g1CollectedHeap.cpp 251.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25
#include "precompiled.hpp"
J
johnc 已提交
26
#include "code/codeCache.hpp"
27 28 29 30 31
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
32
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
33 34
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
35
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
36
#include "gc_implementation/g1/g1EvacFailure.hpp"
37
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
38
#include "gc_implementation/g1/g1Log.hpp"
39 40 41
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
S
sla 已提交
42
#include "gc_implementation/g1/g1YCTypes.hpp"
43
#include "gc_implementation/g1/heapRegion.inline.hpp"
44 45 46
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
47 48 49 50
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
51 52 53
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
54
#include "memory/iterator.hpp"
55
#include "memory/referenceProcessor.hpp"
56 57 58
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/vmThread.hpp"
59
#include "utilities/ticks.hpp"
60

61 62
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

63 64 65
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
66
#define YOUNG_LIST_VERBOSE 0
67 68 69 70 71 72
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
73 74 75 76 77
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
78

79 80 81 82 83 84
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
S
sla 已提交
85
// SharedHeap::process_strong_roots() which calls eventually to
86 87 88 89 90
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

91 92 93 94 95 96 97 98 99 100 101 102 103 104
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
105
    bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
106 107 108 109 110
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
129
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
160 161
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}

162 163 164 165 166 167 168 169 170 171
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

172 173 174 175 176 177 178 179
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

180 181 182 183
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
184 185 186 187 188 189 190 191 192
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

193
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
194 195 196 197
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
198
  assert(hr->is_survivor(), "should be flagged as survivor region");
199 200 201 202
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
203
    _survivor_tail = hr;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
228
  _survivor_tail = NULL;
229 230 231 232 233 234 235 236 237 238
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

239
  uint length = 0;
240 241 242
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
243
    if (!curr->is_young()) {
244
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
245
                             "incorrectly tagged (y: %d, surv: %d)",
246
                             curr->bottom(), curr->end(),
247
                             curr->is_young(), curr->is_survivor());
248 249 250 251 252 253 254 255 256 257
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
258
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
259 260 261
                           length, _length);
  }

262
  return ret;
263 264
}

265
bool YoungList::check_list_empty(bool check_sample) {
266 267 268
  bool ret = true;

  if (_length != 0) {
269
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

285
  return ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
302 303 304 305 306 307 308 309 310 311 312 313
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

314 315 316 317 318 319 320 321 322 323 324 325 326 327
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
328
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
329

330
  int young_index_in_cset = 0;
331 332 333
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
334
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
335 336 337 338 339

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
340
    young_index_in_cset += 1;
341
  }
342
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
343 344
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

345 346
  _head   = _survivor_head;
  _length = _survivor_length;
347
  if (_survivor_head != NULL) {
348 349 350
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
351 352
  }

353 354 355 356
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
357

358
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
359 360 361 362 363

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
364 365
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
366 367 368 369 370 371 372

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
373 374
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
375 376
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
377
                             curr->age_in_surv_rate_group_cond());
378 379 380 381 382 383 384
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

438
void G1CollectedHeap::stop_conc_gc_threads() {
439
  _cg1r->stop();
440 441 442
  _cmThread->stop();
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
461
// can move in an incremental collection.
462 463 464 465 466
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
467 468
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
469 470 471 472 473 474
     return false;
  } else {
    return !hr->isHumongous();
  }
}

475 476
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
477
  CardTableModRefBS* ct_bs = g1_barrier_set();
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

526
HeapRegion*
T
tonyp 已提交
527
G1CollectedHeap::new_region_try_secondary_free_list() {
528 529 530 531 532
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
533
                               "secondary_free_list has %u entries",
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
552
    // Wait here until we get notified either when (a) there are no
553 554 555 556 557 558 559 560 561 562 563
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
564

565
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
566
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
567 568
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
569

570 571 572 573 574 575 576
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
577
      res = new_region_try_secondary_free_list();
578 579 580 581 582 583 584 585 586 587 588
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
589
    res = new_region_try_secondary_free_list();
590
  }
591 592 593 594 595 596 597
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

598 599 600 601 602
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
603
    if (expand(word_size * HeapWordSize)) {
604 605 606 607 608 609 610
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty. So
      // it would probably be OK to use remove_head(). But the extra
      // check for NULL is unlikely to be a performance issue here (we
      // just expanded the heap!) so let's just be conservative and
      // use remove_head_or_null().
611
      res = _free_list.remove_head_or_null();
612 613
    } else {
      _expand_heap_after_alloc_failure = false;
614
    }
615 616 617 618
  }
  return res;
}

619 620
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
621 622 623
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

624
  uint first = G1_NULL_HRS_INDEX;
625 626
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
S
sla 已提交
627
    // path. The caller will attempt the expansion if this fails, so
628
    // let's not try to expand here too.
629
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
630 631 632
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
633
      first = G1_NULL_HRS_INDEX;
634 635 636 637 638 639 640 641 642 643 644
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
645
    append_secondary_free_list_if_not_empty_with_lock();
646 647

    if (free_regions() >= num_regions) {
648 649
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
650
        for (uint i = first; i < first + num_regions; ++i) {
651
          HeapRegion* hr = region_at(i);
652
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
653
          assert(is_on_master_free_list(hr), "sanity");
654 655 656 657 658 659 660 661 662
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
663
HeapWord*
664 665
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
666
                                                           size_t word_size) {
667
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
668 669 670 671
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
672
  uint last = first + num_regions;
T
tonyp 已提交
673 674 675 676 677 678 679 680 681 682

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
683
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
684 685 686
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
687
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
688 689 690 691
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
692
  // should also match the end of the last region in the series.
T
tonyp 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
722
  for (uint i = first + 1; i < last; ++i) {
723
    hr = region_at(i);
T
tonyp 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
744 745 746 747 748 749 750 751 752 753 754
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
768
  for (uint i = first + 1; i < last; ++i) {
769
    hr = region_at(i);
T
tonyp 已提交
770 771 772 773 774
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
775
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
776 777 778 779
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
780
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

796 797 798
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
799
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
800
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
801

802
  verify_region_sets_optional();
803

804 805 806 807 808
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
809
  if (first == G1_NULL_HRS_INDEX) {
810
    // The only thing we can do now is attempt expansion.
811
    if (fs + x_num >= num_regions) {
812 813 814 815 816 817 818 819 820 821
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

822 823 824 825 826
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
827
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
828 829 830
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
831 832
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
833 834
    }
  }
835

T
tonyp 已提交
836
  HeapWord* result = NULL;
837
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
838 839 840
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
841 842 843 844 845

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
846
  }
847 848

  verify_region_sets_optional();
T
tonyp 已提交
849 850

  return result;
851 852
}

853 854 855
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
856

857
  unsigned int dummy_gc_count_before;
858 859
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
860 861 862
}

HeapWord*
863 864 865
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
866

S
sla 已提交
867
  // Loop until the allocation is satisfied, or unsatisfied after GC.
868
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
869
    unsigned int gc_count_before;
870

871 872
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
873
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
874
    } else {
875
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
876 877 878 879
    }
    if (result != NULL) {
      return result;
    }
880

881 882 883 884
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
885

886 887 888 889 890 891
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
892
        // Allocations that take place on VM operations do not do any
893 894
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
895 896 897
        dirty_young_block(result, word_size);
      }
      return result;
898
    } else {
899 900 901
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
902 903
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
904 905 906 907 908
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
909
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
910 911 912
    }
  }

913
  ShouldNotReachHere();
914 915 916
  return NULL;
}

917
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
918 919
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
920 921 922 923 924
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
925

926 927 928 929 930 931 932
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
933
  HeapWord* result = NULL;
934 935 936
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
937

938 939 940 941 942 943 944
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
945
      }
946

947 948 949
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
950

951 952
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
953 954
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
955 956 957 958 959 960 961 962
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
963 964 965 966 967 968 969 970 971 972 973 974
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
975 976
      }
    }
977

978 979
    if (should_try_gc) {
      bool succeeded;
980 981
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
982
      if (result != NULL) {
983
        assert(succeeded, "only way to get back a non-NULL result");
984 985 986
        return result;
      }

987 988 989 990 991
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
992
        *gc_count_before_ret = total_collections();
993 994 995
        return NULL;
      }
    } else {
996 997 998 999 1000
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1001 1002 1003
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1004
      GC_locker::stall_until_clear();
1005
      (*gclocker_retry_count_ret) += 1;
1006 1007
    }

S
sla 已提交
1008
    // We can reach here if we were unsuccessful in scheduling a
1009 1010 1011 1012 1013 1014 1015 1016 1017
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1018
    if (result != NULL) {
1019
      return result;
1020 1021
    }

1022 1023 1024
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1025
      warning("G1CollectedHeap::attempt_allocation_slow() "
1026
              "retries %d times", try_count);
1027 1028 1029
    }
  }

1030 1031
  ShouldNotReachHere();
  return NULL;
1032 1033
}

1034
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1035 1036
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1048
  assert_heap_not_locked_and_not_at_safepoint();
1049 1050
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1051

