g1CollectedHeap.cpp 250.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
J
johnc 已提交
30
#include "code/codeCache.hpp"
31 32 33 34 35
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
36
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
37 38
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
39
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
40
#include "gc_implementation/g1/g1EvacFailure.hpp"
41
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
42
#include "gc_implementation/g1/g1Log.hpp"
43 44
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
45
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
46
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
47
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
48
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
49
#include "gc_implementation/g1/g1YCTypes.hpp"
50
#include "gc_implementation/g1/heapRegion.inline.hpp"
51
#include "gc_implementation/g1/heapRegionRemSet.hpp"
52
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
53
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
54 55 56 57
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
58
#include "gc_implementation/shared/isGCActiveMark.hpp"
59
#include "memory/allocation.hpp"
60 61
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
62
#include "memory/iterator.hpp"
63
#include "memory/referenceProcessor.hpp"
64 65
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
66
#include "runtime/orderAccess.inline.hpp"
67
#include "runtime/vmThread.hpp"
68

69 70
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

71 72 73
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
74
#define YOUNG_LIST_VERBOSE 0
75 76 77 78 79 80
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
81 82 83 84 85
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
86

87 88 89 90 91
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
92 93
// G1ParTask executes g1_process_roots() ->
// SharedHeap::process_roots() which calls eventually to
94
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
95
// SequentialSubTasksDone.  SharedHeap::process_roots() also
96 97 98
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

99 100 101 102 103
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
104 105
  RefineCardTableEntryClosure() : _concurrent(true) { }

106
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
107
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
108 109 110 111 112
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
113
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
114 115 116 117 118 119
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
120

121 122 123 124 125
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
126
  size_t _num_processed;
127 128
  CardTableModRefBS* _ctbs;
  int _histo[256];
129 130

 public:
131
  ClearLoggedCardTableEntryClosure() :
132
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
133 134 135
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
136

137
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
138 139 140 141 142 143 144
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

145 146
    return true;
  }
147 148 149

  size_t num_processed() { return _num_processed; }

150 151 152 153 154 155 156 157 158 159
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

160 161 162 163 164 165
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
166

167
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
168 169
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
170 171
    return true;
  }
172 173

  size_t num_processed() const { return _num_processed; }
174 175
};

176 177 178 179
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
180 181 182 183 184 185 186 187 188
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

189
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
190 191 192 193
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
194
  assert(hr->is_survivor(), "should be flagged as survivor region");
195 196 197 198
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
199
    _survivor_tail = hr;
200 201 202 203 204 205 206 207 208 209
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
210 211 212 213
    // This is called before a Full GC and all the non-empty /
    // non-humongous regions at the end of the Full GC will end up as
    // old anyway.
    list->set_old();
214 215 216 217 218 219 220 221 222 223 224 225 226
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
227
  _survivor_tail = NULL;
228 229 230 231 232 233 234 235 236 237
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

238
  uint length = 0;
239 240 241
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
242
    if (!curr->is_young()) {
243
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
244
                             "incorrectly tagged (y: %d, surv: %d)",
245
                             curr->bottom(), curr->end(),
246
                             curr->is_young(), curr->is_survivor());
247 248 249 250 251 252 253 254 255 256
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
257
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
258 259 260
                           length, _length);
  }

261
  return ret;
262 263
}

264
bool YoungList::check_list_empty(bool check_sample) {
265 266 267
  bool ret = true;

  if (_length != 0) {
268
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

284
  return ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
301 302 303 304 305 306 307 308 309 310 311 312
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
327
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
328

329
  int young_index_in_cset = 0;
330 331 332
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
333
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
334 335 336 337 338

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
339
    young_index_in_cset += 1;
340
  }
341
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
342 343
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

344 345
  _head   = _survivor_head;
  _length = _survivor_length;
346
  if (_survivor_head != NULL) {
347 348 349
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
350 351
  }

352 353 354 355
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
356

357
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
358 359 360 361 362

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
363 364
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
365 366 367 368 369 370 371

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
372
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
373
                             HR_FORMAT_PARAMS(curr),
374 375
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
376
                             curr->age_in_surv_rate_group_cond());
377 378 379 380
      curr = curr->get_next_young_region();
    }
  }

381
  gclog_or_tty->cr();
382 383
}

384 385 386 387
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  OtherRegionsTable::invalidate(start_idx, num_regions);
}

388 389 390
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
  // The from card cache is not the memory that is actually committed. So we cannot
  // take advantage of the zero_filled parameter.
391 392 393
  reset_from_card_cache(start_idx, num_regions);
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

447 448 449 450 451 452 453 454 455 456 457 458
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
459 460 461 462
  if (p == NULL) {
    return false;
  }
  return heap_region_containing(p)->in_collection_set();
463 464 465 466
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
467
// can move in an incremental collection.
468 469
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
470
  return !hr->isHumongous();
471 472
}

473 474
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
475
  CardTableModRefBS* ct_bs = g1_barrier_set();
476 477 478 479 480 481 482 483

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
484 485
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
486 487 488 489 490 491 492 493 494 495 496 497
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
498 499
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
500
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
501 502 503 504
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
            err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
                    redirty.num_processed(), clear.num_processed()));
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

521
HeapRegion*
522
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
523 524 525 526 527
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
528
                               "secondary_free_list has %u entries",
529 530 531 532 533 534 535
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

536
      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
537
             "empty we should have moved at least one entry to the free_list");
538
      HeapRegion* res = _hrm.allocate_free_region(is_old);
539 540 541 542 543 544 545 546
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
547
    // Wait here until we get notified either when (a) there are no
548 549 550 551 552 553 554 555 556 557 558
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
559

560
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
561
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
562 563
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
564

565 566 567 568 569 570 571
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
572
      res = new_region_try_secondary_free_list(is_old);
573 574 575 576 577
      if (res != NULL) {
        return res;
      }
    }
  }
578

579
  res = _hrm.allocate_free_region(is_old);
580

581 582 583 584 585
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
586
    res = new_region_try_secondary_free_list(is_old);
587
  }
588 589 590 591 592 593 594
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

595 596 597 598 599
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
600
    if (expand(word_size * HeapWordSize)) {
601 602
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
603
      // region size, the free list should in theory not be empty.
604
      // In either case allocate_free_region() will check for NULL.
605
      res = _hrm.allocate_free_region(is_old);
606 607
    } else {
      _expand_heap_after_alloc_failure = false;
608
    }
609 610 611 612
  }
  return res;
}

T
tonyp 已提交
613
HeapWord*
614 615
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
616 617
                                                           size_t word_size,
                                                           AllocationContext_t context) {
618
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
T
tonyp 已提交
619 620 621 622
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
623
  uint last = first + num_regions;
T
tonyp 已提交
624 625 626 627 628 629 630 631 632 633

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
634
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
635 636 637
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
638
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
639 640 641 642
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
643
  // should also match the end of the last region in the series.
T
tonyp 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);
669
  first_hr->set_allocation_context(context);
T
tonyp 已提交
670 671 672
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
673
  for (uint i = first + 1; i < last; ++i) {
674
    hr = region_at(i);
T
tonyp 已提交
675
    hr->set_continuesHumongous(first_hr);
676
    hr->set_allocation_context(context);
T
tonyp 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
696 697 698 699 700 701 702 703 704 705 706
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
720
  for (uint i = first + 1; i < last; ++i) {
721
    hr = region_at(i);
T
tonyp 已提交
722 723 724 725 726
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
727
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
728 729 730 731
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
732
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
733 734 735 736 737 738 739
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");
740
  check_bitmaps("Humongous Region Allocation", first_hr);
T
tonyp 已提交
741 742

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
743
  _allocator->increase_used(first_hr->used());
T
tonyp 已提交
744 745 746 747 748
  _humongous_set.add(first_hr);

  return new_obj;
}

749 750 751
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
752
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
753
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
754

755
  verify_region_sets_optional();
756

757
  uint first = G1_NO_HRM_INDEX;
758 759 760 761 762 763 764 765
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
766
      first = hr->hrm_index();
767 768 769 770 771 772 773 774
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
775 776
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
777 778 779 780 781
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
782 783 784
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
785 786
    }
  }
787

788
  if (first == G1_NO_HRM_INDEX) {
789 790 791
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
792 793
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
794 795
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
796 797 798 799 800
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
801

802
      _hrm.expand_at(first, obj_regions);
803 804 805 806 807
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
808
        assert(hr->is_free(), "sanity");
809 810
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
811
      }
812
#endif
813
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
814 815
    } else {
      // Policy: Potentially trigger a defragmentation GC.
816 817
    }
  }
818

T
tonyp 已提交
819
  HeapWord* result = NULL;
820
  if (first != G1_NO_HRM_INDEX) {
821 822
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
T
tonyp 已提交
823
    assert(result != NULL, "it should always return a valid result");
824 825 826 827 828

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
829
  }
830 831

  verify_region_sets_optional();
T
tonyp 已提交
832 833

  return result;
834 835
}

836 837 838
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
839

840
  unsigned int dummy_gc_count_before;
841 842
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
843 844 845
}

HeapWord*
846 847 848
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
849

S
sla 已提交
850
  // Loop until the allocation is satisfied, or unsatisfied after GC.
851
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
852
    unsigned int gc_count_before;
853

854 855
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
856
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
857
    } else {
858
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
859 860 861 862
    }
    if (result != NULL) {
      return result;
    }
863

864 865
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
866 867
    op.set_allocation_context(AllocationContext::current());

868 869
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
870

871 872 873 874 875 876
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
877
        // Allocations that take place on VM operations do not do any
878 879
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
880 881 882
        dirty_young_block(result, word_size);
      }
      return result;
883
    } else {
884 885 886
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
887 888
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
889 890 891 892 893
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
894
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
895 896 897
    }
  }

