->root_regions()->abort();
    _cm->root_regions()->wait_until_scan_finished();
T
tonyp 已提交
1276
    append_secondary_free_list_if_not_empty_with_lock();
1277

1278
    gc_prologue(true);
1279
    increment_total_collections(true /* full gc */);
1280 1281 1282 1283 1284 1285 1286

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyBeforeGC:");
1287
      prepare_for_verify();
1288
      Universe::verify(/* silent      */ false,
1289 1290
                       /* option      */ VerifyOption_G1UsePrevMarking);

1291
    }
1292
    pre_full_gc_dump();
1293 1294 1295

    COMPILER2_PRESENT(DerivedPointerTable::clear());

1296 1297 1298 1299 1300
    // Disable discovery and empty the discovered lists
    // for the CM ref processor.
    ref_processor_cm()->disable_discovery();
    ref_processor_cm()->abandon_partial_discovery();
    ref_processor_cm()->verify_no_references_recorded();
1301 1302

    // Abandon current iterations of concurrent marking and concurrent
1303 1304
    // refinement, if any are in progress. We have to do this before
    // wait_until_scan_finished() below.
1305 1306 1307
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1308
    release_mutator_alloc_region();
1309
    abandon_gc_alloc_regions();
1310
    g1_rem_set()->cleanupHRRS();
1311

1312 1313 1314 1315 1316
    // We should call this after we retire any currently active alloc
    // regions so that all the ALLOC / RETIRE events are generated
    // before the start GC event.
    _hr_printer.start_gc(true /* full */, (size_t) total_collections());

1317 1318 1319 1320 1321 1322 1323 1324
    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

T
tonyp 已提交
1325
    tear_down_region_sets(false /* free_list_only */);
1326
    g1_policy()->set_gcs_are_young(true);
1327

1328 1329
    // See the comments in g1CollectedHeap.hpp and
    // G1CollectedHeap::ref_processing_init() about
1330 1331
    // how reference processing currently works in G1.

1332 1333
    // Temporarily make discovery by the STW ref processor single threaded (non-MT).
    ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1334

1335 1336
    // Temporarily clear the STW ref processor's _is_alive_non_header field.
    ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1337

1338 1339
    ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
    ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1340 1341 1342 1343

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1344
      G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1345
    }
1346

1347
    assert(free_regions() == 0, "we should not have added any free regions");
T
tonyp 已提交
1348
    rebuild_region_sets(false /* free_list_only */);
1349

1350 1351 1352
    // Enqueue any discovered reference objects that have
    // not been removed from the discovered lists.
    ref_processor_stw()->enqueue_discovered_references();
1353 1354 1355

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1356 1357
    MemoryService::track_memory_usage();

1358 1359 1360
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1361
      prepare_for_verify();
1362
      Universe::verify(/* silent      */ false,
1363 1364
                       /* option      */ VerifyOption_G1UsePrevMarking);

1365
    }
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
    ref_processor_stw()->verify_no_references_recorded();

    // Note: since we've just done a full GC, concurrent
    // marking is no longer active. Therefore we need not
    // re-enable reference discovery for the CM ref processor.
    // That will be done at the start of the next marking cycle.
    assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
    ref_processor_cm()->verify_no_references_recorded();
1376 1377 1378

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1379 1380
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1381 1382 1383 1384
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1385
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    if (_hr_printer.is_active()) {
      // We should do this after we potentially resize the heap so
      // that all the COMMIT / UNCOMMIT events are generated before
      // the end GC event.

      PostCompactionPrinterClosure cl(hr_printer());
      heap_region_iterate(&cl);

      _hr_printer.end_gc(true /* full */, (size_t) total_collections());
    }

1398 1399 1400 1401 1402
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1403
    // Rebuild remembered sets of all regions.
1404
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1405
      uint n_workers =
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                       workers()->active_workers(),
                                       Threads::number_of_non_daemon_threads());
      assert(UseDynamicNumberOfGCThreads ||
             n_workers == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->set_active_workers(n_workers);
      // Set parallel threads in the heap (_n_par_threads) only
      // before a parallel phase and always reset it to 0 after
      // the phase so that the number of parallel threads does
      // no get carried forward to a serial phase where there
      // may be code that is "possibly_parallel".
      set_par_threads(n_workers);

1420 1421 1422
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
1423 1424 1425 1426 1427 1428 1429
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
        "Unless dynamic should use total workers");
      // Use the most recent number of  active workers
      assert(workers()->active_workers() > 0,
        "Active workers not properly set");
      set_par_threads(workers()->active_workers());
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1440
    if (G1Log::fine()) {
1441 1442 1443 1444 1445 1446 1447 1448
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1449 1450 1451 1452 1453 1454 1455 1456 1457
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1458 1459
    init_mutator_alloc_region();

1460 1461 1462
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1463 1464 1465 1466
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1467 1468
    gc_epilogue(true);

1469 1470
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1471 1472
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1473 1474
  }

1475 1476 1477 1478 1479
  _young_list->reset_sampled_info();
  // At this point there should be no regions in the
  // entire heap tagged as young.
  assert( check_young_list_empty(true /* check_heap */),
    "young list should be empty at this point");
1480

1481
  // Update the number of full collections that have been completed.
1482
  increment_full_collections_completed(false /* concurrent */);
1483

1484
  _hrs.verify_optional();
1485 1486
  verify_region_sets_optional();

1487
  print_heap_after_gc();
1488
  g1mm()->update_sizes();
1489
  post_full_gc_dump();
1490 1491

  return true;
1492 1493 1494
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1495 1496 1497 1498 1499 1500 1501 1502
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1517 1518 1519 1520
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1521
  // We don't have floating point command-line arguments
1522
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1523
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1524
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1525 1526
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1563

1564
  if (capacity_after_gc < minimum_desired_capacity) {
1565 1566
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1577 1578

    // No expansion, now see if we want to shrink
1579
  } else if (capacity_after_gc > maximum_desired_capacity) {
1580 1581
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1582 1583 1584 1585 1586 1587 1588 1589 1590
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1591 1592 1593 1594 1595 1596
    shrink(shrink_bytes);
  }
}


HeapWord*
1597 1598
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1599
  assert_at_safepoint(true /* should_be_vm_thread */);
1600 1601 1602

  *succeeded = true;
  // Let's attempt the allocation first.
1603 1604 1605
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1606 1607 1608 1609
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1610 1611 1612 1613 1614 1615 1616

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1617
    assert(*succeeded, "sanity");
1618 1619 1620
    return result;
  }

1621 1622 1623 1624 1625 1626 1627 1628
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1629

1630 1631
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1632
                                  true /* expect_null_mutator_alloc_region */);
1633
  if (result != NULL) {
1634
    assert(*succeeded, "sanity");
1635 1636 1637
    return result;
  }