1052 1053 1054 1055 1056
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1057 1058
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1059 1060 1061
    collect(GCCause::_g1_humongous_allocation);
  }

1062 1063 1064 1065 1066
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1067
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1068
    bool should_try_gc;
1069
    unsigned int gc_count_before;
1070

1071
    {
1072
      MutexLockerEx x(Heap_lock);
1073

1074 1075 1076 1077
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1078 1079
      if (result != NULL) {
        return result;
1080
      }
1081

1082 1083 1084
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1097 1098 1099
      }
    }

1100 1101 1102 1103
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1104

1105
      bool succeeded;
1106 1107
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1118
        *gc_count_before_ret = total_collections();
1119
        return NULL;
1120 1121
      }
    } else {
1122 1123 1124 1125 1126
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1127 1128 1129
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1130
      GC_locker::stall_until_clear();
1131
      (*gclocker_retry_count_ret) += 1;
1132 1133
    }

S
sla 已提交
1134
    // We can reach here if we were unsuccessful in scheduling a
1135 1136 1137 1138 1139 1140
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1141 1142
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1143 1144
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1145 1146
    }
  }
1147 1148

  ShouldNotReachHere();
1149
  return NULL;
1150 1151
}

1152 1153
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1154
  assert_at_safepoint(true /* should_be_vm_thread */);
1155 1156 1157
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1158

1159 1160 1161 1162
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1163 1164 1165 1166 1167
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1168
  }
1169 1170

  ShouldNotReachHere();
1171 1172 1173
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1174
  G1CollectedHeap* _g1h;
1175 1176
  ModRefBarrierSet* _mr_bs;
public:
1177
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1178 1179
    _g1h(g1h), _mr_bs(mr_bs) {}

1180
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1181 1182
    HeapRegionRemSet* hrrs = r->rem_set();

1183
    if (r->continuesHumongous()) {
J
johnc 已提交
1184 1185 1186
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1187
      return false;
1188
    }
J
johnc 已提交
1189

1190
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1191
    hrrs->clear();
1192 1193 1194 1195 1196 1197
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1198

1199 1200 1201 1202
    return false;
  }
};

1203
void G1CollectedHeap::clear_rsets_post_compaction() {
1204
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1205 1206
  heap_region_iterate(&rs_clear);
}
1207

1208 1209 1210 1211 1212 1213
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1214
    _cl(g1->g1_rem_set(), worker_i),
1215 1216 1217
    _worker_i(worker_i),
    _g1h(g1)
  { }
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1236 1237 1238
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1239
                                          _g1->workers()->active_workers(),
1240 1241 1242 1243
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1255
        if (hr->region_num() == 1) {
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1273 1274 1275 1276 1277
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1278
bool G1CollectedHeap::do_collection(bool explicit_gc,
1279
                                    bool clear_all_soft_refs,
1280
                                    size_t word_size) {
1281 1282
  assert_at_safepoint(true /* should_be_vm_thread */);

1283
  if (GC_locker::check_active_before_gc()) {
1284
    return false;
1285 1286
  }

S
sla 已提交
1287
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1288
  gc_timer->register_gc_start();
S
sla 已提交
1289 1290 1291 1292

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1293
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1294 1295
  ResourceMark rm;

1296
  print_heap_before_gc();
S
sla 已提交
1297
  trace_heap_before_gc(gc_tracer);
1298

1299
  size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1300

1301
  verify_region_sets_optional();
1302

1303 1304 1305 1306 1307
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1308 1309 1310 1311
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1312
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313 1314
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1315

1316
    {
S
sla 已提交
1317
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1337

1338 1339 1340
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1341

1342
      assert(used() == recalculate_used(), "Should be equal");
1343

1344
      verify_before_gc();
1345

S
sla 已提交
1346
      pre_full_gc_dump(gc_timer);
1347

1348
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1349

1350 1351 1352 1353 1354
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1355

1356 1357 1358 1359
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1360

1361 1362 1363 1364
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1365

1366 1367 1368 1369
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370

1371 1372 1373 1374 1375 1376 1377
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1378

1379 1380
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1381

1382 1383 1384
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1385

1386 1387
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388

1389 1390
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391

1392 1393
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394

1395 1396 1397 1398 1399
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1400

1401 1402
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1403

1404 1405 1406
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1407

1408
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409

1410
      MemoryService::track_memory_usage();
1411

1412 1413
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1414

1415 1416
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1417
      MetaspaceAux::verify_metrics();
1418

1419 1420 1421 1422 1423 1424
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1425

1426 1427
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1428
      // sets, and clear all cards.  Later we will rebuild remembered
1429 1430 1431
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1432

1433 1434
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1435

1436 1437 1438 1439
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1440

1441 1442 1443
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1444

1445 1446 1447 1448
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1449
      }
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1487

J
johnc 已提交
1488 1489 1490
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1491 1492 1493
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1494

1495 1496 1497
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1498

1499 1500 1501 1502 1503
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1504

1505 1506 1507 1508 1509
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1510

1511 1512
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1513

1514 1515
      _hrs.verify_optional();
      verify_region_sets_optional();
1516

1517 1518
      verify_after_gc();

1519 1520 1521
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1522

1523 1524 1525 1526
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
1527

1528
      init_mutator_alloc_region();
1529

1530 1531
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1532

1533 1534 1535
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1536

1537 1538 1539 1540 1541
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1542

1543 1544
      gc_epilogue(true);
    }
1545

1546
    if (G1Log::finer()) {
1547
      g1_policy()->print_detailed_heap_transition(true /* full */);
1548
    }
1549 1550

    print_heap_after_gc();
S
sla 已提交
1551 1552 1553
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1554

1555
    gc_timer->register_gc_end();
S
sla 已提交
1556
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1557
  }
1558

1559
  return true;
1560 1561 1562
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563 1564 1565 1566 1567 1568 1569 1570
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1583 1584 1585 1586
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1587
  // We don't have floating point command-line arguments
1588
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1589
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1590
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1591 1592
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1629

1630
  if (capacity_after_gc < minimum_desired_capacity) {
1631 1632
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1643 1644

    // No expansion, now see if we want to shrink
1645
  } else if (capacity_after_gc > maximum_desired_capacity) {
1646 1647
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1648 1649 1650 1651 1652 1653 1654 1655 1656
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1657 1658 1659 1660 1661 1662
    shrink(shrink_bytes);
  }
}


HeapWord*
1663 1664
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1665
  assert_at_safepoint(true /* should_be_vm_thread */);
1666 1667 1668

  *succeeded = true;
  // Let's attempt the allocation first.
1669 1670 1671
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1672 1673 1674 1675
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1676 1677 1678 1679 1680 1681 1682

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1683
    assert(*succeeded, "sanity");
1684 1685 1686
    return result;
  }

1687 1688 1689 1690 1691 1692 1693 1694
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1695

1696 1697
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1698
                                  true /* expect_null_mutator_alloc_region */);
1699
  if (result != NULL) {
1700
    assert(*succeeded, "sanity");
1701 1702 1703
    return result;
  }

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1715
                                  true /* expect_null_mutator_alloc_region */);
1716
  if (result != NULL) {
1717
    assert(*succeeded, "sanity");
1718 1719 1720
    return result;
  }

1721
  assert(!collector_policy()->should_clear_all_soft_refs(),
1722
         "Flag should have been handled and cleared prior to this point");
1723

1724 1725 1726 1727
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1728
  assert(*succeeded, "sanity");
1729 1730 1731 1732 1733 1734 1735 1736 1737
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1738 1739 1740
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1741

1742
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1743 1744 1745 1746 1747
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1748
  if (expand(expand_bytes)) {
1749
    _hrs.verify_optional();
1750 1751
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1752
                                 false /* expect_null_mutator_alloc_region */);
1753
  }
1754
  return NULL;
1755 1756
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
1768 1769
  // Tell the hot card cache about the update
  _cg1r->hot_card_cache()->resize_card_counts(capacity());
1770 1771
}

1772 1773
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1774 1775
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1776 1777 1778 1779 1780
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1781

1782 1783 1784 1785 1786 1787 1788
  if (_g1_storage.uncommitted_size() == 0) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1789 1790
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1791 1792
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1818
    }
1819
    _free_list.add_as_tail(&expansion_list);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1830
    g1_policy()->record_new_heap_size(n_regions());
1831
  } else {
1832 1833 1834
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1835 1836 1837 1838 1839
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1840
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1841 1842
    }
  }
1843
  return successful;
1844 1845
}

1846
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1847 1848 1849 1850
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1851 1852 1853
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1854
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1855
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1856 1857 1858 1859 1860 1861

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1862 1863 1864 1865 1866
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    _g1_storage.shrink_by(shrunk_bytes);
    HeapWord* new_end = (HeapWord*) _g1_storage.high();

1867
    if (_hr_printer.is_active()) {
1868 1869
      HeapWord* curr = old_end;
      while (curr > new_end) {
1870 1871 1872 1873 1874 1875
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
    }