898
  ShouldNotReachHere();
899 900 901
  return NULL;
}

902
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
903 904 905
                                                   AllocationContext_t context,
                                                   unsigned int *gc_count_before_ret,
                                                   int* gclocker_retry_count_ret) {
906 907 908 909 910
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
911

912 913 914 915 916 917 918
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
919
  HeapWord* result = NULL;
920 921 922
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
923

924 925
    {
      MutexLockerEx x(Heap_lock);
926 927
      result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                    false /* bot_updates */);
928 929
      if (result != NULL) {
        return result;
930
      }
931

932 933
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
934
      assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
935

936 937
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
938 939
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
940 941
          result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
                                                                                       false /* bot_updates */);
942 943 944 945 946 947
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
948 949 950 951 952 953 954 955 956 957 958 959
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
960 961
      }
    }
962

963 964
    if (should_try_gc) {
      bool succeeded;
965 966
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
967
      if (result != NULL) {
968
        assert(succeeded, "only way to get back a non-NULL result");
969 970 971
        return result;
      }

972 973 974 975 976
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
977
        *gc_count_before_ret = total_collections();
978 979 980
        return NULL;
      }
    } else {
981 982 983 984 985
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
986 987 988
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
989
      GC_locker::stall_until_clear();
990
      (*gclocker_retry_count_ret) += 1;
991 992
    }

S
sla 已提交
993
    // We can reach here if we were unsuccessful in scheduling a
994 995 996 997 998 999 1000
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
1001 1002
    result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                           false /* bot_updates */);
1003
    if (result != NULL) {
1004
      return result;
1005 1006
    }

1007 1008 1009
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1010
      warning("G1CollectedHeap::attempt_allocation_slow() "
1011
              "retries %d times", try_count);
1012 1013 1014
    }
  }

1015 1016
  ShouldNotReachHere();
  return NULL;
1017 1018
}

1019
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1020 1021
                                                        unsigned int * gc_count_before_ret,
                                                        int* gclocker_retry_count_ret) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1033
  assert_heap_not_locked_and_not_at_safepoint();
1034 1035
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1036

1037 1038 1039 1040 1041
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1042 1043
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1044 1045 1046
    collect(GCCause::_g1_humongous_allocation);
  }

1047 1048 1049 1050 1051
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1052
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1053
    bool should_try_gc;
1054
    unsigned int gc_count_before;
1055

1056
    {
1057
      MutexLockerEx x(Heap_lock);
1058

1059 1060 1061
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
1062
      result = humongous_obj_allocate(word_size, AllocationContext::current());
1063 1064
      if (result != NULL) {
        return result;
1065
      }
1066

1067 1068 1069
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1082 1083 1084
      }
    }

1085 1086 1087 1088
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1089

1090
      bool succeeded;
1091 1092
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1103
        *gc_count_before_ret = total_collections();
1104
        return NULL;
1105 1106
      }
    } else {
1107 1108 1109 1110 1111
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1112 1113 1114
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1115
      GC_locker::stall_until_clear();
1116
      (*gclocker_retry_count_ret) += 1;
1117 1118
    }

S
sla 已提交
1119
    // We can reach here if we were unsuccessful in scheduling a
1120 1121 1122 1123 1124 1125
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1126 1127
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1128 1129
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1130 1131
    }
  }
1132 1133

  ShouldNotReachHere();
1134
  return NULL;
1135 1136
}

1137
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1138 1139
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
1140
  assert_at_safepoint(true /* should_be_vm_thread */);
1141
  assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1142 1143
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1144

1145
  if (!isHumongous(word_size)) {
1146
    return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1147 1148
                                                      false /* bot_updates */);
  } else {
1149
    HeapWord* result = humongous_obj_allocate(word_size, context);
1150 1151 1152 1153
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1154
  }
1155 1156

  ShouldNotReachHere();
1157 1158 1159
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1160
  G1CollectedHeap* _g1h;
1161 1162
  ModRefBarrierSet* _mr_bs;
public:
1163
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1164 1165
    _g1h(g1h), _mr_bs(mr_bs) {}

1166
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1167 1168
    HeapRegionRemSet* hrrs = r->rem_set();

1169
    if (r->continuesHumongous()) {
J
johnc 已提交
1170 1171 1172
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1173
      return false;
1174
    }
J
johnc 已提交
1175

1176
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1177
    hrrs->clear();
1178 1179 1180 1181 1182 1183
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1184

1185 1186 1187 1188
    return false;
  }
};

1189
void G1CollectedHeap::clear_rsets_post_compaction() {
1190
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1191 1192
  heap_region_iterate(&rs_clear);
}
1193

1194 1195 1196 1197 1198 1199
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1200
    _cl(g1->g1_rem_set(), worker_i),
1201 1202 1203
    _worker_i(worker_i),
    _g1h(g1)
  { }
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1222 1223 1224
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1225
                                          _g1->workers()->active_workers(),
1226 1227 1228 1229
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1230 1231 1232 1233 1234 1235
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
1236 1237 1238 1239 1240 1241
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->startsHumongous()) {
      if (hr->region_num() == 1) {
        // single humongous region
        _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1242
      } else {
1243
        _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1244
      }
1245 1246 1247 1248 1249 1250
    } else if (hr->continuesHumongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
1251 1252 1253 1254 1255 1256 1257 1258
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1259
void G1CollectedHeap::print_hrm_post_compaction() {
1260 1261 1262 1263
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1264
bool G1CollectedHeap::do_collection(bool explicit_gc,
1265
                                    bool clear_all_soft_refs,
1266
                                    size_t word_size) {
1267 1268
  assert_at_safepoint(true /* should_be_vm_thread */);

1269
  if (GC_locker::check_active_before_gc()) {
1270
    return false;
1271 1272
  }

S
sla 已提交
1273
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1274
  gc_timer->register_gc_start();
S
sla 已提交
1275 1276 1277 1278

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1279
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1280 1281
  ResourceMark rm;

1282
  print_heap_before_gc();
S
sla 已提交
1283
  trace_heap_before_gc(gc_tracer);
1284

1285
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1286

1287
  verify_region_sets_optional();
1288

1289 1290 1291 1292 1293
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1294 1295 1296 1297
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1298
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1299 1300
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1301

1302
    {
1303
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1323

1324 1325 1326
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1327

1328
      assert(used() == recalculate_used(), "Should be equal");
1329

1330
      verify_before_gc();
1331

1332
      check_bitmaps("Full GC Start");
S
sla 已提交
1333
      pre_full_gc_dump(gc_timer);
1334

1335
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1336

1337 1338 1339 1340 1341
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1342

1343 1344 1345 1346
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1347

1348
      // Make sure we'll choose a new allocation region afterwards.
1349 1350
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
1351
      g1_rem_set()->cleanupHRRS();
1352

1353 1354 1355 1356
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1357

1358 1359 1360 1361 1362 1363 1364
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1365

1366 1367
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1368

1369 1370 1371
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1372

1373 1374
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1375

1376 1377
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1378

1379 1380
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1381

1382 1383 1384 1385 1386
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1387

1388
      assert(num_free_regions() == 0, "we should not have added any free regions");
1389
      rebuild_region_sets(false /* free_list_only */);
1390

1391 1392 1393
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1394

1395
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1396

1397
      MemoryService::track_memory_usage();
1398

1399 1400
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1401

1402 1403
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1404
      MetaspaceAux::verify_metrics();
1405

1406 1407 1408 1409 1410 1411
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1412

1413 1414
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1415
      // sets, and clear all cards.  Later we will rebuild remembered
1416 1417 1418
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1419

1420 1421
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1422

1423 1424 1425 1426
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1427

1428
        print_hrm_post_compaction();
1429 1430
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1431

1432 1433 1434 1435
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1436
      }
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1474

J
johnc 已提交
1475 1476 1477
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1478 1479 1480
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1481

1482 1483 1484
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1485

1486 1487
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
1488
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1489

1490 1491 1492 1493 1494
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1495

1496 1497
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1498

1499
      _hrm.verify_optional();
1500
      verify_region_sets_optional();
1501

1502 1503
      verify_after_gc();

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

1516 1517 1518
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1519

1520
      clear_cset_fast_test();
1521

1522
      _allocator->init_mutator_alloc_region();
1523

1524 1525
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1526

1527 1528 1529
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1530

1531 1532 1533 1534 1535
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1536

1537 1538
      gc_epilogue(true);
    }
1539

1540
    if (G1Log::finer()) {
1541
      g1_policy()->print_detailed_heap_transition(true /* full */);
1542
    }
1543 1544

    print_heap_after_gc();
S
sla 已提交
1545 1546 1547
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1548

1549
    gc_timer->register_gc_end();
S
sla 已提交
1550
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1551
  }
1552

1553
  return true;
1554 1555 1556
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1557 1558 1559 1560 1561 1562 1563 1564
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1577 1578 1579 1580
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1581
  // We don't have floating point command-line arguments
1582
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1583
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1584
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1585 1586
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1623

1624
  if (capacity_after_gc < minimum_desired_capacity) {
1625 1626
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1637 1638

    // No expansion, now see if we want to shrink
1639
  } else if (capacity_after_gc > maximum_desired_capacity) {
1640 1641
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1642 1643 1644 1645 1646 1647 1648 1649 1650
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1651 1652 1653 1654 1655 1656
    shrink(shrink_bytes);
  }
}


HeapWord*
1657
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1658
                                           AllocationContext_t context,
1659
                                           bool* succeeded) {
1660
  assert_at_safepoint(true /* should_be_vm_thread */);
1661 1662 1663

