g1CollectedHeap.cpp 251.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
30
#include "classfile/metadataOnStackMark.hpp"
J
johnc 已提交
31
#include "code/codeCache.hpp"
32 33 34 35 36
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
37
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
38 39
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
40
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
41
#include "gc_implementation/g1/g1EvacFailure.hpp"
42
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
43
#include "gc_implementation/g1/g1Log.hpp"
44 45
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
46
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
47
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
48
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
49
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
50
#include "gc_implementation/g1/g1YCTypes.hpp"
51
#include "gc_implementation/g1/heapRegion.inline.hpp"
52
#include "gc_implementation/g1/heapRegionRemSet.hpp"
53
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
54
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
55 56 57 58
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
59
#include "gc_implementation/shared/isGCActiveMark.hpp"
60
#include "memory/allocation.hpp"
61 62
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
63
#include "memory/iterator.hpp"
64
#include "memory/referenceProcessor.hpp"
65 66
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
67
#include "runtime/orderAccess.inline.hpp"
68
#include "runtime/vmThread.hpp"
69

70 71
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

72 73 74
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
75
#define YOUNG_LIST_VERBOSE 0
76 77 78 79 80 81
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
82 83 84 85 86
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
87

88 89 90 91 92
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
93 94
// G1ParTask executes g1_process_roots() ->
// SharedHeap::process_roots() which calls eventually to
95
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
96
// SequentialSubTasksDone.  SharedHeap::process_roots() also
97 98 99
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

100 101 102 103 104
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
105 106
  RefineCardTableEntryClosure() : _concurrent(true) { }

107
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
108
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
109 110 111 112 113
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
114
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
115 116 117 118 119 120
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
121

122 123 124 125 126
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
127
  size_t _num_processed;
128 129
  CardTableModRefBS* _ctbs;
  int _histo[256];
130 131

 public:
132
  ClearLoggedCardTableEntryClosure() :
133
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
134 135 136
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
137

138
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
139 140 141 142 143 144 145
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

146 147
    return true;
  }
148 149 150

  size_t num_processed() { return _num_processed; }

151 152 153 154 155 156 157 158 159 160
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

161 162 163 164 165 166
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
167

168
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
169 170
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
171 172
    return true;
  }
173 174

  size_t num_processed() const { return _num_processed; }
175 176
};

177 178 179 180
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
181 182 183 184 185 186 187 188 189
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

190
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
191 192 193 194
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
195
  assert(hr->is_survivor(), "should be flagged as survivor region");
196 197 198 199
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
200
    _survivor_tail = hr;
201 202 203 204 205 206 207 208 209 210
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
211 212 213 214
    // This is called before a Full GC and all the non-empty /
    // non-humongous regions at the end of the Full GC will end up as
    // old anyway.
    list->set_old();
215 216 217 218 219 220 221 222 223 224 225 226 227
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
228
  _survivor_tail = NULL;
229 230 231 232 233 234 235 236 237 238
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

239
  uint length = 0;
240 241 242
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
243
    if (!curr->is_young()) {
244
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
245
                             "incorrectly tagged (y: %d, surv: %d)",
246
                             curr->bottom(), curr->end(),
247
                             curr->is_young(), curr->is_survivor());
248 249 250 251 252 253 254 255 256 257
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
258
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
259 260 261
                           length, _length);
  }

262
  return ret;
263 264
}

265
bool YoungList::check_list_empty(bool check_sample) {
266 267 268
  bool ret = true;

  if (_length != 0) {
269
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

285
  return ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
302 303 304 305 306 307 308 309 310 311 312 313
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

314 315 316 317 318 319 320 321 322 323 324 325 326 327
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
328
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
329

330
  int young_index_in_cset = 0;
331 332 333
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
334
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
335 336 337 338 339

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
340
    young_index_in_cset += 1;
341
  }
342
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
343 344
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

345 346
  _head   = _survivor_head;
  _length = _survivor_length;
347
  if (_survivor_head != NULL) {
348 349 350
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
351 352
  }

353 354 355 356
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
357

358
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
359 360 361 362 363

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
364 365
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
366 367 368 369 370 371 372

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
373
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
374
                             HR_FORMAT_PARAMS(curr),
375 376
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
377
                             curr->age_in_surv_rate_group_cond());
378 379 380 381
      curr = curr->get_next_young_region();
    }
  }

382
  gclog_or_tty->cr();
383 384
}

385 386 387 388
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  OtherRegionsTable::invalidate(start_idx, num_regions);
}