1876
    _expansion_regions += num_regions_removed;
1877 1878
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1879
    g1_policy()->record_new_heap_size(n_regions());
1880 1881 1882 1883
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1884 1885 1886 1887
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1888 1889
  verify_region_sets_optional();

1890 1891 1892 1893 1894
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1895 1896 1897
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1898
  tear_down_region_sets(true /* free_list_only */);
1899
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1900
  rebuild_region_sets(true /* free_list_only */);
1901

1902
  _hrs.verify_optional();
1903
  verify_region_sets_optional();
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1916
  _dirty_card_queue_set(false),
J
johnc 已提交
1917
  _into_cset_dirty_card_queue_set(false),
1918 1919 1920 1921
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1922 1923
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1924
  _evac_failure_scan_stack(NULL),
1925
  _mark_in_progress(false),
1926
  _cg1r(NULL), _summary_bytes_used(0),
1927
  _g1mm(NULL),
1928 1929
  _refine_cte_cl(NULL),
  _full_collection(false),
1930 1931 1932 1933
  _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1934
  _free_regions_coming(false),
1935 1936
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1937
  _retained_old_gc_alloc_region(NULL),
1938 1939
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1940
  _expand_heap_after_alloc_failure(true),
1941
  _surviving_young_words(NULL),
1942 1943
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1944
  _concurrent_cycle_started(false),
1945
  _in_cset_fast_test(NULL),
1946
  _in_cset_fast_test_base(NULL),
1947 1948
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1949 1950 1951 1952 1953 1954 1955
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1956 1957 1958
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1959 1960 1961

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1962 1963 1964 1965 1966 1967
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1968 1969
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1970
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1971

1972 1973 1974 1975
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1976
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1977
  }
1978 1979
  clear_cset_start_regions();

1980 1981 1982
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1983 1984 1985 1986
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1987
  CollectedHeap::pre_initialize();
1988 1989
  os::enable_vtime();

1990 1991
  G1Log::init();

1992 1993 1994 1995
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1996 1997 1998 1999
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

2000 2001 2002 2003 2004 2005 2006 2007 2008
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
2009
  size_t heap_alignment = collector_policy()->heap_alignment();
2010 2011 2012 2013

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2014
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2015

2016
  _cg1r = new ConcurrentG1Refine(this);
2017 2018

  // Reserve the maximum.
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

2031
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2032
                                                 heap_alignment);
2033 2034

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
2035
  // temporarily think something is in the heap.  (I've actually seen this
2036 2037 2038 2039 2040
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2041
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2042 2043 2044 2045

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
2046 2047
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2048 2049 2050 2051
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2052
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2053 2054 2055 2056 2057 2058 2059 2060 2061

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2062
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
2063 2064 2065 2066
                  (HeapWord*) _g1_reserved.end());
  assert(_hrs.max_length() == _expansion_regions,
         err_msg("max length: %u expansion regions: %u",
                 _hrs.max_length(), _expansion_regions));
2067

2068 2069 2070
  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2071 2072
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2073
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2074 2075 2076
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2077
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2078
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2079
            "too many cards per region");
2080

2081
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2082

2083 2084 2085 2086 2087
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2088 2089
  _in_cset_fast_test_length = max_regions();
  _in_cset_fast_test_base =
Z
zgu 已提交
2090
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2091

2092 2093 2094 2095
  // We're biasing _in_cset_fast_test to avoid subtracting the
  // beginning of the heap every time we want to index; basically
  // it's the same with what we do with the card table.
  _in_cset_fast_test = _in_cset_fast_test_base -
2096
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2097

2098 2099 2100 2101
  // Clear the _cset_fast_test bitmap in anticipation of adding
  // regions to the incremental collection set for the first
  // evacuation pause.
  clear_cset_fast_test();
2102

2103 2104
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2105 2106 2107 2108 2109
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2110 2111 2112 2113 2114
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2115
  // Now expand into the initial heap size.
2116
  if (!expand(init_byte_size)) {
2117
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2118 2119
    return JNI_ENOMEM;
  }
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2132
                                               G1SATBProcessCompletedThreshold,
2133
                                               Shared_SATB_Q_lock);
2134 2135 2136

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2137 2138
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2139 2140
                                                Shared_DirtyCardQ_lock);

2141 2142 2143
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2144 2145
                                      -1, // never trigger processing
                                      -1, // no limit on length
2146 2147 2148
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2159 2160 2161 2162
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2163 2164 2165
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2166 2167 2168

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2180 2181
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2182
  _g1mm = new G1MonitoringSupport(this);
2183

2184 2185 2186
  return JNI_OK;
}

2187 2188 2189 2190
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2191
void G1CollectedHeap::ref_processing_init() {
2192 2193
  // Reference processing in G1 currently works as follows:
  //
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2226

2227 2228
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2252
    new ReferenceProcessor(mr,    // span
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
2268
                                // lists does not require a barrier.
2269 2270 2271 2272 2273 2274
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2320 2321 2322
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2323
                                                 int worker_i) {
2324
  // Clean cards in the hot card cache
2325 2326
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2327

2328 2329
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2330
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2331 2332
    n_completed_buffers++;
  }
2333
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2334 2335 2336 2337 2338 2339 2340 2341
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2342 2343
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2344
  size_t result = _summary_bytes_used;
2345
  // Read only once in case it is set to NULL concurrently
2346
  HeapRegion* hr = _mutator_alloc_region.get();
2347 2348
  if (hr != NULL)
    result += hr->used();
2349 2350 2351
  return result;
}

2352 2353 2354 2355 2356
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2372
  heap_region_iterate(&blk);
2373 2374 2375 2376
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2377
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2388 2389
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2390 2391
    return 0;
  }
2392
  return hr->free();
2393 2394
}

2395
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2396 2397 2398 2399 2400 2401
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2436 2437
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2438 2439 2440 2441 2442
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2443 2444 2445 2446 2447 2448 2449 2450
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2451
  assert(concurrent ||
2452 2453 2454 2455 2456
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2457 2458

  // This is the case for the outer caller, i.e. the concurrent cycle.
2459
  assert(!concurrent ||
2460
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2461
         err_msg("for outer caller (concurrent cycle): "
2462 2463 2464
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2465

2466
  _old_marking_cycles_completed += 1;
2467

2468 2469 2470
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2471
  // incorrectly see that a marking cycle is still in progress.
2472
  if (concurrent) {
2473 2474 2475
    _cmThread->clear_in_progress();
  }

2476 2477 2478 2479 2480 2481 2482
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2483
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2496

2497
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2526
void G1CollectedHeap::collect(GCCause::Cause cause) {
2527
  assert_heap_not_locked();
2528

2529
  unsigned int gc_count_before;
2530
  unsigned int old_marking_count_before;
2531 2532 2533 2534 2535 2536 2537
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2538

2539 2540
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2541
      old_marking_count_before = _old_marking_cycles_started;
2542 2543 2544 2545 2546 2547
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2548
      VM_G1IncCollectionPause op(gc_count_before,
2549
                                 0,     /* word_size */
2550
                                 true,  /* should_initiate_conc_mark */
2551 2552
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2553

2554
      VMThread::execute(&op);
2555
      if (!op.pause_succeeded()) {
2556
        if (old_marking_count_before == _old_marking_cycles_started) {
2557
          retry_gc = op.should_retry_gc();
2558 2559 2560 2561 2562
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2563 2564 2565 2566 2567 2568

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2569
      }
2570
    } else {
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2584
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2585 2586
        VMThread::execute(&op);
      }
2587
    }
2588
  } while (retry_gc);
2589 2590 2591
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2592 2593 2594 2595 2596
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2597 2598
    return hr->is_in(p);
  } else {
2599
    return false;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2610
  ExtendedOopClosure* _cl;
2611
public:
2612
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2613 2614
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2615
    if (!r->continuesHumongous()) {
2616 2617 2618 2619 2620 2621
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2622
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2623
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2624
  heap_region_iterate(&blk);
2625 2626
}

2627
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2628
  IterateOopClosureRegionClosure blk(mr, cl);
2629
  heap_region_iterate(&blk);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2646
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2647
  IterateObjectClosureRegionClosure blk(cl);
2648
  heap_region_iterate(&blk);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2665
  heap_region_iterate(&blk);
2666 2667
}

2668 2669
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2670 2671 2672 2673
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2674
                                                 uint worker_id,
2675
                                                 uint no_of_par_workers,
2676
                                                 jint claim_value) {
2677
  const uint regions = n_regions();
2678
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2679 2680 2681 2682 2683
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2684
  // try to spread out the starting points of the workers
2685 2686 2687
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2688 2689

  // each worker will actually look at all regions
2690 2691
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2692 2693 2694 2695 2696 2697 2698 2699 2700
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2701
    if (r->claimHeapRegion(claim_value)) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2713
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2714 2715 2716 2717 2718 2719 2720 2721 2722
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