  *succeeded = true;
  // Let's attempt the allocation first.
1664 1665
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
1666 1667
                                    context,
                                    false /* expect_null_mutator_alloc_region */);
1668 1669 1670 1671
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1672 1673 1674 1675 1676

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
1677
  result = expand_and_allocate(word_size, context);
1678
  if (result != NULL) {
1679
    assert(*succeeded, "sanity");
1680 1681 1682
    return result;
  }

1683 1684 1685 1686 1687 1688 1689 1690
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1691

1692 1693
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1694 1695
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1696
  if (result != NULL) {
1697
    assert(*succeeded, "sanity");
1698 1699 1700
    return result;
  }

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1712 1713
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1714
  if (result != NULL) {
1715
    assert(*succeeded, "sanity");
1716 1717 1718
    return result;
  }

1719
  assert(!collector_policy()->should_clear_all_soft_refs(),
1720
         "Flag should have been handled and cleared prior to this point");
1721

1722 1723 1724 1725
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1726
  assert(*succeeded, "sanity");
1727 1728 1729 1730 1731 1732 1733 1734
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

1735
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1736 1737 1738
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1739

1740
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1741 1742 1743 1744 1745
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1746
  if (expand(expand_bytes)) {
1747
    _hrm.verify_optional();
1748 1749
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1750 1751
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
1752
  }
1753
  return NULL;
1754 1755
}

1756 1757
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1758 1759
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1760 1761 1762 1763 1764
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1765

1766
  if (is_maximal_no_gc()) {
1767 1768 1769 1770 1771 1772
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1773 1774
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");
1775

1776
  uint expanded_by = _hrm.expand_by(regions_to_expand);
1777

1778 1779
  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1780
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1781
    g1_policy()->record_new_heap_size(num_regions());
1782
  } else {
1783 1784 1785
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1786 1787 1788
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
1789
        _hrm.available() >= regions_to_expand) {
1790
      // We had head room...
1791
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1792 1793
    }
  }
1794
  return regions_to_expand > 0;
1795 1796
}

1797
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1798 1799 1800 1801
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1802 1803
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

1804
  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1805
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1806 1807 1808 1809 1810 1811

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1812 1813
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
1814
    g1_policy()->record_new_heap_size(num_regions());
1815 1816 1817 1818
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1819 1820 1821 1822
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1823 1824
  verify_region_sets_optional();

1825 1826 1827
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
1828
  _allocator->abandon_gc_alloc_regions();
1829

1830 1831 1832
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1833
  tear_down_region_sets(true /* free_list_only */);
1834
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1835
  rebuild_region_sets(true /* free_list_only */);
1836

1837
  _hrm.verify_optional();
1838
  verify_region_sets_optional();
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1851
  _dirty_card_queue_set(false),
J
johnc 已提交
1852
  _into_cset_dirty_card_queue_set(false),
1853 1854 1855 1856
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1857 1858
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1859
  _evac_failure_scan_stack(NULL),
1860
  _mark_in_progress(false),
1861
  _cg1r(NULL),
1862
  _g1mm(NULL),
1863 1864
  _refine_cte_cl(NULL),
  _full_collection(false),
1865 1866 1867
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1868 1869
  _humongous_is_live(),
  _has_humongous_reclaim_candidates(false),
1870
  _free_regions_coming(false),
1871 1872
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1873 1874
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1875
  _expand_heap_after_alloc_failure(true),
1876
  _surviving_young_words(NULL),
1877 1878
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1879
  _concurrent_cycle_started(false),
1880
  _in_cset_fast_test(),
1881 1882
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1883 1884 1885 1886 1887 1888 1889
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1890 1891 1892
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1893

1894
  _allocator = G1Allocator::create_allocator(_g1h);
1895 1896
  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1897 1898 1899
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1900
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1901 1902
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1903 1904
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1905
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1906

1907 1908 1909 1910
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1911
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1912
  }
1913 1914
  clear_cset_start_regions();

1915 1916 1917
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1918 1919 1920 1921
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1922
  CollectedHeap::pre_initialize();
1923 1924
  os::enable_vtime();

1925 1926
  G1Log::init();

1927 1928 1929 1930
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1931 1932 1933 1934
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1935 1936 1937 1938 1939 1940 1941 1942 1943
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1944
  size_t heap_alignment = collector_policy()->heap_alignment();
1945 1946 1947 1948

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1949
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1950

1951 1952 1953
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1954 1955

  // Reserve the maximum.
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

1968
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1969
                                                 heap_alignment);
1970 1971

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
1972
  // temporarily think something is in the heap.  (I've actually seen this
1973 1974 1975 1976 1977 1978 1979 1980
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
1981 1982
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1983 1984 1985 1986
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1987
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1988 1989 1990

  // Carve out the G1 part of the heap.

1991
  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
                                         UseLargePages ? os::large_page_size() : os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  heap_storage->set_mapping_changed_listener(&_listener);

  // Reserve space for the block offset table. We do not support automatic uncommit
  // for the card table at this time. BOT only.
  ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* bot_storage =
    G1RegionToSpaceMapper::create_mapper(bot_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
    G1RegionToSpaceMapper::create_mapper(cardtable_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for the card counts table.
  ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* card_counts_storage =
    G1RegionToSpaceMapper::create_mapper(card_counts_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for prev and next bitmap.
  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());

  ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* prev_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

  ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* next_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

2046
  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2047 2048 2049
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);
2050

2051 2052
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2053
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2054 2055 2056
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2057
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2058
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2059
            "too many cards per region");
2060

2061
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2062

2063
  _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2064 2065 2066

  _g1h = this;

2067 2068
  _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2069

2070 2071
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2072
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2073 2074 2075 2076
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2077 2078 2079 2080 2081
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2082
  // Now expand into the initial heap size.
2083
  if (!expand(init_byte_size)) {
2084
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2085 2086
    return JNI_ENOMEM;
  }
2087 2088 2089 2090 2091 2092

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2093
                                               G1SATBProcessCompletedThreshold,
2094
                                               Shared_SATB_Q_lock);
2095

2096 2097
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2098
                                                DirtyCardQ_FL_lock,
2099 2100
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2101 2102
                                                Shared_DirtyCardQ_lock);

2103 2104 2105 2106 2107 2108 2109
  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());
J
johnc 已提交
2110 2111 2112

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2113 2114
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2115 2116 2117 2118 2119 2120
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2121 2122 2123 2124
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2125 2126
  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
2127
  HeapRegion* dummy_region = _hrm.get_dummy_region();
2128

2129 2130 2131
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
2132 2133
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
2134 2135 2136 2137
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

2138
  _allocator->init_mutator_alloc_region();
2139

2140 2141
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2142
  _g1mm = new G1MonitoringSupport(this);
2143

P
pliden 已提交
2144 2145
  G1StringDedup::initialize();

2146 2147 2148
  return JNI_OK;
}

2149
void G1CollectedHeap::stop() {
2150 2151
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2152
  // that are destroyed during shutdown.
2153 2154 2155 2156 2157
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2158 2159
}

2160 2161 2162 2163 2164
void G1CollectedHeap::clear_humongous_is_live_table() {
  guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  _humongous_is_live.clear();
}

2165 2166 2167 2168
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2169
void G1CollectedHeap::ref_processing_init() {
2170 2171
  // Reference processing in G1 currently works as follows:
  //
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2204

2205 2206
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2221
                           &_is_alive_closure_cm);
2222 2223 2224 2225 2226
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2227
    new ReferenceProcessor(mr,    // span
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2238
                           &_is_alive_closure_stw);
2239 2240
                                // is alive closure
                                // (for efficiency/performance)
2241 2242 2243
}

size_t G1CollectedHeap::capacity() const {
2244
  return _hrm.length() * HeapRegion::GrainBytes;
2245 2246
}

2247 2248 2249 2250
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
2251
    uint first_index = hr->hrm_index() + 1;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2292 2293 2294
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2295
                                                 uint worker_i) {
2296
  // Clean cards in the hot card cache
2297 2298
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2299

2300 2301
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2302
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2303 2304
    n_completed_buffers++;
  }
2305
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2306 2307 2308 2309 2310 2311 2312
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
2313
  return _allocator->used();
2314 2315
}

2316
size_t G1CollectedHeap::used_unlocked() const {
2317
  return _allocator->used_unlocked();
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2334 2335
  double recalculate_used_start = os::elapsedTime();

2336
  SumUsedClosure blk;
2337
  heap_region_iterate(&blk);
2338 2339

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2340 2341 2342
  return blk.result();
}

2343
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2344 2345 2346 2347
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
2348
    case GCCause::_update_allocation_context_stats_inc: return true;
2349 2350
    default:                                return false;
  }
2351 2352
}

2353 2354 2355 2356 2357 2358 2359 2360 2361
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
2362 2363
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2386 2387
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2388 2389 2390 2391 2392
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2393 2394 2395 2396 2397 2398 2399 2400
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2401
  assert(concurrent ||
2402 2403 2404 2405 2406
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2407 2408

  // This is the case for the outer caller, i.e. the concurrent cycle.
2409
  assert(!concurrent ||
2410
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2411
         err_msg("for outer caller (concurrent cycle): "
2412 2413 2414
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2415

2416
  _old_marking_cycles_completed += 1;
2417

2418 2419 2420
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2421
  // incorrectly see that a marking cycle is still in progress.
2422
  if (concurrent) {
2423 2424 2425
    _cmThread->clear_in_progress();
  }

2426 2427 2428 2429 2430 2431 2432
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2433
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2446

2447
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2476
void G1CollectedHeap::collect(GCCause::Cause cause) {
2477
  assert_heap_not_locked();
2478

2479
  unsigned int gc_count_before;
2480
  unsigned int old_marking_count_before;
2481 2482 2483 2484 2485 2486 2487
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2488

2489 2490
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2491
      old_marking_count_before = _old_marking_cycles_started;
2492 2493 2494 2495 2496 2497
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2498
      VM_G1IncCollectionPause op(gc_count_before,
2499
                                 0,     /* word_size */
2500
                                 true,  /* should_initiate_conc_mark */
2501 2502
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2503
      op.set_allocation_context(AllocationContext::current());
2504

2505
      VMThread::execute(&op);
2506
      if (!op.pause_succeeded()) {
2507
        if (old_marking_count_before == _old_marking_cycles_started) {
2508
          retry_gc = op.should_retry_gc();
2509 2510 2511 2512 2513
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2514 2515 2516 2517 2518 2519

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2520
      }
2521
    } else {
2522
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2535
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2536 2537
        VMThread::execute(&op);
      }
2538
    }
2539
  } while (retry_gc);
2540 2541 2542
}

bool G1CollectedHeap::is_in(const void* p) const {
2543
  if (_hrm.reserved().contains(p)) {
2544
    // Given that we know that p is in the reserved space,
S
stefank 已提交
2545 2546 2547
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2548 2549
    return hr->is_in(p);
  } else {
2550
    return false;
2551 2552 2553
  }
}

2554 2555 2556
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
2557
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2558 2559 2560 2561 2562 2563 2564 2565
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

2566 2567
// Iteration functions.