389 390 391
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
  // The from card cache is not the memory that is actually committed. So we cannot
  // take advantage of the zero_filled parameter.
392 393 394
  reset_from_card_cache(start_idx, num_regions);
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

448 449 450 451 452 453 454 455 456 457 458 459
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
460 461 462 463
  if (p == NULL) {
    return false;
  }
  return heap_region_containing(p)->in_collection_set();
464 465 466 467
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
468
// can move in an incremental collection.
469 470
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
471
  return !hr->isHumongous();
472 473
}

474 475
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
476
  CardTableModRefBS* ct_bs = g1_barrier_set();
477 478 479 480 481 482 483 484

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
485 486
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
487 488 489 490 491 492 493 494 495 496 497 498
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
499 500
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
501
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
502 503 504 505
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
            err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
                    redirty.num_processed(), clear.num_processed()));
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

522
HeapRegion*
523
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
524 525 526 527 528
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
529
                               "secondary_free_list has %u entries",
530 531 532 533 534 535 536
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

537
      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
538
             "empty we should have moved at least one entry to the free_list");
539
      HeapRegion* res = _hrm.allocate_free_region(is_old);
540 541 542 543 544 545 546 547
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
548
    // Wait here until we get notified either when (a) there are no
549 550 551 552 553 554 555 556 557 558 559
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
560

561
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
562
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
563 564
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
565

566 567 568 569 570 571 572
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
573
      res = new_region_try_secondary_free_list(is_old);
574 575 576 577 578
      if (res != NULL) {
        return res;
      }
    }
  }
579

580
  res = _hrm.allocate_free_region(is_old);
581

582 583 584 585 586
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
587
    res = new_region_try_secondary_free_list(is_old);
588
  }
589 590 591 592 593 594 595
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

596 597 598 599 600
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
601
    if (expand(word_size * HeapWordSize)) {
602 603
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
604
      // region size, the free list should in theory not be empty.
605
      // In either case allocate_free_region() will check for NULL.
606
      res = _hrm.allocate_free_region(is_old);
607 608
    } else {
      _expand_heap_after_alloc_failure = false;
609
    }
610 611 612 613
  }
  return res;
}

T
tonyp 已提交
614
HeapWord*
615 616
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
617 618
                                                           size_t word_size,
                                                           AllocationContext_t context) {
619
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
T
tonyp 已提交
620 621 622 623
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
624
  uint last = first + num_regions;
T
tonyp 已提交
625 626 627 628 629 630 631 632 633 634

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
635
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
636 637 638
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
639
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
640 641 642 643
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
644
  // should also match the end of the last region in the series.
T
tonyp 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);
670
  first_hr->set_allocation_context(context);
T
tonyp 已提交
671 672 673
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
674
  for (uint i = first + 1; i < last; ++i) {
675
    hr = region_at(i);
T
tonyp 已提交
676
    hr->set_continuesHumongous(first_hr);
677
    hr->set_allocation_context(context);
T
tonyp 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
697 698 699 700 701 702 703 704 705 706 707
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
721
  for (uint i = first + 1; i < last; ++i) {
722
    hr = region_at(i);
T
tonyp 已提交
723 724 725 726 727
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
728
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
729 730 731 732
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
733
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
734 735 736 737 738 739 740
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");
741
  check_bitmaps("Humongous Region Allocation", first_hr);
T
tonyp 已提交
742 743

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
744
  _allocator->increase_used(first_hr->used());
T
tonyp 已提交
745 746 747 748 749
  _humongous_set.add(first_hr);

  return new_obj;
}

750 751 752
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
753
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
754
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
755

756
  verify_region_sets_optional();
757

758
  uint first = G1_NO_HRM_INDEX;
759 760 761 762 763 764 765 766
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
767
      first = hr->hrm_index();
768 769 770 771 772 773 774 775
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
776 777
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
778 779 780 781 782
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
783 784 785
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
786 787
    }
  }
788

789
  if (first == G1_NO_HRM_INDEX) {
790 791 792
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
793 794
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
795 796
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
797 798 799 800 801
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
802

803
      _hrm.expand_at(first, obj_regions);
804 805 806 807 808
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
809
        assert(hr->is_free(), "sanity");
810 811
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
812
      }
813
#endif
814
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
815 816
    } else {
      // Policy: Potentially trigger a defragmentation GC.
817 818
    }
  }
819