S
sla 已提交
2723
          // No one should have claimed it directly. We can given
2724 2725 2726 2727 2728
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
S
sla 已提交
2729
            // we should always be able to claim it; no one else should
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2745
      }
2746 2747 2748 2749

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2750 2751 2752 2753
    }
  }
}

2754 2755 2756 2757 2758 2759 2760 2761
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2762
void G1CollectedHeap::reset_heap_region_claim_values() {
2763 2764 2765 2766
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2767 2768 2769 2770 2771
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2772 2773 2774 2775 2776 2777 2778 2779 2780
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2781
  uint _failures;
2782
  HeapRegion* _sh_region;
2783

2784 2785 2786 2787 2788
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2789
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2790
                             "claim value = %d, should be %d",
2791 2792
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2793 2794 2795 2796 2797 2798 2799 2800
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2801
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2802
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2803
                               HR_FORMAT_PARAMS(r),
2804 2805 2806 2807 2808 2809 2810
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2811
  uint failures() { return _failures; }
2812 2813 2814 2815 2816 2817 2818
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2819 2820

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2821 2822 2823
private:
  jint _claim_value;
  uint _failures;
2824 2825 2826

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2827
    _claim_value(claim_value), _failures(0) { }
2828

2829
  uint failures() { return _failures; }
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2850 2851
#endif // ASSERT

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2864

2865 2866
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2867
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2895
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2896
    uint cs_size = g1_policy()->cset_region_length();
2897
    uint active_workers = workers()->active_workers();
2898 2899 2900 2901
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2902 2903
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2904 2905 2906 2907 2908 2909 2910 2911 2912

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2913
    for (uint i = start_ind; i < end_ind; i++) {
2914 2915 2916
      result = result->next_in_collection_set();
    }
  }
2917 2918 2919 2920 2921 2922 2923 2924 2925

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2926 2927 2928
  return result;
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2954 2955 2956 2957 2958
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2982
  return n_regions() > 0 ? region_at(0) : NULL;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3026 3027 3028 3029 3030 3031
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

3032
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
3033
  // since we can't allow tlabs to grow big enough to accommodate
3034 3035
  // humongous objects.

3036
  HeapRegion* hr = _mutator_alloc_region.get();
B
brutisso 已提交
3037
  size_t max_tlab = max_tlab_size() * wordSize;
3038
  if (hr == NULL) {
B
brutisso 已提交
3039
    return max_tlab;
3040
  } else {
B
brutisso 已提交
3041
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3042 3043 3044 3045
  }
}

size_t G1CollectedHeap::max_capacity() const {
3046
  return _g1_reserved.byte_size();
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3106
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3142
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3241
class VerifyLivenessOopClosure: public OopClosure {
3242 3243
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3244
public:
3245 3246 3247
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3248 3249 3250 3251 3252
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3253
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3254
              "Dead object referenced by a not dead object");
3255 3256 3257 3258
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3259
private:
3260 3261 3262
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3263
  VerifyOption _vo;
3264
public:
3265 3266 3267 3268 3269
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3270 3271 3272
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3273
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3274
    assert(o != NULL, "Huh?");
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3287
      o->oop_iterate_no_header(&isLive);
3288 3289 3290 3291
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3327
private:
3328 3329 3330
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3331
public:
3332 3333 3334
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3335 3336
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3337
      _vo(vo),
3338 3339 3340 3341 3342
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3343

3344
  bool doHeapRegion(HeapRegion* r) {
3345
    if (!r->continuesHumongous()) {
3346
      bool failures = false;
3347
      r->verify(_vo, &failures);
3348 3349 3350
      if (failures) {
        _failures = true;
      } else {
3351
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3352
        r->object_iterate(&not_dead_yet_cl);
3353 3354 3355 3356 3357 3358 3359
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3360
                                 not_dead_yet_cl.live_bytes());
3361 3362 3363 3364 3365 3366
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3367 3368
        }
      }
3369
    }
3370
    return false; // stop the region iteration if we hit a failure
3371 3372 3373
  }
};

J
johnc 已提交
3374
// This is the task used for parallel verification of the heap regions
3375 3376 3377 3378

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3379 3380
  VerifyOption     _vo;
  bool             _failures;
3381 3382

public:
3383 3384 3385
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3386
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3387
    AbstractGangTask("Parallel verify task"),
3388
    _g1h(g1h),
3389
    _vo(vo),
3390 3391 3392 3393 3394
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3395

3396
  void work(uint worker_id) {
3397
    HandleMark hm;
3398
    VerifyRegionClosure blk(true, _vo);
3399
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3400
                                          _g1h->workers()->active_workers(),
3401
                                          HeapRegion::ParVerifyClaimValue);
3402 3403 3404
    if (blk.failures()) {
      _failures = true;
    }
3405 3406 3407
  }
};

J
johnc 已提交
3408
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3409
  if (SafepointSynchronize::is_at_safepoint()) {
3410
    assert(Thread::current()->is_VM_thread(),
3411
           "Expected to be executed serially by the VM thread at this point");
3412

J
johnc 已提交
3413 3414 3415 3416
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3417
    VerifyKlassClosure klassCl(this, &rootsCl);
3418

3419 3420
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3421
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3422

3423 3424 3425
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3426
    process_strong_roots(true,      // activate StrongRootsScope
3427 3428
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3429
                         ScanningOption(so),  // roots scanning options
3430
                         &rootsCl,
3431
                         &blobsCl,
3432 3433
                         &klassCl
                         );
3434

J
johnc 已提交
3435
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3446
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3447 3448 3449 3450
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3451
      G1ParVerifyTask task(this, vo);
3452 3453 3454 3455
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3456 3457 3458
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3459 3460 3461
      if (task.failures()) {
        failures = true;
      }
3462

3463 3464
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3465 3466 3467 3468 3469 3470 3471 3472
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3473
      VerifyRegionClosure blk(false, vo);
3474
      heap_region_iterate(&blk);
3475 3476 3477
      if (blk.failures()) {
        failures = true;
      }
3478
    }
3479
    if (!silent) gclog_or_tty->print("RemSet ");
3480
    rem_set()->verify();
3481 3482 3483

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3484 3485 3486 3487
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3488
      gclog_or_tty->print_cr("");
3489
#ifndef PRODUCT
3490
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3491
        concurrent_mark()->print_reachable("at-verification-failure",
3492
                                           vo, false /* all */);
3493
      }
3494
#endif
3495 3496 3497
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3498
  } else {
3499 3500
    if (!silent)
      gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3501 3502 3503
  }
}

J
johnc 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3543 3544
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3545
            capacity()/K, used_unlocked()/K);
3546 3547 3548 3549 3550
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3551
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3552 3553 3554 3555 3556 3557
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3558
  st->cr();
3559
  MetaspaceAux::print_on(st);
3560 3561
}

3562 3563 3564 3565 3566
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3567 3568 3569 3570 3571
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3572
  PrintRegionClosure blk(st);
3573
  heap_region_iterate(&blk);
3574 3575
}

3576 3577 3578 3579 3580 3581 3582 3583 3584
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3585
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3586
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3587
    workers()->print_worker_threads_on(st);
3588
  }
T
tonyp 已提交
3589
  _cmThread->print_on(st);
3590
  st->cr();
T
tonyp 已提交
3591 3592
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3593 3594 3595
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3596
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3597 3598 3599
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3600
  _cg1r->threads_do(tc);
3601 3602 3603 3604 3605 3606 3607 3608 3609
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3610
  if (G1SummarizeRSetStats) {
3611 3612
    g1_rem_set()->print_summary_info();
  }
3613
  if (G1SummarizeConcMark) {
3614 3615 3616 3617 3618 3619
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3670 3671 3672 3673 3674 3675 3676
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3677
  // always_do_update_barrier = false;
3678 3679
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3680
  accumulate_statistics_all_tlabs();
3681
  ensure_parsability(true);
3682 3683 3684 3685 3686

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3687 3688 3689
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3690 3691 3692 3693 3694

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3695
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3696 3697
  }

3698 3699 3700 3701 3702
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3703
  // always_do_update_barrier = true;
3704

B
brutisso 已提交
3705 3706
  resize_all_tlabs();

3707 3708 3709
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3710 3711
}

3712 3713
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3714 3715
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3716
  assert_heap_not_locked_and_not_at_safepoint();
3717
  g1_policy()->record_stop_world_start();
3718 3719 3720 3721
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3722
                             gc_cause);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3733 3734 3735 3736
}

void
G1CollectedHeap::doConcurrentMark() {
3737 3738 3739 3740
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3756 3757 3758 3759
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3760 3761 3762
}

size_t G1CollectedHeap::cards_scanned() {
3763
  return g1_rem_set()->cardsScanned();
3764 3765 3766 3767
}

void
G1CollectedHeap::setup_surviving_young_words() {
3768 3769
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3770
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3771
  if (_surviving_young_words == NULL) {
3772
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3773 3774
                          "Not enough space for young surv words summary.");
  }
3775
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3776
#ifdef ASSERT
3777
  for (uint i = 0;  i < array_length; ++i) {
3778
    assert( _surviving_young_words[i] == 0, "memset above" );
3779
  }
3780
#endif // !ASSERT
3781 3782 3783 3784 3785
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3786 3787
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3788
    _surviving_young_words[i] += surv_young_words[i];
3789
  }
3790 3791 3792 3793 3794
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3795
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3796 3797 3798
  _surviving_young_words = NULL;
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3816 3817 3818
    return false;
  }
};
3819
#endif // ASSERT
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3832
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3843
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3844 3845 3846 3847 3848 3849
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3850 3851 3852 3853 3854 3855 3856 3857 3858
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->date_stamp(PrintGCDateStamps);
  gclog_or_tty->stamp(PrintGCTimeStamps);