2568
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2569 2570

class IterateOopClosureRegionClosure: public HeapRegionClosure {
2571
  ExtendedOopClosure* _cl;
2572
public:
2573
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2574
  bool doHeapRegion(HeapRegion* r) {
2575
    if (!r->continuesHumongous()) {
2576 2577 2578 2579 2580 2581
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2582
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2583
  IterateOopClosureRegionClosure blk(cl);
2584
  heap_region_iterate(&blk);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2601
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2602
  IterateObjectClosureRegionClosure blk(cl);
2603
  heap_region_iterate(&blk);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2620
  heap_region_iterate(&blk);
2621 2622
}

2623
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2624
  _hrm.iterate(cl);
2625 2626 2627 2628
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2629
                                                 uint worker_id,
2630 2631
                                                 uint num_workers,
                                                 jint claim_value) const {
2632
  _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2643
void G1CollectedHeap::reset_heap_region_claim_values() {
2644 2645 2646 2647
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2648 2649 2650 2651 2652
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2653 2654 2655 2656 2657 2658 2659 2660 2661
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2662
  uint _failures;
2663
  HeapRegion* _sh_region;
2664

2665 2666 2667 2668 2669
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2670
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2671
                             "claim value = %d, should be %d",
2672 2673
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2674 2675 2676 2677 2678 2679 2680 2681
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2682
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2683
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2684
                               HR_FORMAT_PARAMS(r),
2685 2686 2687 2688 2689 2690 2691
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2692
  uint failures() { return _failures; }
2693 2694 2695 2696 2697 2698 2699
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2700 2701

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2702 2703 2704
private:
  jint _claim_value;
  uint _failures;
2705 2706 2707

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2708
    _claim_value(claim_value), _failures(0) { }
2709

2710
  uint failures() { return _failures; }
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2731 2732
#endif // ASSERT

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2745

2746 2747
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2748
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2776
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2777
    uint cs_size = g1_policy()->cset_region_length();
2778
    uint active_workers = workers()->active_workers();
2779 2780 2781 2782
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2783 2784
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2785 2786 2787 2788 2789 2790 2791 2792 2793

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2794
    for (uint i = start_ind; i < end_ind; i++) {
2795 2796 2797
      result = result->next_in_collection_set();
    }
  }
2798 2799 2800 2801 2802 2803 2804 2805 2806

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2807 2808 2809
  return result;
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2824 2825 2826 2827 2828
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

2851
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2852
  HeapRegion* result = _hrm.next_region_in_heap(from);
2853
  while (result != NULL && result->isHumongous()) {
2854
    result = _hrm.next_region_in_heap(result);
2855
  }
2856
  return result;
2857 2858 2859
}

Space* G1CollectedHeap::space_containing(const void* addr) const {
2860
  return heap_region_containing(addr);
2861 2862 2863 2864
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
2865
  return sp->block_start(addr);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2894 2895 2896 2897 2898 2899
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2900
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
2901
  // since we can't allow tlabs to grow big enough to accommodate
2902 2903
  // humongous objects.

2904
  HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
B
brutisso 已提交
2905
  size_t max_tlab = max_tlab_size() * wordSize;
2906
  if (hr == NULL) {
B
brutisso 已提交
2907
    return max_tlab;
2908
  } else {
B
brutisso 已提交
2909
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2910 2911 2912 2913
  }
}

size_t G1CollectedHeap::max_capacity() const {
2914
  return _hrm.reserved().byte_size();
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

2974
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3010
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3109
class VerifyLivenessOopClosure: public OopClosure {
3110 3111
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3112
public:
3113 3114 3115
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3116 3117 3118 3119 3120
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3121
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3122
              "Dead object referenced by a not dead object");
3123 3124 3125 3126
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3127
private:
3128 3129 3130
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3131
  VerifyOption _vo;
3132
public:
3133 3134 3135 3136 3137
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3138 3139 3140
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3141
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3142
    assert(o != NULL, "Huh?");
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3155
      o->oop_iterate_no_header(&isLive);
3156 3157 3158 3159
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3195
private:
3196 3197 3198
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3199
public:
3200 3201 3202
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3203 3204
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3205
      _vo(vo),
3206 3207 3208 3209 3210
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3211

3212
  bool doHeapRegion(HeapRegion* r) {
3213
    if (!r->continuesHumongous()) {
3214
      bool failures = false;
3215
      r->verify(_vo, &failures);
3216 3217 3218
      if (failures) {
        _failures = true;
      } else {
3219
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3220
        r->object_iterate(&not_dead_yet_cl);
3221 3222 3223 3224 3225 3226 3227
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3228
                                 not_dead_yet_cl.live_bytes());
3229 3230 3231 3232 3233 3234
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3235 3236
        }
      }
3237
    }
3238
    return false; // stop the region iteration if we hit a failure
3239 3240 3241
  }
};

J
johnc 已提交
3242
// This is the task used for parallel verification of the heap regions
3243 3244 3245 3246

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3247 3248
  VerifyOption     _vo;
  bool             _failures;
3249 3250

public:
3251 3252 3253
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3254
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3255
    AbstractGangTask("Parallel verify task"),
3256
    _g1h(g1h),
3257
    _vo(vo),
3258 3259 3260 3261 3262
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3263

3264
  void work(uint worker_id) {
3265
    HandleMark hm;
3266
    VerifyRegionClosure blk(true, _vo);
3267
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3268
                                          _g1h->workers()->active_workers(),
3269
                                          HeapRegion::ParVerifyClaimValue);
3270 3271 3272
    if (blk.failures()) {
      _failures = true;
    }
3273 3274 3275
  }
};

J
johnc 已提交
3276
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3277
  if (SafepointSynchronize::is_at_safepoint()) {
3278
    assert(Thread::current()->is_VM_thread(),
3279
           "Expected to be executed serially by the VM thread at this point");
3280

J
johnc 已提交
3281 3282
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
3283
    VerifyKlassClosure klassCl(this, &rootsCl);
3284
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3285

3286
    // We apply the relevant closures to all the oops in the
3287 3288
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
3289 3290
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3291 3292 3293 3294 3295 3296

    process_all_roots(true,            // activate StrongRootsScope
                      SO_AllCodeCache, // roots scanning options
                      &rootsCl,
                      &cldCl,
                      &blobsCl);
3297

J
johnc 已提交
3298
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3309
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3310 3311 3312 3313
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3314
      G1ParVerifyTask task(this, vo);
3315 3316 3317 3318
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3319 3320 3321
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3322 3323 3324
      if (task.failures()) {
        failures = true;
      }
3325

3326 3327
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3328 3329 3330 3331 3332 3333 3334 3335
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3336
      VerifyRegionClosure blk(false, vo);
3337
      heap_region_iterate(&blk);
3338 3339 3340
      if (blk.failures()) {
        failures = true;
      }
3341
    }
3342
    if (!silent) gclog_or_tty->print("RemSet ");
3343
    rem_set()->verify();
3344

P
pliden 已提交
3345 3346 3347 3348 3349
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3350 3351
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3352 3353 3354 3355
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3356
      gclog_or_tty->cr();
3357
#ifndef PRODUCT
3358
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3359
        concurrent_mark()->print_reachable("at-verification-failure",
3360
                                           vo, false /* all */);
3361
      }
3362
#endif
3363 3364 3365
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3366
  } else {
P
pliden 已提交
3367 3368 3369 3370 3371 3372 3373
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3374 3375 3376
  }
}

J
johnc 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3438
void G1CollectedHeap::print_on(outputStream* st) const {
3439 3440
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3441
            capacity()/K, used_unlocked()/K);
3442
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3443 3444 3445
            _hrm.reserved().start(),
            _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
            _hrm.reserved().end());
3446
  st->cr();
3447
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3448 3449 3450 3451 3452 3453
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3454
  st->cr();
3455
  MetaspaceAux::print_on(st);
3456 3457
}

3458 3459 3460 3461 3462
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3463 3464 3465 3466 3467
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3468
  PrintRegionClosure blk(st);
3469
  heap_region_iterate(&blk);
3470 3471
}