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1649
                                  true /* expect_null_mutator_alloc_region */);
1650
  if (result != NULL) {
1651
    assert(*succeeded, "sanity");
1652 1653 1654
    return result;
  }

1655
  assert(!collector_policy()->should_clear_all_soft_refs(),
1656
         "Flag should have been handled and cleared prior to this point");
1657

1658 1659 1660 1661
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1662
  assert(*succeeded, "sanity");
1663 1664 1665 1666 1667 1668 1669 1670 1671
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1672 1673 1674
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1675

1676
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1677 1678 1679 1680 1681
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1682
  if (expand(expand_bytes)) {
1683
    _hrs.verify_optional();
1684 1685
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1686
                                 false /* expect_null_mutator_alloc_region */);
1687
  }
1688
  return NULL;
1689 1690
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1704
bool G1CollectedHeap::expand(size_t expand_bytes) {
1705
  size_t old_mem_size = _g1_storage.committed_size();
1706
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1707 1708
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1709 1710 1711 1712 1713
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1714

1715 1716
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1717 1718
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1744
    }
1745
    _free_list.add_as_tail(&expansion_list);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1756
    g1_policy()->record_new_heap_size(n_regions());
1757
  } else {
1758 1759 1760
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1761 1762 1763 1764 1765 1766
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1767 1768
    }
  }
1769
  return successful;
1770 1771
}

1772
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1773 1774 1775 1776 1777
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1778
  uint num_regions_deleted = 0;
1779 1780 1781
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
1782 1783 1784 1785 1786 1787 1788

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1789
  if (mr.byte_size() > 0) {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1800
    _g1_storage.shrink_by(mr.byte_size());
1801 1802 1803 1804 1805 1806
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1807
    g1_policy()->record_new_heap_size(n_regions());
1808 1809 1810 1811
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1812 1813 1814 1815
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1816 1817
  verify_region_sets_optional();

1818 1819 1820 1821 1822
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1823 1824 1825
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1826
  tear_down_region_sets(true /* free_list_only */);
1827
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1828
  rebuild_region_sets(true /* free_list_only */);
1829

1830
  _hrs.verify_optional();
1831
  verify_region_sets_optional();
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1844
  _dirty_card_queue_set(false),
J
johnc 已提交
1845
  _into_cset_dirty_card_queue_set(false),
1846 1847 1848 1849
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1850 1851 1852 1853 1854
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1855
  _cg1r(NULL), _summary_bytes_used(0),
1856
  _g1mm(NULL),
1857 1858
  _refine_cte_cl(NULL),
  _full_collection(false),
1859 1860
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
T
tonyp 已提交
1861
  _old_set("Old Set"),
1862 1863
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1864 1865
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1866
  _retained_old_gc_alloc_region(NULL),
1867
  _expand_heap_after_alloc_failure(true),
1868
  _surviving_young_words(NULL),
1869
  _full_collections_completed(0),
1870
  _in_cset_fast_test(NULL),
1871
  _in_cset_fast_test_base(NULL),
1872 1873 1874
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
  _worker_cset_start_region_time_stamp(NULL) {
1875 1876 1877 1878
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1879 1880 1881

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

1895 1896 1897
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);

1898 1899 1900 1901 1902 1903
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

1904 1905
  clear_cset_start_regions();

1906 1907 1908 1909
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1910
  CollectedHeap::pre_initialize();
1911 1912
  os::enable_vtime();

1913 1914
  G1Log::init();

1915 1916 1917 1918
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1919 1920 1921 1922
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
  // above), we also need to align the perm gen size as it might not be.
  const size_t total_reserved = max_byte_size +
                                align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");

1960 1961
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1962 1963
  ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
                            UseLargePages, addr);
1964 1965 1966 1967 1968 1969 1970

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1971 1972 1973 1974

      ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                                 UseLargePages, addr);

1975 1976 1977 1978
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
1979 1980 1981

        ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                                   UseLargePages, addr);
1982 1983 1984 1985 1986 1987
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2001
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2014 2015
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2016
  } else {
2017 2018
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2032 2033 2034
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
2035

2036 2037
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2038
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2039 2040 2041
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2042
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2043
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2044
            "too many cards per region");
2045

2046 2047
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2048 2049 2050 2051 2052
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2053
   _in_cset_fast_test_length = max_regions();
2054 2055
   _in_cset_fast_test_base =
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
2056 2057 2058 2059 2060

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
2061
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2062 2063 2064 2065 2066 2067

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2068 2069
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2070
  _cm       = new ConcurrentMark(heap_rs, max_regions());
2071 2072 2073 2074 2075
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2076
  // Now expand into the initial heap size.
2077 2078 2079 2080
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2093
                                               G1SATBProcessCompletedThreshold,
2094
                                               Shared_SATB_Q_lock);
2095 2096 2097

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2098 2099
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2100 2101
                                                Shared_DirtyCardQ_lock);

2102 2103 2104
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2105 2106
                                      -1, // never trigger processing
                                      -1, // no limit on length
2107 2108 2109
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2120 2121 2122 2123 2124 2125 2126
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2127 2128 2129
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2130 2131 2132

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2144 2145
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2146
  _g1mm = new G1MonitoringSupport(this);
2147

2148 2149 2150 2151
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2152 2153
  // Reference processing in G1 currently works as follows:
  //
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2186

2187 2188
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2212
    new ReferenceProcessor(mr,    // span
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2229 2230 2231 2232 2233 2234
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2235 2236 2237
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2238
                                                 int worker_i) {
2239
  // Clean cards in the hot card cache
J
johnc 已提交
2240
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2241

2242 2243
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2244
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2257 2258
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2259
  size_t result = _summary_bytes_used;
2260
  // Read only once in case it is set to NULL concurrently
2261
  HeapRegion* hr = _mutator_alloc_region.get();
2262 2263
  if (hr != NULL)
    result += hr->used();
2264 2265 2266
  return result;
}

2267 2268 2269 2270 2271
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2287
  heap_region_iterate(&blk);
2288 2289 2290 2291
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2292
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2303 2304
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2305 2306
    return 0;
  }
2307
  return hr->free();
2308 2309
}

2310
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2311 2312 2313 2314 2315 2316
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2317 2318
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2341
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2342 2343
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2344 2345 2346 2347 2348
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2362
  assert(concurrent ||
2363 2364
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2365
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2366 2367 2368 2369
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2370
  assert(!concurrent ||
2371
         (full_collections_started == _full_collections_completed + 1),
2372 2373
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2374 2375 2376 2377 2378
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2379 2380 2381 2382
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2383
  if (concurrent) {
2384 2385 2386
    _cmThread->clear_in_progress();
  }

2387 2388 2389 2390 2391 2392 2393
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2394
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2395
  assert_at_safepoint(true /* should_be_vm_thread */);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2409
void G1CollectedHeap::collect(GCCause::Cause cause) {
2410
  assert_heap_not_locked();
2411