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3859
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3885
  gclog_or_tty->flush();
3886 3887
}

3888
bool
3889
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3890 3891 3892
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3893
  if (GC_locker::check_active_before_gc()) {
3894
    return false;
3895 3896
  }

3897
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3898 3899 3900

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3901
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3902 3903
  ResourceMark rm;

3904
  print_heap_before_gc();
S
sla 已提交
3905
  trace_heap_before_gc(_gc_tracer_stw);
3906

3907
  verify_region_sets_optional();
3908
  verify_dirty_young_regions();
3909

3910 3911 3912 3913 3914 3915 3916 3917
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3918

3919 3920
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3921

3922 3923 3924 3925
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3926

3927 3928
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3929 3930
    EvacuationInfo evacuation_info;

3931 3932 3933
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3934
      increment_old_marking_cycles_started();
S
sla 已提交
3935
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3936
    }
S
sla 已提交
3937 3938 3939

    _gc_tracer_stw->report_yc_type(yc_type());

3940
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3941

3942 3943
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3944 3945
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3946
    log_gc_header();
3947

3948
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3949
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3950

T
tonyp 已提交
3951 3952 3953 3954 3955 3956
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3957
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3958
      append_secondary_free_list_if_not_empty_with_lock();
3959
    }
3960

J
johnc 已提交
3961 3962 3963
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3964

3965 3966 3967 3968
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3969 3970 3971 3972 3973
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3974
      increment_gc_time_stamp();
3975

3976
      verify_before_gc();
3977

3978
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3979

3980 3981 3982
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3983

3984 3985 3986
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4004 4005 4006 4007 4008 4009
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4010 4011
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4012
        double sample_start_time_sec = os::elapsedTime();
4013

4014
#if YOUNG_LIST_VERBOSE
4015 4016 4017
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4018 4019
#endif // YOUNG_LIST_VERBOSE

4020
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4021

4022 4023 4024 4025 4026 4027
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4028
        double wait_time_ms = 0.0;
4029 4030
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4031
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4032
        }
4033
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4034

4035
#if YOUNG_LIST_VERBOSE
4036 4037
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4038
#endif // YOUNG_LIST_VERBOSE
4039

4040 4041 4042
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4043

4044
#if YOUNG_LIST_VERBOSE
4045 4046 4047
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4048
#endif // YOUNG_LIST_VERBOSE
4049

S
sla 已提交
4050
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4051

4052 4053 4054
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4055
        // GC). We also call this after finalize_cset() to
4056 4057 4058 4059 4060 4061
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4075 4076 4077
          }
        }

4078
#ifdef ASSERT
4079 4080
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4081
#endif // ASSERT
4082

4083
        setup_surviving_young_words();
4084

4085
        // Initialize the GC alloc regions.
S
sla 已提交
4086
        init_gc_alloc_regions(evacuation_info);
4087

4088
        // Actually do the work...
S
sla 已提交
4089
        evacuate_collection_set(evacuation_info);
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4101
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4102
        g1_policy()->clear_collection_set();
4103

4104
        cleanup_surviving_young_words();
4105

4106 4107
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4108

4109 4110 4111 4112
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
4113

4114
        _young_list->reset_sampled_info();
4115

4116 4117 4118 4119 4120 4121
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4122 4123

#if YOUNG_LIST_VERBOSE
4124 4125
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4126
#endif // YOUNG_LIST_VERBOSE
4127

4128
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4129 4130
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4131

4132
        _young_list->reset_auxilary_lists();
4133

4134 4135
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
S
sla 已提交
4136 4137 4138 4139 4140 4141
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4142 4143 4144 4145 4146
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
4147

4148
        if (g1_policy()->during_initial_mark_pause()) {
4149 4150 4151
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4152 4153
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4154 4155 4156
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4157
        }
4158

4159
        allocate_dummy_regions();
4160

4161
#if YOUNG_LIST_VERBOSE
4162 4163 4164
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4165
#endif // YOUNG_LIST_VERBOSE
4166

4167 4168 4169 4170 4171 4172
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4173 4174
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4175 4176 4177 4178 4179 4180
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4181 4182 4183
          }
        }

S
sla 已提交
4184
        // We redo the verification but now wrt to the new CSet which
4185 4186 4187 4188 4189 4190 4191
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4192 4193 4194 4195 4196
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4197
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4224
        verify_after_gc();
4225

4226 4227
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4228

4229 4230
        // CM reference discovery will be re-enabled if necessary.
      }
4231

4232 4233 4234 4235 4236 4237
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4238 4239 4240
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4241 4242

#ifdef TRACESPINNING
4243
      ParallelTaskTerminator::print_termination_counts();
4244
#endif
4245

4246 4247
      gc_epilogue(false);
    }
4248

4249 4250 4251
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4252
    // It is not yet to safe to tell the concurrent mark to
4253 4254 4255
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4256

4257 4258 4259 4260 4261
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4262

4263
    print_heap_after_gc();
S
sla 已提交
4264
    trace_heap_after_gc(_gc_tracer_stw);
4265

4266 4267 4268 4269 4270
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4271

S
sla 已提交
4272 4273
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4274
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4275 4276
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

4292
  return true;
4293 4294
}

4295 4296 4297 4298 4299
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4300
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4301 4302
      break;
    case GCAllocForTenured:
4303
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4304 4305 4306
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4307
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4308 4309
      break;
  }
4310 4311 4312 4313 4314 4315

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4316 4317
}

4318 4319 4320 4321 4322 4323 4324 4325 4326
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4327

S
sla 已提交
4328
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4329
  assert_at_safepoint(true /* should_be_vm_thread */);
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
S
sla 已提交
4343
  // has been subsequently used to allocate a humongous
4344 4345 4346 4347 4348 4349 4350
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4351 4352 4353 4354 4355
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4356 4357
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4358 4359
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
S
sla 已提交
4360
    evacuation_info.set_alloc_regions_used_before(retained_region->used());
4361 4362 4363
  }
}

S
sla 已提交
4364 4365 4366
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
                                         _old_gc_alloc_region.count());
4367 4368 4369 4370 4371 4372 4373
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4374 4375

  if (ResizePLAB) {
J
johnc 已提交
4376 4377
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4378
  }
4379 4380
}

4381 4382 4383 4384
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4385 4386
}

4387 4388 4389
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4390
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4391 4392 4393 4394 4395 4396 4397
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4398
  delete _evac_failure_scan_stack;
4399 4400 4401
  _evac_failure_scan_stack = NULL;
}

4402 4403
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4404

4405
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4406

4407 4408 4409 4410
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4411
  } else {
4412
    rsfp_task.work(0);
4413
  }
4414 4415 4416 4417 4418 4419 4420

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4421 4422

  // Now restore saved marks, if any.
4423 4424 4425 4426 4427 4428
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4429
  }
4430 4431
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4449
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4450
                                               oop old) {
4451 4452 4453
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4454 4455 4456 4457
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4458 4459 4460
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4461

S
sla 已提交
4462 4463
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4482 4483 4484 4485 4486 4487 4488
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4499
    _hr_printer.evac_failure(r);
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4513 4514 4515 4516
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4517 4518
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4519 4520 4521 4522 4523
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4524 4525 4526 4527
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4528
    } else {
4529 4530 4531
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4532
    }
4533 4534 4535 4536 4537
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4538
    } else {
4539 4540 4541
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4542 4543 4544
    }
  }

4545 4546 4547
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4548 4549
}

4550
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4551
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4552

4553
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4554 4555 4556
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
4557
    _ct_bs(g1h->g1_barrier_set()),
4558 4559 4560
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4561 4562
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4563
    _age_table(false), _scanner(g1h, this, rp),
4564
    _strong_roots_time(0), _term_time(0),
4565
    _alloc_buffer_waste(0), _undo_waste(0) {
4566 4567 4568 4569 4570
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4571 4572 4573 4574
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4575
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4576
  if (_surviving_young_words_base == NULL)
4577
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4578 4579
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4580
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4581

4582 4583 4584
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4585 4586
  _start = os::elapsedTime();
}
4587

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4617 4618 4619 4620 4621 4622 4623
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
4624
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4625 4626 4627 4628 4629 4630 4631 4632 4633
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
4634
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4635 4636 4637
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
4638
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4653 4654 4655 4656
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4657 4658 4659 4660 4661 4662
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4663

