提交 a46324f8 编写于 作者: J jmasa

7041789: 30% perf regression with c2/arm following 7017732

Summary: Implement a more accurate is_scavengable()
Reviewed-by: stefank, jcoomes, ysr
上级 982e99c5
......@@ -1810,7 +1810,7 @@ public:
void maybe_print(oop* p) {
if (_print_nm == NULL) return;
if (!_detected_scavenge_root) _print_nm->print_on(tty, "new scavenge root");
tty->print_cr(""PTR_FORMAT"[offset=%d] detected non-perm oop "PTR_FORMAT" (found at "PTR_FORMAT")",
tty->print_cr(""PTR_FORMAT"[offset=%d] detected scavengable oop "PTR_FORMAT" (found at "PTR_FORMAT")",
_print_nm, (int)((intptr_t)p - (intptr_t)_print_nm),
(intptr_t)(*p), (intptr_t)p);
(*p)->print();
......@@ -2311,7 +2311,7 @@ public:
_nm->print_nmethod(true);
_ok = false;
}
tty->print_cr("*** non-perm oop "PTR_FORMAT" found at "PTR_FORMAT" (offset %d)",
tty->print_cr("*** scavengable oop "PTR_FORMAT" found at "PTR_FORMAT" (offset %d)",
(intptr_t)(*p), (intptr_t)p, (int)((intptr_t)p - (intptr_t)_nm));
(*p)->print();
}
......@@ -2324,7 +2324,7 @@ void nmethod::verify_scavenge_root_oops() {
DebugScavengeRoot debug_scavenge_root(this);
oops_do(&debug_scavenge_root);
if (!debug_scavenge_root.ok())
fatal("found an unadvertised bad non-perm oop in the code cache");
fatal("found an unadvertised bad scavengable oop in the code cache");
}
assert(scavenge_root_not_marked(), "");
}
......
......@@ -109,7 +109,7 @@ class xmlStream;
class nmethod : public CodeBlob {
friend class VMStructs;
friend class NMethodSweeper;
friend class CodeCache; // non-perm oops
friend class CodeCache; // scavengable oops
private:
// Shared fields for all nmethod's
methodOop _method;
......@@ -466,17 +466,17 @@ public:
bool is_at_poll_return(address pc);
bool is_at_poll_or_poll_return(address pc);
// Non-perm oop support
// Scavengable oop support
bool on_scavenge_root_list() const { return (_scavenge_root_state & 1) != 0; }
protected:
enum { npl_on_list = 0x01, npl_marked = 0x10 };
void set_on_scavenge_root_list() { _scavenge_root_state = npl_on_list; }
enum { sl_on_list = 0x01, sl_marked = 0x10 };
void set_on_scavenge_root_list() { _scavenge_root_state = sl_on_list; }
void clear_on_scavenge_root_list() { _scavenge_root_state = 0; }
// assertion-checking and pruning logic uses the bits of _scavenge_root_state
#ifndef PRODUCT
void set_scavenge_root_marked() { _scavenge_root_state |= npl_marked; }
void clear_scavenge_root_marked() { _scavenge_root_state &= ~npl_marked; }
bool scavenge_root_not_marked() { return (_scavenge_root_state &~ npl_on_list) == 0; }
void set_scavenge_root_marked() { _scavenge_root_state |= sl_marked; }
void clear_scavenge_root_marked() { _scavenge_root_state &= ~sl_marked; }
bool scavenge_root_not_marked() { return (_scavenge_root_state &~ sl_on_list) == 0; }
// N.B. there is no positive marked query, and we only use the not_marked query for asserts.
#endif //PRODUCT
nmethod* scavenge_root_link() const { return _scavenge_root_link; }
......
......@@ -428,6 +428,37 @@ void G1CollectedHeap::stop_conc_gc_threads() {
_cmThread->stop();
}
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired. This method
// therefore is only accurate during a GC pause after all
// regions have been retired. It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection. Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
HeapRegion* hr = heap_region_containing(p);
return hr != NULL && hr->in_collection_set();
}
#endif
// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1CollectorPolicy* g1p = g1h->g1_policy();
HeapRegion* hr = heap_region_containing(p);
if (hr == NULL) {
// perm gen (or null)
return false;
} else {
return !hr->isHumongous();
}
}
void G1CollectedHeap::check_ct_logs_at_safepoint() {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
......