3472 3473 3474 3475 3476 3477 3478 3479 3480
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3481
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3482
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3483
    workers()->print_worker_threads_on(st);
3484
  }
T
tonyp 已提交
3485
  _cmThread->print_on(st);
3486
  st->cr();
T
tonyp 已提交
3487 3488
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3489 3490 3491
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3492 3493 3494
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3495
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3496 3497 3498
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3499
  _cg1r->threads_do(tc);
P
pliden 已提交
3500 3501 3502
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3503 3504 3505 3506 3507 3508 3509 3510 3511
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3512
  if (G1SummarizeRSetStats) {
3513 3514
    g1_rem_set()->print_summary_info();
  }
3515
  if (G1SummarizeConcMark) {
3516 3517 3518 3519 3520 3521
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3550
    gclog_or_tty->print_cr("%s", msg);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3572 3573 3574 3575 3576 3577 3578
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3579
  // always_do_update_barrier = false;
3580 3581
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3582
  accumulate_statistics_all_tlabs();
3583
  ensure_parsability(true);
3584 3585 3586 3587 3588

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3589 3590
}

3591
void G1CollectedHeap::gc_epilogue(bool full) {
3592 3593 3594 3595 3596

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3597
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3598 3599
  }

3600 3601 3602 3603 3604
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3605
  // always_do_update_barrier = true;
3606

B
brutisso 已提交
3607
  resize_all_tlabs();
3608
  allocation_context_stats().update(full);
B
brutisso 已提交
3609

3610 3611 3612
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3613 3614
}

3615 3616
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3617 3618
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3619
  assert_heap_not_locked_and_not_at_safepoint();
3620
  g1_policy()->record_stop_world_start();
3621 3622 3623 3624
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3625
                             gc_cause);
3626 3627

  op.set_allocation_context(AllocationContext::current());
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3638 3639 3640 3641
}

void
G1CollectedHeap::doConcurrentMark() {
3642 3643 3644 3645
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3661 3662 3663 3664
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3665 3666 3667
}

size_t G1CollectedHeap::cards_scanned() {
3668
  return g1_rem_set()->cardsScanned();
3669 3670
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  HeapRegion* region = region_at(index);
  assert(region->startsHumongous(), "Must start a humongous object");
  return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
}

class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;
 public:
  RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

3691
    uint region_idx = r->hrm_index();
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
    bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
    // Is_candidate already filters out humongous regions with some remembered set.
    // This will not lead to humongous object that we mistakenly keep alive because
    // during young collection the remembered sets will only be added to.
    if (is_candidate) {
      g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
      _candidate_humongous++;
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }
};

void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
    return;
  }

  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

  if (_has_humongous_reclaim_candidates) {
    clear_humongous_is_live_table();
  }
}

3726 3727
void
G1CollectedHeap::setup_surviving_young_words() {
3728 3729
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3730
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3731
  if (_surviving_young_words == NULL) {
3732
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3733 3734
                          "Not enough space for young surv words summary.");
  }
3735
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3736
#ifdef ASSERT
3737
  for (uint i = 0;  i < array_length; ++i) {
3738
    assert( _surviving_young_words[i] == 0, "memset above" );
3739
  }
3740
#endif // !ASSERT
3741 3742 3743 3744 3745
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3746 3747
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3748
    _surviving_young_words[i] += surv_young_words[i];
3749
  }
3750 3751 3752 3753 3754
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3755
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3756 3757 3758
  _surviving_young_words = NULL;
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3776 3777 3778
    return false;
  }
};
3779
#endif // ASSERT
3780

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3792
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3803
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3804 3805 3806 3807 3808 3809
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3810 3811 3812 3813 3814
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3815
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3816 3817

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3818
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3844
  gclog_or_tty->flush();
3845 3846
}

3847
bool
3848
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3849 3850 3851
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3852
  if (GC_locker::check_active_before_gc()) {
3853
    return false;
3854 3855
  }

3856
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3857 3858 3859

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3860
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3861 3862
  ResourceMark rm;

3863
  print_heap_before_gc();
S
sla 已提交
3864
  trace_heap_before_gc(_gc_tracer_stw);
3865

3866
  verify_region_sets_optional();
3867
  verify_dirty_young_regions();
3868

3869 3870 3871 3872 3873 3874 3875 3876
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3877

3878 3879
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3880

3881 3882 3883 3884
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3885

3886 3887
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3888 3889
    EvacuationInfo evacuation_info;

3890 3891 3892
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3893
      increment_old_marking_cycles_started();
S
sla 已提交
3894
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3895
    }
S
sla 已提交
3896 3897 3898

    _gc_tracer_stw->report_yc_type(yc_type());

3899
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3900

3901 3902
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3903 3904
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3905
    log_gc_header();
3906

3907
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3908
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3909

T
tonyp 已提交
3910 3911 3912 3913 3914 3915
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3916
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3917
      append_secondary_free_list_if_not_empty_with_lock();
3918
    }
3919

J
johnc 已提交
3920 3921 3922
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3923

3924 3925 3926 3927
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3928 3929 3930 3931 3932
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3933
      increment_gc_time_stamp();
3934

3935
      verify_before_gc();
3936
      check_bitmaps("GC Start");
3937

3938
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3939

3940 3941 3942
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3943

3944 3945 3946
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3947

3948 3949 3950 3951 3952 3953 3954 3955 3956
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
3957
        _allocator->release_mutator_alloc_region();
3958 3959 3960 3961 3962 3963

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3964 3965 3966 3967 3968 3969
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3970 3971
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
3972
        double sample_start_time_sec = os::elapsedTime();
3973

3974
#if YOUNG_LIST_VERBOSE
3975 3976 3977
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3978 3979
#endif // YOUNG_LIST_VERBOSE

3980
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3981

3982 3983 3984 3985 3986 3987
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
3988
        double wait_time_ms = 0.0;
3989 3990
        if (waited) {
          double scan_wait_end = os::elapsedTime();
3991
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3992
        }
3993
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3994

3995
#if YOUNG_LIST_VERBOSE
3996 3997
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3998
#endif // YOUNG_LIST_VERBOSE
3999

4000 4001 4002
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4003

4004
#if YOUNG_LIST_VERBOSE
4005 4006 4007
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4008
#endif // YOUNG_LIST_VERBOSE
4009

S
sla 已提交
4010
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4011

4012 4013
        register_humongous_regions_with_in_cset_fast_test();

4014 4015 4016
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4017
        // GC). We also call this after finalize_cset() to
4018 4019 4020 4021 4022 4023
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4024 4025 4026 4027 4028
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4029 4030 4031
          }
        }

4032
#ifdef ASSERT
4033 4034
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4035
#endif // ASSERT
4036

4037
        setup_surviving_young_words();
4038

4039
        // Initialize the GC alloc regions.
4040
        _allocator->init_gc_alloc_regions(evacuation_info);
4041

4042
        // Actually do the work...
S
sla 已提交
4043
        evacuate_collection_set(evacuation_info);
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4055
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4056 4057 4058

        eagerly_reclaim_humongous_regions();

4059
        g1_policy()->clear_collection_set();
4060

4061
        cleanup_surviving_young_words();
4062

4063 4064
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4065

4066
        clear_cset_fast_test();
4067

4068
        _young_list->reset_sampled_info();
4069

4070 4071 4072 4073 4074 4075
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4076 4077

#if YOUNG_LIST_VERBOSE
4078 4079
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4080
#endif // YOUNG_LIST_VERBOSE
4081

4082
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4083 4084
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4085

4086
        _young_list->reset_auxilary_lists();
4087

4088
        if (evacuation_failed()) {
4089
          _allocator->set_used(recalculate_used());
S
sla 已提交
4090 4091 4092 4093 4094 4095
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4096 4097 4098
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
4099
          _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4100
        }
4101

4102
        if (g1_policy()->during_initial_mark_pause()) {
4103 4104 4105
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4106 4107
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4108 4109 4110
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4111
        }
4112

4113
        allocate_dummy_regions();
4114

4115
#if YOUNG_LIST_VERBOSE
4116 4117 4118
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4119
#endif // YOUNG_LIST_VERBOSE
4120

4121
        _allocator->init_mutator_alloc_region();
4122 4123 4124 4125 4126

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4127 4128
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4129
            if (!expand(expand_bytes)) {
4130
              // We failed to expand the heap. Cannot do anything about it.
4131
            }
4132 4133 4134
          }
        }

S
sla 已提交
4135
        // We redo the verification but now wrt to the new CSet which
4136 4137 4138 4139 4140 4141 4142
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4143 4144 4145 4146 4147
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4148
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4175
        verify_after_gc();
4176
        check_bitmaps("GC End");
4177

4178 4179
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4180

4181 4182
        // CM reference discovery will be re-enabled if necessary.
      }
4183

4184 4185 4186 4187 4188 4189
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4190
#ifdef TRACESPINNING
4191
      ParallelTaskTerminator::print_termination_counts();
4192
#endif
4193

4194 4195
      gc_epilogue(false);
    }
4196

4197 4198 4199
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4200
    // It is not yet to safe to tell the concurrent mark to
4201 4202 4203
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4204

4205
    _hrm.verify_optional();
4206 4207 4208 4209
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4210

4211
    print_heap_after_gc();
S
sla 已提交
4212
    trace_heap_after_gc(_gc_tracer_stw);
4213

4214 4215 4216 4217 4218
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4219

S
sla 已提交
4220 4221
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4222
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4223 4224
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4236
    // SuspendibleThreadSet::desynchronize().
4237 4238 4239
    doConcurrentMark();
  }

4240
  return true;
4241 4242
}

4243 4244 4245 4246 4247
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4248
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4249 4250
      break;
    case GCAllocForTenured:
4251
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4252 4253 4254
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4255
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4256 4257
      break;
  }
4258 4259 4260 4261 4262 4263