4664 4665 4666 4667 4668 4669
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4670 4671
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4672 4673
  _g1(g1), _par_scan_state(par_scan_state),
  _worker_id(par_scan_state->queue_num()) { }
4674

4675
void G1ParCopyHelper::mark_object(oop obj) {
4676 4677 4678 4679 4680 4681 4682
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4683
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4684 4685
}

4686
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4705
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4706 4707
}

4708
oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4709
  size_t word_sz = old->size();
4710
  HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4711 4712
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4713 4714
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4715
  G1CollectorPolicy* g1p = _g1h->g1_policy();
4716
  markOop m = old->mark();
4717 4718 4719
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4720
                                                             word_sz);
4721
  HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4722 4723
#ifndef PRODUCT
  // Should this evacuation fail?
4724
  if (_g1h->evacuation_should_fail()) {
4725
    if (obj_ptr != NULL) {
4726
      undo_allocation(alloc_purpose, obj_ptr, word_sz);
4727 4728 4729 4730
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4731 4732 4733 4734

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
4735
    return _g1h->handle_evacuation_failure_par(this, old);
4736 4737
  }

4738 4739
  oop obj = oop(obj_ptr);

4740 4741 4742
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4743 4744 4745
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4746 4747 4748 4749 4750 4751

    // alloc_purpose is just a hint to allocate() above, recheck the type of region
    // we actually allocated from and update alloc_purpose accordingly
    HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
    alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;

4752
    if (g1p->track_object_age(alloc_purpose)) {
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4772
        obj->set_mark(m);
4773
      }
4774
      age_table()->add(obj, word_sz);
4775 4776
    } else {
      obj->set_mark(m);
4777
    }
4778

4779
    size_t* surv_young_words = surviving_young_words();
4780 4781 4782
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4783 4784 4785 4786
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4787
      oop* old_p = set_partial_array_mask(old);
4788
      push_on_queue(old_p);
4789
    } else {
4790 4791
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
4792
      _scanner.set_region(_g1h->heap_region_containing_raw(obj));
B
brutisso 已提交
4793
      obj->oop_iterate_backwards(&_scanner);
4794 4795
    }
  } else {
4796
    undo_allocation(alloc_purpose, obj_ptr, word_sz);
4797 4798 4799 4800 4801
    obj = forward_ptr;
  }
  return obj;
}

4802 4803 4804 4805 4806 4807 4808
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4809
template <G1Barrier barrier, bool do_mark_object>
4810
template <class T>
4811
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4812 4813 4814 4815 4816 4817 4818
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4819

4820 4821
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4822
  if (_g1->in_cset_fast_test(obj)) {
4823
    oop forwardee;
4824
    if (obj->is_forwarded()) {
4825
      forwardee = obj->forwardee();
4826
    } else {
4827
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4828 4829 4830 4831 4832 4833 4834
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4835
    }
4836

4837
    if (barrier == G1BarrierKlass) {
4838
      do_klass_barrier(p, forwardee);
4839
    }
4840 4841 4842 4843
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4844
    if (do_mark_object) {
4845
      mark_object(obj);
4846
    }
4847
  }
4848

4849
  if (barrier == G1BarrierEvac) {
4850
    _par_scan_state->update_rs(_from, p, _worker_id);
4851
  }
4852 4853
}

4854 4855
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4856

4857
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4858
  assert(has_partial_array_mask(p), "invariant");
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
  oop from_obj = clear_partial_array_mask(p);

  assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  assert(from_obj->is_objArray(), "must be obj array");
  objArrayOop from_obj_array = objArrayOop(from_obj);
  // The from-space object contains the real length.
  int length                 = from_obj_array->length();

  assert(from_obj->is_forwarded(), "must be forwarded");
  oop to_obj                 = from_obj->forwardee();
  assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  objArrayOop to_obj_array   = objArrayOop(to_obj);
  // We keep track of the next start index in the length field of the
  // to-space object.
  int next_index             = to_obj_array->length();
  assert(0 <= next_index && next_index < length,
         err_msg("invariant, next index: %d, length: %d", next_index, length));

  int start                  = next_index;
  int end                    = length;
  int remainder              = end - start;
  // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4881 4882
  if (remainder > 2 * ParGCArrayScanChunk) {
    end = start + ParGCArrayScanChunk;
4883 4884 4885 4886 4887
    to_obj_array->set_length(end);
    // Push the remainder before we process the range in case another
    // worker has run out of things to do and can steal it.
    oop* from_obj_p = set_partial_array_mask(from_obj);
    _par_scan_state->push_on_queue(from_obj_p);
4888
  } else {
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
    assert(length == end, "sanity");
    // We'll process the final range for this object. Restore the length
    // so that the heap remains parsable in case of evacuation failure.
    to_obj_array->set_length(end);
  }
  _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  // Process indexes [start,end). It will also process the header
  // along with the first chunk (i.e., the chunk with start == 0).
  // Note that at this point the length field of to_obj_array is not
  // correct given that we are using it to keep track of the next
  // start index. oop_iterate_range() (thankfully!) ignores the length
  // field and only relies on the start / end parameters.  It does
  // however return the size of the object which will be incorrect. So
  // we have to ignore it even if we wanted to use it.
  to_obj_array->oop_iterate_range(&_scanner, start, end);
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4925
  void do_void();
4926

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4948
        pss->deal_with_reference((narrowOop*) stolen_task);
4949
      } else {
4950
        pss->deal_with_reference((oop*) stolen_task);
4951
      }
4952 4953 4954 4955

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4956
      pss->trim_queue();
4957
    }
4958 4959 4960 4961
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4989 4990 4991 4992 4993
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4994
  uint _n_workers;
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
5005 5006
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
5007 5008 5009
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
5010 5011
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5012 5013 5014 5015 5016 5017 5018 5019
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

5034 5035
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
5036 5037

    double start_time_ms = os::elapsedTime() * 1000.0;
5038
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5039

5040 5041 5042
    {
      ResourceMark rm;
      HandleMark   hm;
5043

5044
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5045

5046
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
5047 5048 5049
      G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
      G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5050

5051 5052 5053
      pss.set_evac_closure(&scan_evac_cl);
      pss.set_evac_failure_closure(&evac_failure_cl);
      pss.set_partial_scan_closure(&partial_scan_cl);
5054

5055
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5056
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5057

5058
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5059 5060 5061 5062 5063
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5064

5065
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
5066
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5067

5068 5069 5070
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
5071
        scan_klasses_cl = &scan_mark_klasses_cl_s;
5072
      }
5073

5074
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5075

J
johnc 已提交
5076 5077 5078 5079 5080
      // Don't scan the scavengable methods in the code cache as part
      // of strong root scanning. The code roots that point into a
      // region in the collection set are scanned when we scan the
      // region's RSet.
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5081

5082
      pss.start_strong_roots();
5083 5084
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
5085 5086
                                    scan_root_cl,
                                    &push_heap_rs_cl,
5087
                                    scan_klasses_cl,
5088 5089
                                    worker_id);
      pss.end_strong_roots();
5090

5091 5092 5093 5094 5095 5096
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
5097
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5098
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5099 5100 5101 5102 5103 5104 5105 5106
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
5107

5108
      assert(pss.refs()->is_empty(), "should be empty");
5109

5110 5111 5112
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
5113 5114
    }

5115
    double end_time_ms = os::elapsedTime() * 1000.0;
5116
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5117 5118 5119 5120 5121
  }
};

// *** Common G1 Evacuation Stuff

5122 5123
// This method is run in a GC worker.

5124 5125
void
G1CollectedHeap::
5126
g1_process_strong_roots(bool is_scavenging,
5127
                        ScanningOption so,
5128 5129
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5130
                        G1KlassScanClosure* scan_klasses,
5131
                        int worker_i) {
5132

5133
  // First scan the strong roots
5134 5135 5136 5137 5138
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

J
johnc 已提交
5139 5140 5141 5142
  assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  // Walk the code cache/strong code roots w/o buffering, because StarTask
  // cannot handle unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5143 5144

  process_strong_roots(false, // no scoping; this is parallel code
5145
                       is_scavenging, so,
5146
                       &buf_scan_non_heap_roots,
5147
                       &eager_scan_code_roots,
5148 5149
                       scan_klasses
                       );
5150

5151
  // Now the CM ref_processor roots.
5152
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5153 5154 5155 5156 5157
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5158 5159 5160
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5161
  buf_scan_non_heap_roots.done();
5162

5163 5164
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5165
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5166

5167
  double ext_root_time_ms =
5168
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5169

5170
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5171

5172 5173 5174
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5175
  double satb_filtering_ms = 0.0;
5176 5177
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5178 5179
      double satb_filter_start = os::elapsedTime();

5180
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5181 5182

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5183
    }
5184
  }
5185
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5186