2412 2413
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2414 2415 2416 2417 2418 2419 2420
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
      full_gc_count_before = total_full_collections();
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2431
      VM_G1IncCollectionPause op(gc_count_before,
2432
                                 0,     /* word_size */
2433
                                 true,  /* should_initiate_conc_mark */
2434 2435
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2436

2437
      VMThread::execute(&op);
2438 2439
      if (!op.pause_succeeded()) {
        if (full_gc_count_before == total_full_collections()) {
2440
          retry_gc = op.should_retry_gc();
2441 2442 2443 2444 2445
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2446 2447 2448 2449 2450 2451

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2452
      }
2453
    } else {
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
        VMThread::execute(&op);
      }
2470
    }
2471
  } while (retry_gc);
2472 2473 2474
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2475 2476 2477 2478 2479
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2505
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2506
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2507
  heap_region_iterate(&blk);
2508 2509 2510
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2511 2512
}

2513
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2514
  IterateOopClosureRegionClosure blk(mr, cl);
2515
  heap_region_iterate(&blk);
2516 2517 2518
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2535
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2536
  IterateObjectClosureRegionClosure blk(cl);
2537
  heap_region_iterate(&blk);
2538 2539 2540
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2562
  heap_region_iterate(&blk);
2563 2564
}

2565 2566
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2567 2568 2569
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2570 2571
                                               HeapRegionClosure* cl) const {
  _hrs.iterate_from(r, cl);
2572 2573 2574 2575
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2576 2577
                                                 uint worker,
                                                 uint no_of_par_workers,
2578
                                                 jint claim_value) {
2579
  const uint regions = n_regions();
2580
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2581 2582 2583 2584 2585
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2586
  // try to spread out the starting points of the workers
2587
  const uint start_index = regions / max_workers * worker;
2588 2589

  // each worker will actually look at all regions
2590 2591
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2592 2593 2594 2595 2596 2597 2598 2599 2600
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2601
    if (r->claimHeapRegion(claim_value)) {
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2613
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2645
      }
2646 2647 2648 2649

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2650 2651 2652 2653
    }
  }
}

2654 2655 2656 2657 2658 2659 2660 2661
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2662
void G1CollectedHeap::reset_heap_region_claim_values() {
2663 2664 2665 2666
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2667 2668 2669 2670 2671
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2672 2673 2674 2675 2676 2677 2678 2679 2680
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2681
  uint _failures;
2682
  HeapRegion* _sh_region;
2683

2684 2685 2686 2687 2688
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2689
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2690
                             "claim value = %d, should be %d",
2691 2692
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2693 2694 2695 2696 2697 2698 2699 2700
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2701
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2702
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2703
                               HR_FORMAT_PARAMS(r),
2704 2705 2706 2707 2708 2709 2710
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2711
  uint failures() { return _failures; }
2712 2713 2714 2715 2716 2717 2718
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2719 2720

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2721 2722 2723
private:
  jint _claim_value;
  uint _failures;
2724 2725 2726

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2727
    _claim_value(claim_value), _failures(0) { }
2728

2729
  uint failures() { return _failures; }
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2750 2751
#endif // ASSERT

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2764

2765 2766
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2767
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2795
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2796
    uint cs_size = g1_policy()->cset_region_length();
2797
    uint active_workers = workers()->active_workers();
2798 2799 2800 2801
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2802 2803
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2804 2805 2806 2807 2808 2809 2810 2811 2812

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2813
    for (uint i = start_ind; i < end_ind; i++) {
2814 2815 2816
      result = result->next_in_collection_set();
    }
  }
2817 2818 2819 2820 2821 2822 2823 2824 2825

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2826 2827 2828
  return result;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2843 2844 2845 2846 2847
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2871
  return n_regions() > 0 ? region_at(0) : NULL;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2913 2914 2915 2916
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2917
  HeapRegion* hr = _mutator_alloc_region.get();
2918
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2919
  if (hr == NULL) {
2920
    return max_tlab_size;
2921
  } else {
2922
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2923 2924 2925 2926
  }
}

size_t G1CollectedHeap::max_capacity() const {
2927
  return _g1_reserved.byte_size();
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
2943 2944
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
2945
public:
2946 2947 2948
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
2949 2950 2951 2952 2953
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
2954
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2955
              "Dead object referenced by a not dead object");
2956 2957 2958 2959
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2960
private:
2961 2962 2963
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2964
  VerifyOption _vo;
2965
public:
2966 2967 2968 2969 2970
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
2971 2972 2973
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
2974
    VerifyLivenessOopClosure isLive(_g1h, _vo);
2975
    assert(o != NULL, "Huh?");
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

2988
      o->oop_iterate(&isLive);
2989 2990 2991 2992
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3028
private:
3029 3030 3031
  bool         _par;
  VerifyOption _vo;
  bool         _failures;
3032
public:
3033 3034 3035
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3036 3037
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3038
      _vo(vo),
3039 3040 3041 3042 3043
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3044

3045
  bool doHeapRegion(HeapRegion* r) {
3046 3047
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
3048
    if (!r->continuesHumongous()) {
3049
      bool failures = false;
3050
      r->verify(_vo, &failures);
3051 3052 3053
      if (failures) {
        _failures = true;
      } else {
3054
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3055
        r->object_iterate(&not_dead_yet_cl);
3056 3057 3058 3059 3060 3061 3062
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3063
                                 not_dead_yet_cl.live_bytes());
3064 3065 3066 3067 3068 3069
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3070 3071
        }
      }
3072
    }
3073
    return false; // stop the region iteration if we hit a failure
3074 3075 3076 3077 3078 3079
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
3080
  VerifyOption     _vo;
3081
  bool             _failures;
3082
public:
3083 3084 3085 3086
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
3087
    _g1h(G1CollectedHeap::heap()),
3088
    _vo(vo),
3089
    _failures(false) { }
3090 3091 3092

  bool failures() { return _failures; }

3093 3094 3095 3096
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3097
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
3098
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3099
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
3100 3101 3102
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
3103 3104 3105 3106 3107
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
3108 3109 3110

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
3111 3112
};

3113 3114 3115 3116 3117
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3118 3119
  VerifyOption     _vo;
  bool             _failures;
3120 3121

public:
3122 3123 3124
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3125
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3126
    AbstractGangTask("Parallel verify task"),
3127
    _g1h(g1h),
3128
    _vo(vo),
3129 3130 3131 3132 3133
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3134

3135
  void work(uint worker_id) {
3136
    HandleMark hm;
3137
    VerifyRegionClosure blk(true, _vo);
3138
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3139
                                          _g1h->workers()->active_workers(),
3140
                                          HeapRegion::ParVerifyClaimValue);
3141 3142 3143
    if (blk.failures()) {
      _failures = true;
    }
3144 3145 3146
  }
};