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4264 4265
}

4266 4267 4268
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4269
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4270 4271 4272 4273 4274 4275 4276
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4277
  delete _evac_failure_scan_stack;
4278 4279 4280
  _evac_failure_scan_stack = NULL;
}

4281 4282
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4283

4284 4285
  double remove_self_forwards_start = os::elapsedTime();

4286
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4287

4288 4289 4290 4291
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4292
  } else {
4293
    rsfp_task.work(0);
4294
  }
4295 4296 4297 4298 4299 4300 4301

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4302 4303

  // Now restore saved marks, if any.
4304 4305 4306 4307 4308 4309
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4310
  }
4311 4312
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4313 4314

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4332
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4333
                                               oop old) {
4334 4335 4336
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4337 4338 4339 4340
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4341 4342 4343
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4344

S
sla 已提交
4345 4346
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4365 4366 4367 4368 4369 4370 4371
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4382
    _hr_printer.evac_failure(r);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4396 4397 4398 4399
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4400 4401
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4402 4403 4404 4405
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4406 4407
                                                  size_t word_size,
                                                  AllocationContext_t context) {
4408
  if (purpose == GCAllocForSurvived) {
4409
    HeapWord* result = survivor_attempt_allocation(word_size, context);
4410 4411
    if (result != NULL) {
      return result;
4412
    } else {
4413 4414
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
4415
      return old_attempt_allocation(word_size, context);
4416
    }
4417 4418
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
4419
    HeapWord* result = old_attempt_allocation(word_size, context);
4420 4421
    if (result != NULL) {
      return result;
4422
    } else {
4423 4424
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
4425
      return survivor_attempt_allocation(word_size, context);
4426 4427 4428
    }
  }

4429 4430 4431
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4432 4433
}

4434
void G1ParCopyHelper::mark_object(oop obj) {
4435
  assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4436 4437

  // We know that the object is not moving so it's safe to read its size.
4438
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4439 4440
}

4441
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4442 4443 4444 4445
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

4446 4447
  assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4448 4449 4450 4451 4452

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4453
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4454 4455
}

4456 4457 4458 4459 4460 4461 4462
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4463
template <G1Barrier barrier, G1Mark do_mark_object>
4464
template <class T>
4465
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4466 4467 4468 4469 4470 4471 4472
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4473

4474 4475
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4476 4477 4478
  G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);

  if (state == G1CollectedHeap::InCSet) {
4479
    oop forwardee;
4480
    if (obj->is_forwarded()) {
4481
      forwardee = obj->forwardee();
4482
    } else {
4483
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4484 4485 4486
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
4487
    if (do_mark_object != G1MarkNone && forwardee != obj) {
4488 4489 4490
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4491
    }
4492

4493
    if (barrier == G1BarrierKlass) {
4494
      do_klass_barrier(p, forwardee);
4495
    }
4496
  } else {
4497 4498 4499
    if (state == G1CollectedHeap::IsHumongous) {
      _g1->set_humongous_is_live(obj);
    }
4500
    // The object is not in collection set. If we're a root scanning
4501 4502
    // closure during an initial mark pause then attempt to mark the object.
    if (do_mark_object == G1MarkFromRoot) {
4503
      mark_object(obj);
4504
    }
4505
  }
4506

4507
  if (barrier == G1BarrierEvac) {
4508
    _par_scan_state->update_rs(_from, p, _worker_id);
4509
  }
4510 4511
}

4512 4513
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4534
  void do_void();
4535

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4552
    pss->steal_and_trim_queue(queues());
4553 4554
  } while (!offer_termination());
}
4555

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
class G1CodeBlobClosure : public CodeBlobClosure {
  class HeapRegionGatheringOopClosure : public OopClosure {
    G1CollectedHeap* _g1h;
    OopClosure* _work;
    nmethod* _nm;

    template <typename T>
    void do_oop_work(T* p) {
      _work->do_oop(p);
      T oop_or_narrowoop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(oop_or_narrowoop)) {
        oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
        HeapRegion* hr = _g1h->heap_region_containing_raw(o);
        assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
        hr->add_strong_code_root(_nm);
      }
    }

  public:
    HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}

    void do_oop(oop* o) {
      do_oop_work(o);
    }

    void do_oop(narrowOop* o) {
      do_oop_work(o);
    }

    void set_nm(nmethod* nm) {
      _nm = nm;
    }
  };

  HeapRegionGatheringOopClosure _oc;
public:
  G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      if (!nm->test_set_oops_do_mark()) {
        _oc.set_nm(nm);
        nm->oops_do(&_oc);
        nm->fix_oop_relocations();
      }
    }
  }
};

4632 4633 4634 4635 4636
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4637
  uint _n_workers;
4638 4639 4640 4641 4642

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

public:
4643
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4644 4645 4646
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4647 4648
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4649 4650 4651 4652 4653 4654 4655 4656
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
  // Helps out with CLD processing.
  //
  // During InitialMark we need to:
  // 1) Scavenge all CLDs for the young GC.
  // 2) Mark all objects directly reachable from strong CLDs.
  template <G1Mark do_mark_object>
  class G1CLDClosure : public CLDClosure {
    G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
    G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
    G1KlassScanClosure                                _klass_in_cld_closure;
    bool                                              _claim;

   public:
    G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
                 bool only_young, bool claim)
        : _oop_closure(oop_closure),
          _oop_in_klass_closure(oop_closure->g1(),
                                oop_closure->pss(),
                                oop_closure->rp()),
          _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
          _claim(claim) {

    }

    void do_cld(ClassLoaderData* cld) {
      cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
    }
  };

4700 4701
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4702 4703

    double start_time_ms = os::elapsedTime() * 1000.0;
4704
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4705

4706 4707 4708
    {
      ResourceMark rm;
      HandleMark   hm;
4709

4710
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4711

4712
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4713
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4714

4715
      pss.set_evac_failure_closure(&evac_failure_cl);
4716

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
      G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
      // IM Weak code roots are handled later.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;
      CodeBlobClosure* strong_code_cl;
4745

4746 4747
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
4748 4749 4750
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
        strong_code_cl = &scan_mark_code_cl;
4751 4752 4753 4754 4755 4756 4757
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
4758 4759 4760 4761 4762 4763
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
        strong_code_cl = &scan_only_code_cl;
4764
      }
4765

4766

4767
      G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4768

4769
      pss.start_strong_roots();
4770 4771 4772 4773 4774 4775 4776 4777
      _g1h->g1_process_roots(strong_root_cl,
                             weak_root_cl,
                             &push_heap_rs_cl,
                             strong_cld_cl,
                             weak_cld_cl,
                             strong_code_cl,
                             worker_id);

4778
      pss.end_strong_roots();
4779

4780 4781 4782 4783 4784 4785
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4786
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4787
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4788 4789 4790 4791 4792 4793 4794 4795
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4796

4797
      assert(pss.queue_is_empty(), "should be empty");
4798

4799 4800 4801
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4802 4803
    }

4804
    double end_time_ms = os::elapsedTime() * 1000.0;
4805
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4806 4807 4808 4809 4810
  }
};

// *** Common G1 Evacuation Stuff

4811 4812
// This method is run in a GC worker.

4813 4814
void
G1CollectedHeap::
4815 4816 4817 4818 4819 4820 4821 4822 4823
g1_process_roots(OopClosure* scan_non_heap_roots,
                 OopClosure* scan_non_heap_weak_roots,
                 OopsInHeapRegionClosure* scan_rs,
                 CLDClosure* scan_strong_clds,
                 CLDClosure* scan_weak_clds,
                 CodeBlobClosure* scan_strong_code,
                 uint worker_i) {

  // First scan the shared roots.
4824 4825 4826
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

4827
  bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4828
  bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4829

4830
  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4831
  BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4832

4833 4834 4835 4836 4837
  process_roots(false, // no scoping; this is parallel code
                SharedHeap::SO_None,
                &buf_scan_non_heap_roots,
                &buf_scan_non_heap_weak_roots,
                scan_strong_clds,
4838 4839
                // Unloading Initial Marks handle the weak CLDs separately.
                (trace_metadata ? NULL : scan_weak_clds),
4840
                scan_strong_code);
4841

4842
  // Now the CM ref_processor roots.
4843
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4844 4845 4846 4847 4848
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4849 4850
  }

4851
  if (trace_metadata) {
4852 4853 4854 4855 4856 4857 4858 4859
    // Barrier to make sure all workers passed
    // the strong CLD and strong nmethods phases.
    active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());

    // Now take the complement of the strong CLDs.
    ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  }

4860
  // Finish up any enqueued closure apps (attributed as object copy time).
4861
  buf_scan_non_heap_roots.done();
4862
  buf_scan_non_heap_weak_roots.done();
4863

4864 4865
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
      + buf_scan_non_heap_weak_roots.closure_app_seconds();
4866

4867
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4868

4869
  double ext_root_time_ms =
4870
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4871

4872
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4873

4874 4875 4876
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
4877
  double satb_filtering_ms = 0.0;
4878 4879
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
4880 4881
      double satb_filter_start = os::elapsedTime();

4882
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
4883 4884

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4885
    }
4886
  }
4887
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4888 4889

  // Now scan the complement of the collection set.
4890
  G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4891 4892

  g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4893

4894 4895 4896
  _process_strong_tasks->all_tasks_completed();
}

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4910 4911

  bool _do_in_parallel;
4912 4913
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4914 4915
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
4916
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4931
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4932 4933
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4934
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4935 4936
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4937 4938 4939 4940 4941 4942 4943 4944