J
johnc 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
  // If this is an initial mark pause, and we're not scanning
  // the entire code cache, we need to mark the oops in the
  // strong code root lists for the regions that are not in
  // the collection set.
  // Note all threads participate in this set of root tasks.
  double mark_strong_code_roots_ms = 0.0;
  if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
    double mark_strong_roots_start = os::elapsedTime();
    mark_strong_code_roots(worker_i);
    mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);

5200 5201
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
J
johnc 已提交
5202
    g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5203 5204 5205 5206 5207
  }
  _process_strong_tasks->all_tasks_completed();
}

void
5208
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5209
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5210
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5211 5212
}

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
5226 5227

  bool _do_in_parallel;
5228 5229 5230
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5231
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
5246
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5247 5248
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
5249
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5250 5251 5252 5253 5254
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  }

  void work(uint worker_id) {
5255
    if (_do_in_parallel) {
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
  if (G1TraceStringSymbolTableScrubbing) {
    gclog_or_tty->print_cr("Cleaned string and symbol table, "
                           "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                           "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                           g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
                           g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  }
}

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5357
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5358 5359 5360 5361 5362
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5363
                            OopsInHeapRegionClosure* metadata_obj_cl,
5364 5365 5366
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5367
    _copy_metadata_obj_cl(metadata_obj_cl),
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5392
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5393
      // the referent object and update the pointer, while avoiding
5394 5395 5396 5397 5398
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5399 5400 5401
        assert(!ClassLoaderDataGraph::contains((address)p),
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5440
  FlexibleWorkGang*  _workers;
5441 5442 5443 5444
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5445
                        FlexibleWorkGang* workers,
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5482
  virtual void work(uint worker_id) {
5483 5484 5485 5486 5487 5488
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5489
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5500
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5501 5502

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5503
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5504 5505

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5506
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5507 5508 5509 5510

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5511
      copy_metadata_cl = &copy_mark_metadata_cl;
5512 5513 5514
    }

    // Keep alive closure.
5515
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5516 5517 5518 5519 5520

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5521
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5556 5557
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5558 5559 5560
  }
};

S
sla 已提交
5561
// Driver routine for parallel reference enqueueing.
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5586
  uint _n_workers;
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5597
  void work(uint worker_id) {
5598 5599 5600
    ResourceMark rm;
    HandleMark   hm;

5601
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5614
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5615 5616

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5617
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5618 5619

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5620
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5621 5622 5623 5624

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5625
      copy_metadata_cl = &copy_mark_metadata_cl;
5626 5627 5628 5629 5630 5631 5632
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5633
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5634 5635 5636

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5637 5638
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5639 5640 5641 5642

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5643
    assert(0 <= worker_id && worker_id < limit, "sanity");
5644 5645 5646
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5647
    for (uint idx = worker_id; idx < limit; idx += stride) {
5648
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5674
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5690
  // As a result the copy closure would not have been applied to the
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5701
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5702 5703
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5704

J
johnc 已提交
5705 5706 5707 5708
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5727
  G1ParScanThreadState            pss(this, 0, NULL);
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5743
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5744 5745

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5746
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5747 5748

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5749
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5750 5751 5752 5753

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5754
    copy_metadata_cl = &copy_mark_metadata_cl;
5755 5756 5757
  }

  // Keep alive closure.
5758
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5759 5760 5761 5762 5763 5764 5765

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5766
  ReferenceProcessorStats stats;
5767 5768
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5769 5770 5771 5772 5773
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
                                              _gc_timer_stw);
5774 5775
  } else {
    // Parallel reference processing
J
johnc 已提交
5776 5777
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5778

J
johnc 已提交
5779
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5780 5781 5782 5783 5784
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
                                              _gc_timer_stw);
5785 5786
  }

S
sla 已提交
5787
  _gc_tracer_stw->report_gc_reference_stats(stats);
5788 5789 5790 5791 5792 5793 5794
  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5795
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5796 5797 5798
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5799
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5811
    // Parallel reference enqueueing
5812

J
johnc 已提交
5813 5814 5815 5816
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5817

J
johnc 已提交
5818
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5819 5820 5821 5822 5823 5824 5825 5826 5827
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5828
  // and could significantly increase the pause time.
5829 5830

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5831
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5832 5833
}

S
sla 已提交
5834
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5835
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5836
  _evacuation_failed = false;
5837

5838 5839 5840
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5841
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5842 5843 5844 5845 5846

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5847

5848
  uint n_workers;
5849 5850 5851 5852 5853 5854 5855 5856
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5857
    workers()->set_active_workers(n_workers);
5858 5859 5860 5861 5862 5863 5864 5865
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5866 5867 5868 5869 5870

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5871
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5872 5873
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5874

5875
  {
5876
    StrongRootsScope srs(this);
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5897 5898
  }

5899
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5900
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5901 5902 5903

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5904
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5905

5906
  set_par_threads(0);
5907

5908 5909 5910 5911 5912
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5913
  process_discovered_references(n_workers);
5914

5915
  // Weak root processing.
5916
  {
5917
    G1STWIsAliveClosure is_alive(this);
5918 5919 5920
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5921

S
sla 已提交
5922
  release_gc_alloc_regions(n_workers, evacuation_info);
5923
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5924

5925 5926 5927 5928 5929
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5930

J
johnc 已提交
5931 5932 5933 5934 5935 5936
  // Migrate the strong code roots attached to each region in
  // the collection set. Ideally we would like to do this
  // after we have finished the scanning/evacuation of the
  // strong code roots for a particular heap region.
  migrate_strong_code_roots();

5937 5938
  purge_code_root_memory();

J
johnc 已提交
5939 5940 5941 5942 5943
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5944 5945 5946 5947
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5948 5949 5950 5951 5952

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5953 5954
  }

5955 5956 5957
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5958
  // the act of enqueueing entries on to the pending list
5959 5960 5961
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5962
  enqueue_discovered_references(n_workers);
5963

5964 5965 5966 5967
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5968 5969 5970

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5971 5972
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5973 5974 5975
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5976 5977
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5978
                                  bool par) {
5979 5980 5981 5982
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

5983 5984 5985 5986 5987 5988
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5989
  hr->hr_clear(par, true /* clear_space */);
5990
  free_list->add_as_head(hr);
5991 5992 5993 5994 5995 5996 5997 5998 5999
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
6000 6001 6002
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6003
  hr->set_notHumongous();
6004
  free_region(hr, free_list, par);
6005

6006
  uint i = hr->hrs_index() + 1;
6007
  while (i < last_index) {
6008
    HeapRegion* curr_hr = region_at(i);
6009
    assert(curr_hr->continuesHumongous(), "invariant");
6010
    curr_hr->set_notHumongous();
6011
    free_region(curr_hr, free_list, par);
6012 6013
    i += 1;
  }
6014 6015 6016 6017 6018
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6019
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6020 6021
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6022
  }
6023 6024 6025 6026 6027 6028 6029 6030

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_list.add_as_head(list);
6031 6032 6033
  }
}

6034 6035 6036 6037 6038 6039 6040
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  assert(_summary_bytes_used >= bytes,
         err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
                  _summary_bytes_used, bytes));
  _summary_bytes_used -= bytes;
}

6041
class G1ParCleanupCTTask : public AbstractGangTask {
6042
  G1SATBCardTableModRefBS* _ct_bs;
6043
  G1CollectedHeap* _g1h;
6044
  HeapRegion* volatile _su_head;
6045
public:
6046
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6047
                     G1CollectedHeap* g1h) :
6048
    AbstractGangTask("G1 Par Cleanup CT Task"),
6049
    _ct_bs(ct_bs), _g1h(g1h) { }
6050

6051
  void work(uint worker_id) {
6052 6053 6054 6055 6056
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6057

6058
  void clear_cards(HeapRegion* r) {
6059
    // Cards of the survivors should have already been dirtied.
6060
    if (!r->is_survivor()) {
6061 6062 6063 6064 6065
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6066 6067
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6068
  G1CollectedHeap* _g1h;
6069
  G1SATBCardTableModRefBS* _ct_bs;
6070
public:
6071
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6072
    : _g1h(g1h), _ct_bs(ct_bs) { }
6073
  virtual bool doHeapRegion(HeapRegion* r) {
6074
    if (r->is_survivor()) {
6075
      _g1h->verify_dirty_region(r);
6076
    } else {
6077
      _g1h->verify_not_dirty_region(r);
6078 6079 6080 6081
    }
    return false;
  }
};
6082

6083 6084
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6085
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6098
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6099
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6100 6101 6102 6103 6104
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6105 6106
}

6107
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6108
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6109
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6110
    verify_dirty_region(hr);
6111 6112 6113 6114 6115 6116
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6117 6118
#endif

6119
void G1CollectedHeap::cleanUpCardTable() {
6120
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6121 6122
  double start = os::elapsedTime();

J
johnc 已提交
6123 6124 6125
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6126

6127 6128
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6141 6142
      }
    }
J
johnc 已提交
6143 6144 6145 6146 6147 6148
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6149
  }
6150

6151
  double elapsed = os::elapsedTime() - start;
6152
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6153 6154
}