......@@ -1254,6 +1254,12 @@ public:
return hr != NULL && hr->is_young();
}
#ifdef ASSERT
virtual bool is_in_partial_collection(const void* p);
#endif
virtual bool is_scavengable(const void* addr);
// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
......
......@@ -339,6 +339,21 @@ bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
return false;
}
bool ParallelScavengeHeap::is_scavengable(const void* addr) {
return is_in_young((oop)addr);
}
#ifdef ASSERT
// Don't implement this by using is_in_young(). This method is used
// in some cases to check that is_in_young() is correct.
bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
assert(is_in_reserved(p) || p == NULL,
"Does not work if address is non-null and outside of the heap");
// The order of the generations is perm (low addr), old, young (high addr)
return p >= old_gen()->reserved().end();
}
#endif
// There are two levels of allocation policy here.
//
// When an allocation request fails, the requesting thread must invoke a VM
......
......@@ -127,6 +127,12 @@ CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector
// collection.
virtual bool is_maximal_no_gc() const;
// Return true if the reference points to an object that
// can be moved in a partial collection. For currently implemented
// generational collectors that means during a collection of
// the young gen.
virtual bool is_scavengable(const void* addr);
// Does this heap support heap inspection? (+PrintClassHistogram)
bool supports_heap_inspection() const { return true; }
......@@ -143,6 +149,10 @@ CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector
return perm_gen()->reserved().contains(p);
}
#ifdef ASSERT
virtual bool is_in_partial_collection(const void *p);
#endif
bool is_permanent(const void *p) const { // committed part
return perm_gen()->is_in(p);
}
......
......@@ -51,7 +51,12 @@ inline void ParallelScavengeHeap::invoke_full_gc(bool maximum_compaction)
}
inline bool ParallelScavengeHeap::is_in_young(oop p) {
return young_gen()->is_in_reserved(p);
// Assumes the the old gen address range is lower than that of the young gen.
const void* loc = (void*) p;
bool result = ((HeapWord*)p) >= young_gen()->reserved().start();
assert(result == young_gen()->is_in_reserved(p),
err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
return result;
}
inline bool ParallelScavengeHeap::is_in_old_or_perm(oop p) {
......
......@@ -269,6 +269,13 @@ class CollectedHeap : public CHeapObj {
// space). If you need the more conservative answer use is_permanent().
virtual bool is_in_permanent(const void *p) const = 0;
#ifdef ASSERT
// Returns true if "p" is in the part of the
// heap being collected.
virtual bool is_in_partial_collection(const void *p) = 0;
#endif
bool is_in_permanent_or_null(const void *p) const {
return p == NULL || is_in_permanent(p);
}
......@@ -284,11 +291,7 @@ class CollectedHeap : public CHeapObj {
// An object is scavengable if its location may move during a scavenge.
// (A scavenge is a GC which is not a full GC.)
// Currently, this just means it is not perm (and not null).
// This could change if we rethink what's in perm-gen.
bool is_scavengable(const void *p) const {
return !is_in_permanent_or_null(p);
}
virtual bool is_scavengable(const void *p) = 0;
// Returns "TRUE" if "p" is a method oop in the
// current heap, with high probability. This predicate
......
......@@ -711,15 +711,6 @@ void GenCollectedHeap::set_par_threads(int t) {
_gen_process_strong_tasks->set_n_threads(t);
}
class AssertIsPermClosure: public OopClosure {
public:
void do_oop(oop* p) {
assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
}
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
static AssertIsPermClosure assert_is_perm_closure;
void GenCollectedHeap::
gen_process_strong_roots(int level,
bool younger_gens_as_roots,
......@@ -962,6 +953,13 @@ void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
}
}
bool GenCollectedHeap::is_in_young(oop p) {
bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
assert(result == _gens[0]->is_in_reserved(p),
err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
return result;
}
// Returns "TRUE" iff "p" points into the allocated area of the heap.