3147 3148
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
3149 3150
}

3151
void G1CollectedHeap::verify(bool silent,
3152
                             VerifyOption vo) {
3153
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3154
    if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3155
    VerifyRootsClosure rootsCl(vo);
3156 3157 3158 3159

    assert(Thread::current()->is_VM_thread(),
      "Expected to be executed serially by the VM thread at this point");

3160
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3161

3162 3163
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3164
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3165

3166 3167 3168
    process_strong_roots(true,      // activate StrongRootsScope
                         true,      // we set "collecting perm gen" to true,
                                    // so we don't reset the dirty cards in the perm gen.
3169
                         ScanningOption(so),  // roots scanning options
3170
                         &rootsCl,
3171
                         &blobsCl,
3172
                         &rootsCl);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

    // If we're verifying after the marking phase of a Full GC then we can't
    // treat the perm gen as roots into the G1 heap. Some of the objects in
    // the perm gen may be dead and hence not marked. If one of these dead
    // objects is considered to be a root then we may end up with a false
    // "Root location <x> points to dead ob <y>" failure.
    if (vo != VerifyOption_G1UseMarkWord) {
      // Since we used "collecting_perm_gen" == true above, we will not have
      // checked the refs from perm into the G1-collected heap. We check those
      // references explicitly below. Whether the relevant cards are dirty
      // is checked further below in the rem set verification.
      if (!silent) { gclog_or_tty->print("Permgen roots "); }
      perm_gen()->oop_iterate(&rootsCl);
    }
3187
    bool failures = rootsCl.failures();
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3198
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3199 3200 3201 3202
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3203
      G1ParVerifyTask task(this, vo);
3204 3205 3206 3207
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3208 3209 3210
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3211 3212 3213
      if (task.failures()) {
        failures = true;
      }
3214

3215 3216
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3217 3218 3219 3220 3221 3222 3223 3224
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3225
      VerifyRegionClosure blk(false, vo);
3226
      heap_region_iterate(&blk);
3227 3228 3229
      if (blk.failures()) {
        failures = true;
      }
3230
    }
3231
    if (!silent) gclog_or_tty->print("RemSet ");
3232
    rem_set()->verify();
3233 3234 3235

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3236 3237 3238 3239
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3240
      gclog_or_tty->print_cr("");
3241
#ifndef PRODUCT
3242
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3243
        concurrent_mark()->print_reachable("at-verification-failure",
3244
                                           vo, false /* all */);
3245
      }
3246
#endif
3247 3248 3249
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3266 3267
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3268
            capacity()/K, used_unlocked()/K);
3269 3270 3271 3272 3273
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3274
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3275 3276 3277 3278 3279 3280
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3281 3282 3283 3284
  st->cr();
  perm()->as_gen()->print_on(st);
}

3285 3286 3287 3288 3289
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3290 3291 3292 3293 3294
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3295
  PrintRegionClosure blk(st);
3296
  heap_region_iterate(&blk);
3297 3298 3299
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3300
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3301
    workers()->print_worker_threads_on(st);
3302
  }
T
tonyp 已提交
3303
  _cmThread->print_on(st);
3304
  st->cr();
T
tonyp 已提交
3305 3306
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3307 3308 3309 3310
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3311
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3312 3313 3314
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3315
  _cg1r->threads_do(tc);
3316 3317 3318 3319 3320 3321 3322 3323 3324
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3325
  if (G1SummarizeRSetStats) {
3326 3327
    g1_rem_set()->print_summary_info();
  }
3328
  if (G1SummarizeConcMark) {
3329 3330 3331 3332 3333 3334
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3385 3386 3387 3388 3389 3390 3391
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3392
  // always_do_update_barrier = false;
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3406
  // always_do_update_barrier = true;
3407 3408 3409 3410

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3411 3412
}

3413 3414 3415 3416
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3417
  g1_policy()->record_stop_world_start();
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3433 3434 3435 3436
}

void
G1CollectedHeap::doConcurrentMark() {
3437 3438 3439 3440
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3467
  return g1_rem_set()->cardsScanned();
3468 3469 3470 3471
}

void
G1CollectedHeap::setup_surviving_young_words() {
3472 3473 3474
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
3475 3476 3477 3478
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
3479
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3480
#ifdef ASSERT
3481
  for (uint i = 0;  i < array_length; ++i) {
3482
    assert( _surviving_young_words[i] == 0, "memset above" );
3483
  }
3484
#endif // !ASSERT
3485 3486 3487 3488 3489
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3490 3491
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3492
    _surviving_young_words[i] += surv_young_words[i];
3493
  }
3494 3495 3496 3497 3498 3499 3500 3501 3502
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3520 3521 3522
    return false;
  }
};
3523
#endif // ASSERT
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3536
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3547
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3548 3549 3550 3551 3552 3553
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3554
bool
3555
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3556 3557 3558
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3559
  if (GC_locker::check_active_before_gc()) {
3560
    return false;
3561 3562
  }

3563
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3564 3565
  ResourceMark rm;

3566
  print_heap_before_gc();
3567

T
tonyp 已提交
3568
  HRSPhaseSetter x(HRSPhaseEvacuation);
3569
  verify_region_sets_optional();
3570
  verify_dirty_young_regions();
3571

3572 3573 3574 3575 3576 3577 3578 3579
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3580

3581 3582
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3583

3584 3585 3586 3587
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3588

3589 3590
  // Inner scope for scope based logging, timers, and stats collection
  {
3591 3592
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
3593
    if (g1_policy()->gcs_are_young()) {
3594 3595
      strcat(verbose_str, "(young)");
    } else {
3596
      strcat(verbose_str, "(mixed)");
3597
    }
3598
    if (g1_policy()->during_initial_mark_pause()) {
3599
      strcat(verbose_str, " (initial-mark)");
3600 3601 3602 3603
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3604

3605
    // if the log level is "finer" is on, we'll print long statistics information
3606 3607
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
3608 3609 3610
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
    TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
3611

3612
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3613
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3614

T
tonyp 已提交
3615 3616 3617 3618 3619 3620
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3621
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3622
      append_secondary_free_list_if_not_empty_with_lock();
3623
    }
3624

3625 3626
    assert(check_young_list_well_formed(),
      "young list should be well formed");
3627

3628 3629 3630 3631
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3632 3633 3634 3635 3636
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3637
      increment_gc_time_stamp();
3638

3639 3640 3641
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyBeforeGC:");
3642
        prepare_for_verify();
3643
        Universe::verify(/* silent      */ false,
3644
                         /* option      */ VerifyOption_G1UsePrevMarking);
3645
      }
3646

3647
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3648

3649 3650 3651
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3652

3653 3654 3655
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3656

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
        double start_time_sec = os::elapsedTime();
        size_t start_used_bytes = used();
3677