S
sla 已提交
6155
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6156 6157 6158
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6159 6160 6161
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6162 6163 6164 6165 6166
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6177
    assert(!is_on_master_free_list(cur), "sanity");
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6188 6189 6190 6191
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6192

6193 6194 6195
        start_sec = os::elapsedTime();
        non_young = true;
      }
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6207
      assert(index != -1, "invariant");
6208
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6209 6210
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6211 6212 6213 6214 6215 6216

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6217 6218
    } else {
      int index = cur->young_index_in_cset();
6219
      assert(index == -1, "invariant");
6220 6221 6222 6223 6224 6225 6226
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6227 6228
      MemRegion used_mr = cur->used_region();

6229
      // And the region is empty.
6230
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6231 6232
      pre_used += cur->used();
      free_region(cur, &local_free_list, false /* par */);
6233 6234
    } else {
      cur->uninstall_surv_rate_group();
6235
      if (cur->is_young()) {
6236
        cur->set_young_index_in_cset(-1);
6237
      }
6238 6239
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6240 6241
      // The region is now considered to be old.
      _old_set.add(cur);
S
sla 已提交
6242
      evacuation_info.increment_collectionset_used_after(cur->used());
6243 6244 6245 6246
    }
    cur = next;
  }

S
sla 已提交
6247
  evacuation_info.set_regions_freed(local_free_list.length());
6248 6249 6250 6251 6252
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6253 6254

  if (non_young) {
6255
    non_young_time_ms += elapsed_ms;
6256
  } else {
6257
    young_time_ms += elapsed_ms;
6258
  }
6259

6260 6261
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6262 6263
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6264 6265
}

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6287 6288 6289 6290
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6291 6292
  }

6293 6294
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6295 6296
}

6297
void G1CollectedHeap::reset_free_regions_coming() {
6298 6299
  assert(free_regions_coming(), "pre-condition");

6300 6301 6302 6303
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6304 6305
  }

6306 6307 6308
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6309 6310 6311
  }
}

6312 6313 6314 6315 6316
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6317 6318
  }

6319 6320 6321
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6322 6323 6324
  }

  {
6325 6326 6327
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6328 6329 6330
    }
  }

6331 6332 6333
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6359 6360
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6361

6362
  if (check_heap) {
6363 6364 6365 6366 6367 6368 6369 6370
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6371 6372
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6373
  HeapRegionSet *_old_set;
6374

T
tonyp 已提交
6375
public:
6376
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6377

T
tonyp 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
6409
  _free_list.remove_all();
6410 6411
}

T
tonyp 已提交
6412 6413 6414
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6415
  HeapRegionSet*   _old_set;
T
tonyp 已提交
6416 6417
  FreeRegionList* _free_list;
  size_t          _total_used;
6418

6419
public:
T
tonyp 已提交
6420
  RebuildRegionSetsClosure(bool free_list_only,
6421
                           HeapRegionSet* old_set, FreeRegionList* free_list) :
T
tonyp 已提交
6422 6423 6424 6425 6426 6427 6428
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6429

6430
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6446
      }
T
tonyp 已提交
6447
      _total_used += r->used();
6448
    }
T
tonyp 已提交
6449

6450 6451 6452
    return false;
  }

T
tonyp 已提交
6453 6454
  size_t total_used() {
    return _total_used;
6455
  }
6456 6457
};

T
tonyp 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6471 6472 6473 6474 6475 6476
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6477 6478 6479
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6480
    return false;
6481 6482
  } else {
    return hr->is_in(p);
6483
  }
6484 6485
}

6486 6487
// Methods for the mutator alloc region

6488 6489 6490 6491 6492
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6493 6494
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6495 6496 6497 6498
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6499
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6513
  _hr_printer.retire(alloc_region);
6514 6515 6516 6517
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6518 6519 6520 6521 6522 6523 6524
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6525 6526 6527
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6528
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6529
  uint n_workers = workers()->active_workers();
6530
  assert(UseDynamicNumberOfGCThreads ||
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6541 6542 6543 6544 6545
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6546 6547 6548
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6549
                                                 uint count,
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6567 6568
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6580 6581
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6582 6583 6584
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6585 6586
  } else {
    _old_set.add(alloc_region);
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6614 6615
// Heap region set verification

6616 6617
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6618 6619 6620
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
  FreeRegionList*  _free_list;
6621 6622

public:
6623 6624 6625
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6626

6627 6628 6629 6630 6631
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
    _old_count(), _humongous_count(), _free_count(){ }
6632 6633 6634 6635 6636 6637 6638 6639 6640

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6641 6642
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
      _humongous_count.increment(1u, hr->capacity());
6643
    } else if (hr->is_empty()) {
6644 6645
      assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
      _free_count.increment(1u, hr->capacity());
T
tonyp 已提交
6646
    } else {
6647 6648
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
      _old_count.increment(1u, hr->capacity());
6649
    }
6650 6651
    return false;
  }
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665

  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

    guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6666 6667
};

6668
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6669 6670 6671 6672 6673
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6674
  return new HeapRegion(hrs_index, _bot_shared, mr);
6675 6676
}

6677 6678
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6679

6680
  // First, check the explicit lists.
6681
  _free_list.verify_list();
6682 6683 6684 6685 6686
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6687
    _secondary_free_list.verify_list();
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6703

T
tonyp 已提交
6704 6705 6706 6707
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6708

6709 6710
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6711

T
tonyp 已提交
6712
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6713
  heap_region_iterate(&cl);
6714
  cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6715
}
J
johnc 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6728 6729 6730 6731
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6732 6733 6734 6735 6736

      // HeapRegion::add_strong_code_root() avoids adding duplicate
      // entries but having duplicates is  OK since we "mark" nmethods
      // as visited when we scan the strong code root lists during the GC.
      hr->add_strong_code_root(_nm);
6737 6738 6739
      assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6760 6761 6762 6763 6764
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6765
      hr->remove_strong_code_root(_nm);
6766 6767 6768
      assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *hr) {
6799 6800 6801
    assert(!hr->isHumongous(),
           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
                   HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    hr->migrate_strong_code_roots();
    return false;
  }
};

void G1CollectedHeap::migrate_strong_code_roots() {
  MigrateCodeRootsHeapRegionClosure cl;
  double migrate_start = os::elapsedTime();
  collection_set_iterate(&cl);
  double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}

6815 6816 6817 6818 6819 6820 6821
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
  G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
// Mark all the code roots that point into regions *not* in the
// collection set.
//
// Note we do not want to use a "marking" CodeBlobToOopClosure while
// walking the the code roots lists of regions not in the collection
// set. Suppose we have an nmethod (M) that points to objects in two
// separate regions - one in the collection set (R1) and one not (R2).
// Using a "marking" CodeBlobToOopClosure here would result in "marking"
// nmethod M when walking the code roots for R1. When we come to scan
// the code roots for R2, we would see that M is already marked and it
// would be skipped and the objects in R2 that are referenced from M
// would not be evacuated.

class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {

  class MarkStrongCodeRootOopClosure: public OopClosure {
    ConcurrentMark* _cm;
    HeapRegion* _hr;
    uint _worker_id;

    template <class T> void do_oop_work(T* p) {
      T heap_oop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(heap_oop)) {
        oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
        // Only mark objects in the region (which is assumed
        // to be not in the collection set).
        if (_hr->is_in(obj)) {
          _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
        }
      }
    }

  public:
    MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
      _cm(cm), _hr(hr), _worker_id(worker_id) {
      assert(!_hr->in_collection_set(), "sanity");
    }

    void do_oop(narrowOop* p) { do_oop_work(p); }
    void do_oop(oop* p)       { do_oop_work(p); }
  };

  MarkStrongCodeRootOopClosure _oop_cl;

public:
  MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
    _oop_cl(cm, hr, worker_id) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      nm->oops_do(&_oop_cl);
    }
  }
};

class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  uint _worker_id;

public:
  MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
    _g1h(g1h), _worker_id(worker_id) {}

  bool doHeapRegion(HeapRegion *hr) {
    HeapRegionRemSet* hrrs = hr->rem_set();
6888 6889 6890 6891
    if (hr->continuesHumongous()) {
      // Code roots should never be attached to a continuation of a humongous region
      assert(hrrs->strong_code_roots_list_length() == 0,
             err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6892
                     " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6893 6894
                     HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
                     hrrs->strong_code_roots_list_length()));
J
johnc 已提交
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
      return false;
    }

    if (hr->in_collection_set()) {
      // Don't mark code roots into regions in the collection set here.
      // They will be marked when we scan them.
      return false;
    }

    MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
    hr->strong_code_roots_do(&cb_cl);
    return false;
  }
};

void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  MarkStrongCodeRootsHRClosure cl(this, worker_id);
6912 6913 6914 6915 6916 6917 6918 6919
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    heap_region_par_iterate_chunked(&cl,
                                    worker_id,
                                    workers()->active_workers(),
                                    HeapRegion::ParMarkRootClaimValue);
  } else {
    heap_region_iterate(&cl);
  }
J
johnc 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

    if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}