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
                             "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                             "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
4945 4946 4947
  }

  void work(uint worker_id) {
4948
    if (_do_in_parallel) {
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    nmethod* last;

    do {
      *num_claimed_nmethods = 0;

      first = last = (nmethod*)_claimed_nmethod;

      if (first != NULL) {
        for (int i = 0; i < MaxClaimNmethods; i++) {
          last = CodeCache::alive_nmethod(CodeCache::next(last));

          if (last == NULL) {
            break;
          }

          claimed_nmethods[i] = last;
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->oop_is_instance());

    return (InstanceKlass*)klass;
  }

public:

  void clean_klass(InstanceKlass* ik) {
    ik->clean_implementors_list(_is_alive);
    ik->clean_method_data(_is_alive);

    // G1 specific cleanup work that has
    // been moved here to be done in parallel.
    ik->clean_dependent_nmethods();
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

  // The parallel work done by all worker threads.
  void work(uint worker_id) {
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

5225
    // Let the threads mark that the first pass is done.
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
5248
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5249
                    workers()->active_workers() : 1);
5250

5251 5252
  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
5253 5254 5255 5256 5257 5258 5259
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                     _g1h->workers()->active_workers() : 1);
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads(n_workers);
      workers()->run_task(&g1_unlink_task);
      set_par_threads(0);
    } else {
      g1_unlink_task.work(0);
    }
5275
  }
P
pliden 已提交
5276 5277 5278 5279

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5280 5281
}

5282 5283 5284 5285 5286 5287 5288 5289 5290
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
    double start_time = os::elapsedTime();

5291
    RedirtyLoggedCardTableEntryClosure cl;
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
    timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
    timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  }
5302 5303 5304 5305 5306
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5319 5320 5321 5322 5323 5324 5325 5326

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5357
  void do_oop(oop* p) {
5358
    oop obj = *p;
5359
    assert(obj != NULL, "the caller should have filtered out NULL values");
5360

5361
    G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5362
    if (cset_state == G1CollectedHeap::InNeither) {
5363 5364 5365
      return;
    }
    if (cset_state == G1CollectedHeap::InCSet) {
5366 5367
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
5368 5369 5370 5371 5372
    } else {
      assert(!obj->is_forwarded(), "invariant" );
      assert(cset_state == G1CollectedHeap::IsHumongous,
             err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
      _g1->set_humongous_is_live(obj);
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

5402
    if (_g1h->is_in_cset_or_humongous(obj)) {
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5417
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5418
      // the referent object and update the pointer, while avoiding
5419 5420 5421 5422 5423
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5424
        assert(!Metaspace::contains((const void*)p),
5425
               err_msg("Unexpectedly found a pointer from metadata: "
5426
                              PTR_FORMAT, p));
5427
        _copy_non_heap_obj_cl->do_oop(p);
5428 5429
      }
    }
5430
  }
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5465
  FlexibleWorkGang*  _workers;
5466 5467 5468 5469
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5470
                        FlexibleWorkGang* workers,
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5507
  virtual void work(uint worker_id) {
5508 5509 5510 5511 5512 5513
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5514
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Keep alive closure.
5531
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5532 5533 5534 5535 5536

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5537
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5572 5573
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5574 5575 5576
  }
};

S
sla 已提交
5577
// Driver routine for parallel reference enqueueing.
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5602
  uint _n_workers;
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5613
  void work(uint worker_id) {
5614 5615 5616
    ResourceMark rm;
    HandleMark   hm;

5617
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5618 5619 5620 5621
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5622
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5640
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5641 5642 5643

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5644 5645
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5646 5647 5648 5649

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5650
    assert(0 <= worker_id && worker_id < limit, "sanity");
5651 5652 5653
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5654
    for (uint idx = worker_id; idx < limit; idx += stride) {
5655
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5676
    assert(pss.queue_is_empty(), "should be");
5677 5678 5679 5680
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5681
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5697
  // As a result the copy closure would not have been applied to the
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5708
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5709 5710
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5711

J
johnc 已提交
5712 5713 5714 5715
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5734
  G1ParScanThreadState            pss(this, 0, NULL);
5735 5736 5737 5738 5739 5740 5741 5742

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5743
  assert(pss.queue_is_empty(), "pre-condition");
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
  }

  // Keep alive closure.
5757
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5758 5759 5760 5761 5762 5763 5764

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5765
  ReferenceProcessorStats stats;
5766 5767
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5768 5769 5770 5771
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5772 5773
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5774 5775
  } else {
    // Parallel reference processing
J
johnc 已提交
5776 5777
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5778

J
johnc 已提交
5779
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5780 5781 5782 5783
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5784 5785
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5786 5787
  }

S
sla 已提交
5788
  _gc_tracer_stw->report_gc_reference_stats(stats);
5789 5790

  // We have completed copying any necessary live referent objects.
5791
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5792 5793

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5794
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5795 5796 5797
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5798
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5810
    // Parallel reference enqueueing
5811

J
johnc 已提交
5812 5813 5814 5815
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5816

J
johnc 已提交
5817
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5818 5819 5820 5821 5822 5823 5824 5825 5826
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5827
  // and could significantly increase the pause time.
5828 5829

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5830
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5831 5832
}

S
sla 已提交
5833
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5834
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5835
  _evacuation_failed = false;
5836

5837 5838 5839
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5840
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5841 5842 5843 5844 5845

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5846

5847
  uint n_workers;
5848 5849 5850 5851 5852 5853 5854 5855
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5856
    workers()->set_active_workers(n_workers);
5857 5858 5859 5860 5861 5862 5863 5864
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5865 5866 5867 5868 5869

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5870
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5871 5872
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5873

5874
  {
5875
    StrongRootsScope srs(this);
5876 5877 5878 5879
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (g1_policy()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5900 5901
  }

5902
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5903
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5904 5905 5906

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5907
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5908

5909
  set_par_threads(0);
5910

5911 5912 5913 5914 5915
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5916
  process_discovered_references(n_workers);
5917

5918
  // Weak root processing.
5919
  {
5920
    G1STWIsAliveClosure is_alive(this);
5921 5922
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5923 5924 5925
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5926
  }
5927

5928
  _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5929
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5930

5931 5932 5933 5934 5935
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5936

5937 5938
  purge_code_root_memory();

J
johnc 已提交
5939 5940 5941 5942 5943
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5944 5945 5946 5947
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5948 5949 5950 5951 5952

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5953 5954
  }

5955 5956 5957
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5958
  // the act of enqueueing entries on to the pending list
5959 5960 5961
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5962
  enqueue_discovered_references(n_workers);
5963

5964
  redirty_logged_cards();
5965 5966 5967
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5968 5969
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5970 5971
                                  bool par,
                                  bool locked) {
5972
  assert(!hr->is_free(), "the region should not be free");
5973
  assert(!hr->is_empty(), "the region should not be empty");
5974
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5975 5976
  assert(free_list != NULL, "pre-condition");

5977 5978 5979 5980 5981
  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

5982 5983 5984 5985 5986 5987
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5988
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5989
  free_list->add_ordered(hr);
5990 5991 5992 5993 5994 5995 5996 5997 5998
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5999 6000 6001
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6002
  hr->clear_humongous();
6003
  free_region(hr, free_list, par);
6004

6005
  uint i = hr->hrm_index() + 1;
6006
  while (i < last_index) {
6007
    HeapRegion* curr_hr = region_at(i);
6008
    assert(curr_hr->continuesHumongous(), "invariant");
6009
    curr_hr->clear_humongous();
6010
    free_region(curr_hr, free_list, par);
6011 6012
    i += 1;
  }
6013 6014 6015 6016 6017
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6018
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6019 6020
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6021
  }
6022 6023 6024 6025 6026 6027 6028

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6029
    _hrm.insert_list_into_free_list(list);
6030 6031 6032
  }
}

6033
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6034
  _allocator->decrease_used(bytes);
6035 6036
}

6037
class G1ParCleanupCTTask : public AbstractGangTask {
6038
  G1SATBCardTableModRefBS* _ct_bs;
6039
  G1CollectedHeap* _g1h;
6040
  HeapRegion* volatile _su_head;
6041
public:
6042
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6043
                     G1CollectedHeap* g1h) :
6044
    AbstractGangTask("G1 Par Cleanup CT Task"),
6045
    _ct_bs(ct_bs), _g1h(g1h) { }
6046

6047
  void work(uint worker_id) {
6048 6049 6050 6051 6052
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6053

6054
  void clear_cards(HeapRegion* r) {
6055
    // Cards of the survivors should have already been dirtied.
6056
    if (!r->is_survivor()) {
6057 6058 6059 6060 6061
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6062 6063
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6064
  G1CollectedHeap* _g1h;
6065
  G1SATBCardTableModRefBS* _ct_bs;
6066
public:
6067
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6068
    : _g1h(g1h), _ct_bs(ct_bs) { }
6069
  virtual bool doHeapRegion(HeapRegion* r) {
6070
    if (r->is_survivor()) {
6071
      _g1h->verify_dirty_region(r);
6072
    } else {
6073
      _g1h->verify_not_dirty_region(r);
6074 6075 6076 6077
    }
    return false;
  }
};
6078

6079 6080
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6081
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6094
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6095
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6096 6097 6098 6099 6100
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6101 6102
}

6103
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6104
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6105
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6106
    verify_dirty_region(hr);
6107 6108 6109 6110 6111 6112
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
            err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
                           bitmap_name, result);
    gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
                           bitmap_name, tams, end);
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
    gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) return false;

    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}
#endif // PRODUCT
6194

6195
void G1CollectedHeap::cleanUpCardTable() {
6196
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6197 6198
  double start = os::elapsedTime();

J
johnc 已提交
6199 6200 6201
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6202

6203 6204
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6217 6218
      }
    }
J
johnc 已提交
6219 6220 6221 6222 6223 6224
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6225
  }
6226

6227
  double elapsed = os::elapsedTime() - start;
6228
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6229 6230
}