T
tonyp 已提交
820
  HeapWord* result = NULL;
821
  if (first != G1_NO_HRM_INDEX) {
822 823
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
T
tonyp 已提交
824
    assert(result != NULL, "it should always return a valid result");
825 826 827 828 829

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
830
  }
831 832

  verify_region_sets_optional();
T
tonyp 已提交
833 834

  return result;
835 836
}

837 838 839
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
840

841
  unsigned int dummy_gc_count_before;
842 843
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
844 845 846
}

HeapWord*
847 848 849
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
850

S
sla 已提交
851
  // Loop until the allocation is satisfied, or unsatisfied after GC.
852
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
853
    unsigned int gc_count_before;
854

855 856
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
857
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
858
    } else {
859
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
860 861 862 863
    }
    if (result != NULL) {
      return result;
    }
864

865 866
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
867 868
    op.set_allocation_context(AllocationContext::current());

869 870
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
871

872 873 874 875 876 877
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
878
        // Allocations that take place on VM operations do not do any
879 880
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
881 882 883
        dirty_young_block(result, word_size);
      }
      return result;
884
    } else {
885 886 887
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
888 889
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
890 891 892 893 894
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
895
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
896 897 898
    }
  }

899
  ShouldNotReachHere();
900 901 902
  return NULL;
}

903
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
904 905 906
                                                   AllocationContext_t context,
                                                   unsigned int *gc_count_before_ret,
                                                   int* gclocker_retry_count_ret) {
907 908 909 910 911
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
912

913 914 915 916 917 918 919
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
920
  HeapWord* result = NULL;
921 922 923
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
924

925 926
    {
      MutexLockerEx x(Heap_lock);
927 928
      result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                    false /* bot_updates */);
929 930
      if (result != NULL) {
        return result;
931
      }
932

933 934
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
935
      assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
936

937 938
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
939 940
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
941 942
          result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
                                                                                       false /* bot_updates */);
943 944 945 946 947 948
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
949 950 951 952 953 954 955 956 957 958 959 960
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
961 962
      }
    }
963

964 965
    if (should_try_gc) {
      bool succeeded;
966 967
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
968
      if (result != NULL) {
969
        assert(succeeded, "only way to get back a non-NULL result");
970 971 972
        return result;
      }

973 974 975 976 977
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
978
        *gc_count_before_ret = total_collections();
979 980 981
        return NULL;
      }
    } else {
982 983 984 985 986
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
987 988 989
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
990
      GC_locker::stall_until_clear();
991
      (*gclocker_retry_count_ret) += 1;
992 993
    }

S
sla 已提交
994
    // We can reach here if we were unsuccessful in scheduling a
995 996 997 998 999 1000 1001
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
1002 1003
    result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                           false /* bot_updates */);
1004
    if (result != NULL) {
1005
      return result;
1006 1007
    }

1008 1009 1010
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1011
      warning("G1CollectedHeap::attempt_allocation_slow() "
1012
              "retries %d times", try_count);
1013 1014 1015
    }
  }

1016 1017
  ShouldNotReachHere();
  return NULL;
1018 1019
}

1020
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1021 1022
                                                        unsigned int * gc_count_before_ret,
                                                        int* gclocker_retry_count_ret) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1034
  assert_heap_not_locked_and_not_at_safepoint();
1035 1036
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1037

1038 1039 1040 1041 1042
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1043 1044
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1045 1046 1047
    collect(GCCause::_g1_humongous_allocation);
  }

1048 1049 1050 1051 1052
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1053
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1054
    bool should_try_gc;
1055
    unsigned int gc_count_before;
1056

1057
    {
1058
      MutexLockerEx x(Heap_lock);
1059

1060 1061 1062
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
1063
      result = humongous_obj_allocate(word_size, AllocationContext::current());
1064 1065
      if (result != NULL) {
        return result;
1066
      }
1067

1068 1069 1070
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1083 1084 1085
      }
    }

1086 1087 1088 1089
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1090

1091
      bool succeeded;
1092 1093
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1104
        *gc_count_before_ret = total_collections();
1105
        return NULL;
1106 1107
      }
    } else {
1108 1109 1110 1111 1112
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1113 1114 1115
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1116
      GC_locker::stall_until_clear();
1117
      (*gclocker_retry_count_ret) += 1;
1118 1119
    }

S
sla 已提交
1120
    // We can reach here if we were unsuccessful in scheduling a
1121 1122 1123 1124 1125 1126
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1127 1128
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1129 1130
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1131 1132
    }
  }
1133 1134