bool GenCollectedHeap::is_in(const void* p) const {
#ifndef ASSERT
......@@ -984,10 +982,16 @@ bool GenCollectedHeap::is_in(const void* p) const {
return false;
}
// Returns "TRUE" iff "p" points into the allocated area of the heap.
bool GenCollectedHeap::is_in_youngest(void* p) {
return _gens[0]->is_in(p);
#ifdef ASSERT
// Don't implement this by using is_in_young(). This method is used
// in some cases to check that is_in_young() is correct.
bool GenCollectedHeap::is_in_partial_collection(const void* p) {
assert(is_in_reserved(p) || p == NULL,
"Does not work if address is non-null and outside of the heap");
// The order of the generations is young (low addr), old, perm (high addr)
return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
}
#endif
void GenCollectedHeap::oop_iterate(OopClosure* cl) {
for (int i = 0; i < _n_gens; i++) {
......
......@@ -216,8 +216,18 @@ public:
}
}
// Returns "TRUE" iff "p" points into the youngest generation.
bool is_in_youngest(void* p);
// Returns true if the reference is to an object in the reserved space
// for the young generation.
// Assumes the the young gen address range is less than that of the old gen.
bool is_in_young(oop p);
#ifdef ASSERT
virtual bool is_in_partial_collection(const void* p);
#endif
virtual bool is_scavengable(const void* addr) {
return is_in_young((oop)addr);
}
// Iteration functions.
void oop_iterate(OopClosure* cl);
......@@ -283,7 +293,7 @@ public:
// "Check can_elide_initializing_store_barrier() for this collector");
// but unfortunately the flag UseSerialGC need not necessarily always
// be set when DefNew+Tenured are being used.
return is_in_youngest((void*)new_obj);
return is_in_young(new_obj);
}
// Can a compiler elide a store barrier when it writes
......
......@@ -102,6 +102,17 @@ public:
};
static AssertIsPermClosure assert_is_perm_closure;
#ifdef ASSERT
class AssertNonScavengableClosure: public OopClosure {
public:
virtual void do_oop(oop* p) {
assert(!Universe::heap()->is_in_partial_collection(*p),
"Referent should not be scavengable."); }
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
static AssertNonScavengableClosure assert_is_non_scavengable_closure;
#endif
void SharedHeap::change_strong_roots_parity() {
// Also set the new collection parity.
assert(_strong_roots_parity >= 0 && _strong_roots_parity <= 2,
......@@ -196,9 +207,10 @@ void SharedHeap::process_strong_roots(bool activate_scope,
CodeCache::scavenge_root_nmethods_do(code_roots);
}
}
// Verify if the code cache contents are in the perm gen
NOT_PRODUCT(CodeBlobToOopClosure assert_code_is_perm(&assert_is_perm_closure, /*do_marking=*/ false));
NOT_PRODUCT(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_perm));
// Verify that the code cache contents are not subject to
// movement by a scavenging collection.
DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, /*do_marking=*/ false));
DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
}
if (!collecting_perm_gen) {
......
......@@ -397,7 +397,7 @@ void instanceRefKlass::oop_verify_on(oop obj, outputStream* st) {
if (referent != NULL) {
guarantee(referent->is_oop(), "referent field heap failed");
if (gch != NULL && !gch->is_in_youngest(obj)) {
if (gch != NULL && !gch->is_in_young(obj)) {
// We do a specific remembered set check here since the referent
// field is not part of the oop mask and therefore skipped by the
// regular verify code.
......@@ -415,7 +415,7 @@ void instanceRefKlass::oop_verify_on(oop obj, outputStream* st) {
if (next != NULL) {
guarantee(next->is_oop(), "next field verify failed");
guarantee(next->is_instanceRef(), "next field verify failed");
if (gch != NULL && !gch->is_in_youngest(obj)) {
if (gch != NULL && !gch->is_in_young(obj)) {
// We do a specific remembered set check here since the next field is
// not part of the oop mask and therefore skipped by the regular
// verify code.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册