3678
#if YOUNG_LIST_VERBOSE
3679 3680 3681
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3682 3683
#endif // YOUNG_LIST_VERBOSE

3684 3685
        g1_policy()->record_collection_pause_start(start_time_sec,
                                                   start_used_bytes);
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
        if (waited) {
          double scan_wait_end = os::elapsedTime();
          double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
          g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
        }

3699
#if YOUNG_LIST_VERBOSE
3700 3701
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3702
#endif // YOUNG_LIST_VERBOSE
3703

3704 3705 3706 3707
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
        perm_gen()->save_marks();
3708

3709
#if YOUNG_LIST_VERBOSE
3710 3711 3712
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3713
#endif // YOUNG_LIST_VERBOSE
3714

3715
        g1_policy()->finalize_cset(target_pause_time_ms);
3716

3717 3718 3719
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
3720
        // GC). We also call this after finalize_cset() to
3721 3722 3723 3724 3725 3726
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
3740 3741 3742
          }
        }

3743
#ifdef ASSERT
3744 3745
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
3746
#endif // ASSERT
3747

3748
        setup_surviving_young_words();
3749

3750 3751
        // Initialize the GC alloc regions.
        init_gc_alloc_regions();
3752

3753 3754
        // Actually do the work...
        evacuate_collection_set();
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3766 3767
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
3768

3769
        cleanup_surviving_young_words();
3770

3771 3772
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
3773

3774 3775 3776 3777
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
3778

3779
        _young_list->reset_sampled_info();
3780

3781 3782 3783 3784 3785 3786
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
3787 3788

#if YOUNG_LIST_VERBOSE
3789 3790
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3791
#endif // YOUNG_LIST_VERBOSE
3792

3793 3794 3795
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                            _young_list->first_survivor_region(),
                                            _young_list->last_survivor_region());
3796

3797
        _young_list->reset_auxilary_lists();
3798

3799 3800 3801 3802 3803 3804 3805
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
3806

3807
        if (g1_policy()->during_initial_mark_pause()) {
3808 3809 3810
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
3811 3812
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
3813 3814 3815
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
3816
        }
3817

3818
        allocate_dummy_regions();
3819

3820
#if YOUNG_LIST_VERBOSE
3821 3822 3823
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3824
#endif // YOUNG_LIST_VERBOSE
3825

3826 3827 3828 3829 3830 3831
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
3832 3833
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
3834 3835 3836 3837 3838 3839
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
3840 3841 3842
          }
        }

3843 3844 3845 3846 3847 3848 3849 3850
        // We redo the verificaiton but now wrt to the new CSet which
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

3851 3852 3853
        double end_time_sec = os::elapsedTime();
        double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
        g1_policy()->record_pause_time_ms(pause_time_ms);
3854 3855 3856
        int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
        g1_policy()->record_collection_pause_end(active_workers);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

        if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          gclog_or_tty->print(" VerifyAfterGC:");
          prepare_for_verify();
3887
          Universe::verify(/* silent      */ false,
3888 3889
                           /* option      */ VerifyOption_G1UsePrevMarking);
        }
3890

3891 3892
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
3893

3894 3895
        // CM reference discovery will be re-enabled if necessary.
      }
3896

3897 3898 3899 3900 3901 3902
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

3903 3904
      // We have to do this after we decide whether to expand the heap or not.
      g1_policy()->print_heap_transition();
3905

3906 3907 3908
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3909 3910

#ifdef TRACESPINNING
3911
      ParallelTaskTerminator::print_termination_counts();
3912
#endif
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3923

3924
  // The closing of the inner scope, immediately above, will complete
3925 3926
  // logging at the "fine" level. The record_collection_pause_end() call
  // above will complete logging at the "finer" level.
3927 3928 3929 3930 3931 3932
  //
  // It is not yet to safe, however, to tell the concurrent mark to
  // start as we have some optional output below. We don't want the
  // output from the concurrent mark thread interfering with this
  // logging output either.

3933
  _hrs.verify_optional();
3934 3935
  verify_region_sets_optional();

3936 3937 3938
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3939
  print_heap_after_gc();
3940
  g1mm()->update_sizes();
3941

3942 3943 3944 3945 3946
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3947

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

3963
  return true;
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}

3984 3985 3986 3987 3988 3989 3990 3991 3992
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
3993

3994
void G1CollectedHeap::init_gc_alloc_regions() {
3995
  assert_at_safepoint(true /* should_be_vm_thread */);
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4017 4018 4019 4020 4021
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4022 4023
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

void G1CollectedHeap::release_gc_alloc_regions() {
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4037 4038
}

4039 4040 4041 4042
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4043 4044
}

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4056
  delete _evac_failure_scan_stack;
4057 4058 4059
  _evac_failure_scan_stack = NULL;
}

4060 4061
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4062

4063
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4064

4065 4066 4067 4068
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4069
  } else {
4070
    rsfp_task.work(0);
4071
  }
4072 4073 4074 4075 4076 4077 4078

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4115
                                               oop old) {
4116 4117 4118
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4119 4120 4121 4122
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4142 4143 4144 4145 4146 4147 4148
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4161
    _hr_printer.evac_failure(r);
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4175 4176 4177 4178
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4193 4194 4195 4196
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4197
    } else {
4198 4199 4200
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4201
    }
4202 4203 4204 4205 4206
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4207
    } else {
4208 4209 4210
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4211 4212 4213
    }
  }

4214 4215 4216
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4217 4218
}

4219
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4220
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4221

4222
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4223 4224 4225 4226 4227 4228 4229
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4230 4231
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4232 4233
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
4234
    _alloc_buffer_waste(0), _undo_waste(0) {
4235 4236 4237 4238 4239
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4240 4241 4242 4243
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
4244 4245 4246 4247 4248
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4249
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4250

4251 4252 4253
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4254 4255
  _start = os::elapsedTime();
}
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4322 4323 4324 4325
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4326 4327 4328 4329 4330 4331
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4332

4333 4334 4335 4336 4337 4338
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4339 4340
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4341
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4342
  _par_scan_state(par_scan_state),
4343
  _worker_id(par_scan_state->queue_num()),
4344 4345
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4346

B
brutisso 已提交
4347 4348
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4349 4350 4351 4352 4353 4354 4355
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4356
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4357 4358
}

B
brutisso 已提交
4359 4360 4361
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::mark_forwarded_object(oop from_obj, oop to_obj) {
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4380
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4381 4382
}

B
brutisso 已提交
4383 4384 4385
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::copy_to_survivor_space(oop old) {
4386
  size_t word_sz = old->size();
4387 4388 4389
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4390 4391
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4392 4393
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4394 4395 4396
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4397 4398 4399 4400 4401 4402 4403 4404
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4405
    return _g1->handle_evacuation_failure_par(cl, old);
4406 4407
  }