S
sla 已提交
6231
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6232 6233 6234
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6235 6236 6237
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6238 6239 6240 6241 6242
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6253
    assert(!is_on_master_free_list(cur), "sanity");
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6264 6265 6266 6267
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6268

6269 6270 6271
        start_sec = os::elapsedTime();
        non_young = true;
      }
6272 6273
    }

6274
    rs_lengths += cur->rem_set()->occupied_locked();
6275 6276 6277 6278 6279 6280 6281 6282

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6283
      assert(index != -1, "invariant");
6284
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6285 6286
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6287 6288 6289 6290 6291 6292

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6293 6294
    } else {
      int index = cur->young_index_in_cset();
6295
      assert(index == -1, "invariant");
6296 6297 6298 6299 6300 6301 6302
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6303 6304
      MemRegion used_mr = cur->used_region();

6305
      // And the region is empty.
6306
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6307
      pre_used += cur->used();
6308
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6309 6310
    } else {
      cur->uninstall_surv_rate_group();
6311
      if (cur->is_young()) {
6312
        cur->set_young_index_in_cset(-1);
6313
      }
6314
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6315
      // The region is now considered to be old.
6316
      cur->set_old();
T
tonyp 已提交
6317
      _old_set.add(cur);
S
sla 已提交
6318
      evacuation_info.increment_collectionset_used_after(cur->used());
6319 6320 6321 6322
    }
    cur = next;
  }

S
sla 已提交
6323
  evacuation_info.set_regions_freed(local_free_list.length());
6324 6325 6326 6327 6328
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6329 6330

  if (non_young) {
6331
    non_young_time_ms += elapsed_ms;
6332
  } else {
6333
    young_time_ms += elapsed_ms;
6334
  }
6335

6336 6337
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6338 6339
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6340 6341
}

6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

6361 6362 6363
    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
    // - never consider object arrays: while they are a valid target, they have not
    // been observed to be used as temporary objects.
    // - they would also pose considerable effort for cleaning up the the remembered
    // sets.
    // While this cleanup is not strictly necessary to be done (or done instantly),
    // given that their occurrence is very low, this saves us this additional
    // complexity.
6395
    uint region_idx = r->hrm_index();
6396 6397 6398 6399
    if (g1h->humongous_is_live(region_idx) ||
        g1h->humongous_region_is_always_live(region_idx)) {

      if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6400
        gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6401 6402 6403 6404
                               r->isHumongous(),
                               region_idx,
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
6405
                               next_bitmap->isMarked(r->bottom()),
6406
                               g1h->humongous_is_live(region_idx),
6407
                               obj->is_objArray()
6408 6409 6410 6411 6412 6413
                              );
      }

      return false;
    }

6414
    guarantee(!obj->is_objArray(),
6415 6416 6417 6418
              err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
                      r->bottom()));

    if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6419
      gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6420 6421 6422 6423 6424 6425
                             r->isHumongous(),
                             r->bottom(),
                             region_idx,
                             r->region_num(),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
6426
                             next_bitmap->isMarked(r->bottom()),
6427
                             g1h->humongous_is_live(region_idx),
6428
                             obj->is_objArray()
6429 6430
                            );
    }
6431 6432 6433 6434
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
    _freed_bytes += r->used();
    r->set_containing_set(NULL);
    _humongous_regions_removed.increment(1u, r->capacity());
    g1h->free_humongous_region(r, _free_region_list, false);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

  if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hr_printer = _g1h->hr_printer();
  if (hr_printer->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hr_printer->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6511 6512 6513 6514
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6515 6516
  }

6517 6518
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6519 6520
}

6521
void G1CollectedHeap::reset_free_regions_coming() {
6522 6523
  assert(free_regions_coming(), "pre-condition");

6524 6525 6526 6527
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6528 6529
  }

6530 6531 6532
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6533 6534 6535
  }
}

6536 6537 6538 6539 6540
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6541 6542
  }

6543 6544 6545
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6546 6547 6548
  }

  {
6549 6550 6551
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6552 6553 6554
    }
  }

6555 6556 6557
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6583 6584
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6585

6586
  if (check_heap) {
6587 6588 6589 6590 6591 6592 6593 6594
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6595 6596
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6597
  HeapRegionSet *_old_set;
6598

T
tonyp 已提交
6599
public:
6600
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6601

T
tonyp 已提交
6602
  bool doHeapRegion(HeapRegion* r) {
6603
    if (r->is_old()) {
T
tonyp 已提交
6604
      _old_set->remove(r);
6605 6606 6607 6608 6609 6610 6611
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->isHumongous(),
             "it cannot be another type");
T
tonyp 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6628 6629 6630 6631
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6632
  }
6633
  _hrm.remove_all_free_regions();
6634 6635
}

T
tonyp 已提交
6636 6637 6638
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6639
  HeapRegionSet*   _old_set;
6640
  HeapRegionManager*   _hrm;
T
tonyp 已提交
6641
  size_t          _total_used;
6642

6643
public:
T
tonyp 已提交
6644
  RebuildRegionSetsClosure(bool free_list_only,
6645
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
T
tonyp 已提交
6646
    _free_list_only(free_list_only),
6647 6648
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
T
tonyp 已提交
6649 6650 6651 6652
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6653

6654
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6655 6656 6657 6658 6659 6660
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
6661
      r->set_free();
6662
      r->set_allocation_context(AllocationContext::system());
6663
      _hrm->insert_into_free_list(r);
T
tonyp 已提交
6664 6665 6666 6667 6668 6669
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
6670 6671 6672 6673 6674
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such.
        r->set_old();
T
tonyp 已提交
6675
        _old_set->add(r);
6676
      }
T
tonyp 已提交
6677
      _total_used += r->used();
6678
    }
T
tonyp 已提交
6679

6680 6681 6682
    return false;
  }

T
tonyp 已提交
6683 6684
  size_t total_used() {
    return _total_used;
6685
  }
6686 6687
};

T
tonyp 已提交
6688 6689 6690
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6691 6692 6693 6694
  if (!free_list_only) {
    _young_list->empty_list();
  }

6695
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
T
tonyp 已提交
6696 6697 6698
  heap_region_iterate(&cl);

  if (!free_list_only) {
6699
    _allocator->set_used(cl.total_used());
T
tonyp 已提交
6700
  }
6701 6702
  assert(_allocator->used_unlocked() == recalculate_used(),
         err_msg("inconsistent _allocator->used_unlocked(), "
T
tonyp 已提交
6703
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6704
                 _allocator->used_unlocked(), recalculate_used()));
6705 6706 6707 6708 6709 6710
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6711 6712
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
6713
  return hr->is_in(p);
6714 6715
}

6716 6717
// Methods for the mutator alloc region

6718 6719 6720 6721 6722
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6723 6724
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6725
    HeapRegion* new_alloc_region = new_region(word_size,
6726
                                              false /* is_old */,
6727 6728 6729
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6730
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6731
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
6732 6733 6734 6735 6736 6737 6738 6739 6740
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6741
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6742 6743

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6744
  _allocator->increase_used(allocated_bytes);
6745
  _hr_printer.retire(alloc_region);
6746 6747 6748 6749
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6750 6751
}

6752 6753 6754
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6755
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6756
  uint n_workers = workers()->active_workers();
6757
  assert(UseDynamicNumberOfGCThreads ||
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6768 6769 6770
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6771
                                                 uint count,
6772 6773 6774 6775
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6776
    bool survivor = (ap == GCAllocForSurvived);
6777
    HeapRegion* new_alloc_region = new_region(word_size,
6778
                                              !survivor,
6779 6780 6781 6782 6783
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
6784
      new_alloc_region->record_top_and_timestamp();
6785
      if (survivor) {
6786 6787
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6788
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
6789
      } else {
6790
        new_alloc_region->set_old();
6791
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6792
        check_bitmaps("Old Region Allocation", new_alloc_region);
6793
      }
6794 6795
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6807 6808
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6809 6810 6811
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6812 6813
  } else {
    _old_set.add(alloc_region);
6814 6815 6816 6817
  }
  _hr_printer.retire(alloc_region);
}

6818 6819
// Heap region set verification

6820 6821
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6822 6823
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
6824
  HeapRegionManager*   _hrm;
6825 6826

public:
6827 6828 6829
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6830

6831 6832
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
6833 6834
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6835
    _old_count(), _humongous_count(), _free_count(){ }
6836 6837 6838 6839 6840 6841 6842 6843 6844

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6845
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6846
      _humongous_count.increment(1u, hr->capacity());
6847
    } else if (hr->is_empty()) {
6848
      assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6849
      _free_count.increment(1u, hr->capacity());
6850
    } else if (hr->is_old()) {
6851
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6852
      _old_count.increment(1u, hr->capacity());
6853 6854
    } else {
      ShouldNotReachHere();
6855
    }
6856 6857
    return false;
  }
6858

6859
  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6860 6861 6862 6863 6864 6865 6866 6867
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

6868
    guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6869 6870 6871
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6872 6873
};

6874 6875
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6876

6877
  // First, check the explicit lists.
6878
  _hrm.verify();
6879 6880 6881 6882 6883
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6884
    _secondary_free_list.verify_list();
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6900

T
tonyp 已提交
6901 6902 6903 6904
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6905

6906 6907
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6908

6909
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6910
  heap_region_iterate(&cl);
6911
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6912
}
J
johnc 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6925 6926 6927 6928
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6929

6930 6931
      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
J
johnc 已提交
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6952 6953 6954 6955 6956
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

6985 6986
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
6987
  G1CodeRootSet::purge();
6988 6989 6990 6991
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

7005
    if (ScavengeRootsInCode) {
J
johnc 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}