4408 4409 4410
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4411 4412 4413 4414
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4434
        obj->set_mark(m);
4435
      }
4436 4437 4438
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4439
    }
4440

4441 4442 4443 4444
    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4445 4446 4447 4448
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4449 4450
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4451
    } else {
4452 4453
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
B
brutisso 已提交
4454 4455
      _scanner.set_region(_g1->heap_region_containing_raw(obj));
      obj->oop_iterate_backwards(&_scanner);
4456 4457 4458 4459 4460 4461 4462 4463
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4464
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4465
template <class T>
4466
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4467 4468
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4469
  assert(barrier != G1BarrierRS || obj != NULL,
4470
         "Precondition: G1BarrierRS implies obj is non-NULL");
4471

4472 4473
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4474
  // here the null check is implicit in the cset_fast_test() test
4475
  if (_g1->in_cset_fast_test(obj)) {
4476
    oop forwardee;
4477
    if (obj->is_forwarded()) {
4478
      forwardee = obj->forwardee();
4479
    } else {
4480 4481 4482 4483 4484 4485 4486 4487
      forwardee = copy_to_survivor_space(obj);
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4488
    }
4489

4490 4491
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4492
      _par_scan_state->update_rs(_from, p, _worker_id);
4493
    }
4494 4495 4496 4497
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4498 4499
    if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
      mark_object(obj);
4500
    }
4501
  }
4502

4503
  if (barrier == G1BarrierEvac && obj != NULL) {
4504
    _par_scan_state->update_rs(_from, p, _worker_id);
4505 4506 4507 4508
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4509 4510 4511
  }
}

4512 4513
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4514

4515
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4516
  assert(has_partial_array_mask(p), "invariant");
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
  oop from_obj = clear_partial_array_mask(p);

  assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  assert(from_obj->is_objArray(), "must be obj array");
  objArrayOop from_obj_array = objArrayOop(from_obj);
  // The from-space object contains the real length.
  int length                 = from_obj_array->length();

  assert(from_obj->is_forwarded(), "must be forwarded");
  oop to_obj                 = from_obj->forwardee();
  assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  objArrayOop to_obj_array   = objArrayOop(to_obj);
  // We keep track of the next start index in the length field of the
  // to-space object.
  int next_index             = to_obj_array->length();
  assert(0 <= next_index && next_index < length,
         err_msg("invariant, next index: %d, length: %d", next_index, length));

  int start                  = next_index;
  int end                    = length;
  int remainder              = end - start;
  // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4539 4540
  if (remainder > 2 * ParGCArrayScanChunk) {
    end = start + ParGCArrayScanChunk;
4541 4542 4543 4544 4545
    to_obj_array->set_length(end);
    // Push the remainder before we process the range in case another
    // worker has run out of things to do and can steal it.
    oop* from_obj_p = set_partial_array_mask(from_obj);
    _par_scan_state->push_on_queue(from_obj_p);
4546
  } else {
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
    assert(length == end, "sanity");
    // We'll process the final range for this object. Restore the length
    // so that the heap remains parsable in case of evacuation failure.
    to_obj_array->set_length(end);
  }
  _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  // Process indexes [start,end). It will also process the header
  // along with the first chunk (i.e., the chunk with start == 0).
  // Note that at this point the length field of to_obj_array is not
  // correct given that we are using it to keep track of the next
  // start index. oop_iterate_range() (thankfully!) ignores the length
  // field and only relies on the start / end parameters.  It does
  // however return the size of the object which will be incorrect. So
  // we have to ignore it even if we wanted to use it.
  to_obj_array->oop_iterate_range(&_scanner, start, end);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4583
  void do_void();
4584

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4606
        pss->deal_with_reference((narrowOop*) stolen_task);
4607
      } else {
4608
        pss->deal_with_reference((oop*) stolen_task);
4609
      }
4610 4611 4612 4613

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4614
      pss->trim_queue();
4615
    }
4616 4617 4618 4619
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4620 4621 4622 4623 4624 4625

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4626
  uint _n_workers;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4637 4638
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4639 4640 4641
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4642 4643
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4644 4645 4646 4647 4648 4649 4650 4651
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4666 4667
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4668 4669

    double start_time_ms = os::elapsedTime() * 1000.0;
4670
    _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
4671

4672 4673 4674
    {
      ResourceMark rm;
      HandleMark   hm;
4675

4676
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4677

4678 4679 4680 4681
      G1ParScanThreadState            pss(_g1h, worker_id);
      G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
      G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4682

4683 4684 4685
      pss.set_evac_closure(&scan_evac_cl);
      pss.set_evac_failure_closure(&evac_failure_cl);
      pss.set_partial_scan_closure(&partial_scan_cl);
4686

4687 4688
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
      G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4689

4690 4691
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
      G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4692

4693 4694
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
      OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4695

4696 4697 4698 4699 4700
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
        scan_perm_cl = &scan_mark_perm_cl;
      }
4701

4702
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4703

4704 4705 4706 4707 4708 4709 4710 4711
      pss.start_strong_roots();
      _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                    SharedHeap::SO_AllClasses,
                                    scan_root_cl,
                                    &push_heap_rs_cl,
                                    scan_perm_cl,
                                    worker_id);
      pss.end_strong_roots();
4712

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
        _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
        _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      // Clean up any par-expanded rem sets.
      HeapRegionRemSet::par_cleanup();

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4732

4733
      assert(pss.refs()->is_empty(), "should be empty");
4734

4735 4736 4737
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4738 4739
    }

4740
    double end_time_ms = os::elapsedTime() * 1000.0;
4741
    _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
4742 4743 4744 4745 4746
  }
};

// *** Common G1 Evacuation Stuff

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
// Closures that support the filtering of CodeBlobs scanned during
// external root scanning.

// Closure applied to reference fields in code blobs (specifically nmethods)
// to determine whether an nmethod contains references that point into
// the collection set. Used as a predicate when walking code roots so
// that only nmethods that point into the collection set are added to the
// 'marked' list.

class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {

  class G1PointsIntoCSOopClosure : public OopClosure {
    G1CollectedHeap* _g1;
    bool _points_into_cs;
  public:
    G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
      _g1(g1), _points_into_cs(false) { }

    bool points_into_cs() const { return _points_into_cs; }

    template <class T>
    void do_oop_nv(T* p) {
      if (!_points_into_cs) {
        T heap_oop = oopDesc::load_heap_oop(p);
        if (!oopDesc::is_null(heap_oop) &&
            _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
          _points_into_cs = true;
        }
      }
    }

    virtual void do_oop(oop* p)        { do_oop_nv(p); }
    virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  };

  G1CollectedHeap* _g1;

public:
  G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
    CodeBlobToOopClosure(cl, true), _g1(g1) { }

  virtual void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL && !(nm->test_oops_do_mark())) {
      G1PointsIntoCSOopClosure predicate_cl(_g1);
      nm->oops_do(&predicate_cl);

      if (predicate_cl.points_into_cs()) {
        // At least one of the reference fields or the oop relocations
        // in the nmethod points into the collection set. We have to
        // 'mark' this nmethod.
        // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
        // or MarkingCodeBlobClosure::do_code_blob() change.
        if (!nm->test_set_oops_do_mark()) {
          do_newly_marked_nmethod(nm);
        }
      }
    }
  }
};

4808 4809
// This method is run in a GC worker.

4810 4811 4812
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
4813
                        ScanningOption so,
4814 4815 4816 4817
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
4818

4819 4820 4821 4822 4823 4824 4825 4826
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4827 4828
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
4829
  G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4830 4831 4832

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4833
                       &buf_scan_non_heap_roots,
4834
                       &eager_scan_code_roots,
4835
                       &buf_scan_perm);
4836

4837
  // Now the CM ref_processor roots.
4838
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4839 4840 4841 4842 4843
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4844 4845 4846
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
4847 4848
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
4849

4850
  double ext_roots_end = os::elapsedTime();
4851

4852
  g1_policy()->reset_obj_copy_time(worker_i);
4853 4854
  double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
                                buf_scan_non_heap_roots.closure_app_seconds();
4855
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4856

4857 4858
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4859

4860 4861
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

4862 4863 4864 4865 4866 4867 4868
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
    }
4869
  }
4870 4871
  double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4872 4873 4874 4875 4876

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
4877

4878 4879 4880 4881 4882 4883
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4884 4885
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4886 4887
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  OopsInHeapRegionClosure* _copy_perm_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            OopsInHeapRegionClosure* perm_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _copy_perm_obj_cl(perm_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
      // use the the non-heap or perm closures directly to copy
      // the refernt object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
        // The reference field is not in the G1 heap.
        if (_g1h->perm_gen()->is_in(p)) {
          _copy_perm_obj_cl->do_oop(p);
        } else {
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
  }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5022
  FlexibleWorkGang*  _workers;
5023 5024 5025 5026
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5027
                        FlexibleWorkGang* workers,
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5064
  virtual void work(uint worker_id) {
5065 5066 5067 5068 5069 5070
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5071
    G1ParScanThreadState pss(_g1h, worker_id);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Keep alive closure.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5103
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5138 5139
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
  }
};

// Driver routine for parallel reference enqueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5168
  uint _n_workers;
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5179
  void work(uint worker_id) {
5180 5181 5182
    ResourceMark rm;
    HandleMark   hm;

5183
    G1ParScanThreadState            pss(_g1h, worker_id);
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5219 5220
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5221 5222 5223 5224

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5225
    assert(0 <= worker_id && worker_id < limit, "sanity");
5226 5227 5228
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5229
    for (uint idx = worker_id; idx < limit; idx += stride) {
5230
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
void G1CollectedHeap::process_discovered_references() {
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a reult the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5283
  uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5284
                        workers()->active_workers() : 1);
5285

5286 5287 5288 5289
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
           active_workers == workers()->active_workers(),
           "Need to reset active_workers");

5290 5291
  set_par_threads(active_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
    copy_perm_cl = &copy_mark_perm_cl;
  }

  // Keep alive closure.
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->process_discovered_references(&is_alive,
                                      &keep_alive,
                                      &drain_queue,
                                      NULL);
  } else {
    // Parallel reference processing
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  }

  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
  g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
}

// Weak Reference processing during an evacuation pause (part 2).
void G1CollectedHeap::enqueue_discovered_references() {
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueuing

5389
    uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5390 5391
    assert(active_workers == workers()->active_workers(),
           "Need to reset active_workers");
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could signicantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
  g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
}

5411
void G1CollectedHeap::evacuate_collection_set() {
5412
  _expand_heap_after_alloc_failure = true;
5413 5414 5415 5416
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
5417 5418
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

5419
  uint n_workers;
5420 5421 5422 5423 5424 5425 5426 5427
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5428
    workers()->set_active_workers(n_workers);
5429 5430 5431 5432 5433 5434 5435 5436
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5437 5438 5439 5440 5441

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5442
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5443 5444
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5445

5446
  {
5447
    StrongRootsScope srs(this);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5468 5469
  }

5470 5471 5472 5473 5474 5475
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  g1_policy()->record_par_time(par_time_ms);

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
  g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
5476

5477
  set_par_threads(0);
5478

5479 5480 5481 5482 5483 5484 5485
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
  process_discovered_references();

5486 5487 5488 5489
  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
5490
  {
5491
    G1STWIsAliveClosure is_alive(this);
5492 5493 5494
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5495

5496
  release_gc_alloc_regions();
5497
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5498

5499
  concurrent_g1_refine()->clear_hot_cache();
5500 5501 5502 5503 5504 5505
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5506
    if (G1Log::finer()) {
5507
      gclog_or_tty->print(" (to-space overflow)");
5508
    } else if (G1Log::fine()) {
5509 5510 5511 5512
      gclog_or_tty->print("--");
    }
  }

5513 5514 5515 5516 5517 5518 5519 5520 5521
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueuing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
  enqueue_discovered_references();

5522 5523 5524 5525
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5526 5527 5528

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5529 5530
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5531 5532 5533
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5534
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5535 5536
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
T
tonyp 已提交
5537
                                     OldRegionSet* old_proxy_set,
5538
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5539
                                     HRRSCleanupTask* hrrs_cleanup_task,
5540 5541 5542 5543 5544 5545
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
T
tonyp 已提交
5546
      _old_set.remove_with_proxy(hr, old_proxy_set);
5547 5548
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5549 5550
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5551 5552 5553
  }
}

5554 5555 5556
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5557
                                  bool par) {
5558 5559 5560 5561 5562 5563
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5564
  free_list->add_as_head(hr);
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

5583 5584
  uint i = hr->hrs_index() + 1;
  uint num = 1;
5585 5586
  while (i < n_regions()) {
    HeapRegion* curr_hr = region_at(i);
5587 5588
    if (!curr_hr->continuesHumongous()) {
      break;
5589
    }
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
5603
                                       OldRegionSet* old_proxy_set,
5604 5605 5606 5607
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5608
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5609 5610 5611 5612
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5613
    _summary_bytes_used -= pre_used;
5614 5615 5616
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5617
    _free_list.add_as_head(free_list);
5618
  }
T
tonyp 已提交
5619 5620 5621 5622
  if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.update_from_proxy(old_proxy_set);
  }
5623 5624 5625
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5626 5627 5628
  }
}

5629 5630 5631
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5632
  HeapRegion* volatile _su_head;
5633 5634
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5635
                     G1CollectedHeap* g1h) :
5636
    AbstractGangTask("G1 Par Cleanup CT Task"),
5637
    _ct_bs(ct_bs), _g1h(g1h) { }
5638

5639
  void work(uint worker_id) {
5640 5641 5642 5643 5644
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5645

5646
  void clear_cards(HeapRegion* r) {
5647
    // Cards of the survivors should have already been dirtied.
5648
    if (!r->is_survivor()) {
5649 5650 5651 5652 5653
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5654 5655
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5656
  G1CollectedHeap* _g1h;
5657 5658
  CardTableModRefBS* _ct_bs;
public:
5659 5660
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5661
  virtual bool doHeapRegion(HeapRegion* r) {
5662
    if (r->is_survivor()) {
5663
      _g1h->verify_dirty_region(r);
5664
    } else {
5665
      _g1h->verify_not_dirty_region(r);
5666 5667 5668 5669
    }
    return false;
  }
};
5670

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5691
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5692
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5693
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5694
    verify_dirty_region(hr);
5695 5696 5697 5698 5699 5700 5701
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
  verify_dirty_young_list(_young_list->first_survivor_region());
}
5702 5703
#endif

5704 5705 5706 5707
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

J
johnc 已提交
5708 5709 5710
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
5711

5712 5713
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
5726 5727
      }
    }
J
johnc 已提交
5728 5729 5730 5731 5732 5733
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
5734
  }
5735

5736
  double elapsed = os::elapsedTime() - start;
5737
  g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5738 5739 5740
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5741 5742 5743
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5744 5745 5746
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5747 5748 5749 5750 5751
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5762
    assert(!is_on_master_free_list(cur), "sanity");
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5773 5774 5775 5776
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
5777

5778 5779 5780
        start_sec = os::elapsedTime();
        non_young = true;
      }
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
5792
      assert(index != -1, "invariant");
5793
      assert((uint) index < policy->young_cset_region_length(), "invariant");
5794 5795
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5796 5797 5798 5799 5800 5801

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5802 5803
    } else {
      int index = cur->young_index_in_cset();
5804
      assert(index == -1, "invariant");
5805 5806 5807 5808 5809 5810 5811
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
5812 5813
      MemRegion used_mr = cur->used_region();

5814
      // And the region is empty.
5815
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5816
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5817 5818
    } else {
      cur->uninstall_surv_rate_group();
5819
      if (cur->is_young()) {
5820
        cur->set_young_index_in_cset(-1);
5821
      }
5822 5823
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
5824 5825
      // The region is now considered to be old.
      _old_set.add(cur);
5826 5827 5828 5829 5830 5831 5832 5833 5834
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
5835 5836

  if (non_young) {
5837
    non_young_time_ms += elapsed_ms;
5838
  } else {
5839
    young_time_ms += elapsed_ms;
5840
  }
5841

5842
  update_sets_after_freeing_regions(pre_used, &local_free_list,
T
tonyp 已提交
5843
                                    NULL /* old_proxy_set */,
5844 5845
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5846 5847 5848 5849
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5871 5872 5873 5874
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5875 5876
  }

5877 5878
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5879 5880
}

5881
void G1CollectedHeap::reset_free_regions_coming() {
5882 5883
  assert(free_regions_coming(), "pre-condition");

5884 5885 5886 5887
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5888 5889
  }

5890 5891 5892
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5893 5894 5895
  }
}

5896 5897 5898 5899 5900
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5901 5902
  }

5903 5904 5905
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5906 5907 5908
  }

  {
5909 5910 5911
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5912 5913 5914
    }
  }

5915 5916 5917
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5943 5944
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5945

5946
  if (check_heap) {
5947 5948 5949 5950 5951 5952 5953 5954
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
5955 5956 5957
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  OldRegionSet *_old_set;
5958

T
tonyp 已提交
5959 5960
public:
  TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5961

T
tonyp 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
5993
  _free_list.remove_all();
5994 5995
}

T
tonyp 已提交
5996 5997 5998 5999 6000 6001
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  OldRegionSet*   _old_set;
  FreeRegionList* _free_list;
  size_t          _total_used;
6002

6003
public:
T
tonyp 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012
  RebuildRegionSetsClosure(bool free_list_only,
                           OldRegionSet* old_set, FreeRegionList* free_list) :
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6013

6014
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6030
      }
T
tonyp 已提交
6031
      _total_used += r->used();
6032
    }
T
tonyp 已提交
6033

6034 6035 6036
    return false;
  }

T
tonyp 已提交
6037 6038
  size_t total_used() {
    return _total_used;
6039
  }
6040 6041
};

T
tonyp 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6055 6056 6057 6058 6059 6060
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6061 6062 6063 6064 6065 6066
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
6067
  }
6068 6069
}

6070 6071
// Methods for the mutator alloc region

6072 6073 6074 6075 6076
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6077 6078
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6079 6080 6081 6082
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6083
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6097
  _hr_printer.retire(alloc_region);
6098 6099 6100 6101
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6102 6103 6104 6105 6106 6107 6108
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6109 6110 6111
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6112
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6113
  uint n_workers = workers()->active_workers();
6114
  assert(UseDynamicNumberOfGCThreads ||
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6125 6126 6127 6128 6129
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6130 6131 6132
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6133
                                                 uint count,
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6151 6152
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6164 6165
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6166 6167 6168
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6169 6170
  } else {
    _old_set.add(alloc_region);
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6198 6199
// Heap region set verification

6200 6201 6202
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  FreeRegionList*     _free_list;
T
tonyp 已提交
6203 6204
  OldRegionSet*       _old_set;
  HumongousRegionSet* _humongous_set;
6205
  uint                _region_count;
6206 6207

public:
T
tonyp 已提交
6208 6209
  VerifyRegionListsClosure(OldRegionSet* old_set,
                           HumongousRegionSet* humongous_set,
6210
                           FreeRegionList* free_list) :
T
tonyp 已提交
6211 6212
    _old_set(old_set), _humongous_set(humongous_set),
    _free_list(free_list), _region_count(0) { }
6213

6214
  uint region_count() { return _region_count; }
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
T
tonyp 已提交
6229 6230
    } else {
      _old_set->verify_next_region(hr);
6231
    }
6232 6233 6234 6235
    return false;
  }
};

6236
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6237 6238 6239 6240 6241 6242 6243 6244
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
  return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
}

6245 6246
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6247

6248 6249 6250 6251 6252 6253 6254 6255 6256
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
T
tonyp 已提交
6257
  _old_set.verify();
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6273

T
tonyp 已提交
6274 6275 6276 6277
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6278

6279 6280
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
T
tonyp 已提交
6281
  _old_set.verify_start();
6282 6283
  _humongous_set.verify_start();
  _free_list.verify_start();
6284

T
tonyp 已提交
6285
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6286
  heap_region_iterate(&cl);
6287

T
tonyp 已提交
6288
  _old_set.verify_end();
6289 6290
  _humongous_set.verify_end();
  _free_list.verify_end();
6291
}