  ShouldNotReachHere();
1135
  return NULL;
1136 1137
}

1138
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1139 1140
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
1141
  assert_at_safepoint(true /* should_be_vm_thread */);
1142
  assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1143 1144
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1145

1146
  if (!isHumongous(word_size)) {
1147
    return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1148 1149
                                                      false /* bot_updates */);
  } else {
1150
    HeapWord* result = humongous_obj_allocate(word_size, context);
1151 1152 1153 1154
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1155
  }
1156 1157

  ShouldNotReachHere();
1158 1159 1160
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1161
  G1CollectedHeap* _g1h;
1162 1163
  ModRefBarrierSet* _mr_bs;
public:
1164
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1165 1166
    _g1h(g1h), _mr_bs(mr_bs) {}

1167
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1168 1169
    HeapRegionRemSet* hrrs = r->rem_set();

1170
    if (r->continuesHumongous()) {
J
johnc 已提交
1171 1172 1173
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1174
      return false;
1175
    }
J
johnc 已提交
1176

1177
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1178
    hrrs->clear();
1179 1180 1181 1182 1183 1184
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1185

1186 1187 1188 1189
    return false;
  }
};

1190
void G1CollectedHeap::clear_rsets_post_compaction() {
1191
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1192 1193
  heap_region_iterate(&rs_clear);
}
1194

1195 1196 1197 1198 1199 1200
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1201
    _cl(g1->g1_rem_set(), worker_i),
1202 1203 1204
    _worker_i(worker_i),
    _g1h(g1)
  { }
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1223 1224 1225
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1226
                                          _g1->workers()->active_workers(),
1227 1228 1229 1230
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1231 1232 1233 1234 1235 1236
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
1237 1238 1239 1240 1241 1242
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->startsHumongous()) {
      if (hr->region_num() == 1) {
        // single humongous region
        _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1243
      } else {
1244
        _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1245
      }
1246 1247 1248 1249 1250 1251
    } else if (hr->continuesHumongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
1252 1253 1254 1255 1256 1257 1258 1259
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1260
void G1CollectedHeap::print_hrm_post_compaction() {
1261 1262 1263 1264
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1265
bool G1CollectedHeap::do_collection(bool explicit_gc,
1266
                                    bool clear_all_soft_refs,
1267
                                    size_t word_size) {
1268 1269
  assert_at_safepoint(true /* should_be_vm_thread */);

1270
  if (GC_locker::check_active_before_gc()) {
1271
    return false;
1272 1273
  }

S
sla 已提交
1274
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1275
  gc_timer->register_gc_start();
S
sla 已提交
1276 1277 1278 1279

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1280
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1281 1282
  ResourceMark rm;

1283
  print_heap_before_gc();
S
sla 已提交
1284
  trace_heap_before_gc(gc_tracer);
1285

1286
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1287

1288
  verify_region_sets_optional();
1289

1290 1291 1292 1293 1294
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1295 1296 1297 1298
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1299
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1300 1301
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1302

1303
    {
1304
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1324

1325 1326 1327
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1328

1329
      assert(used() == recalculate_used(), "Should be equal");
1330

1331
      verify_before_gc();
1332

1333
      check_bitmaps("Full GC Start");
S
sla 已提交
1334
      pre_full_gc_dump(gc_timer);
1335

1336
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1337

1338 1339 1340 1341 1342
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1343

1344 1345 1346 1347
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1348

1349
      // Make sure we'll choose a new allocation region afterwards.
1350 1351
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
1352
      g1_rem_set()->cleanupHRRS();
1353

1354 1355 1356 1357
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1358

1359 1360 1361 1362 1363 1364 1365
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1366

1367 1368
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1369

1370 1371 1372
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1373

1374 1375
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1376

1377 1378
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1379

1380 1381
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1382

1383 1384 1385 1386 1387
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1388

1389
      assert(num_free_regions() == 0, "we should not have added any free regions");
1390
      rebuild_region_sets(false /* free_list_only */);
1391

1392 1393 1394
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1395

1396
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1397

1398
      MemoryService::track_memory_usage();
1399

1400 1401
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1402

1403 1404
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1405
      MetaspaceAux::verify_metrics();
1406

1407 1408 1409 1410 1411 1412
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1413

1414 1415
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1416
      // sets, and clear all cards.  Later we will rebuild remembered
1417 1418 1419
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1420

1421 1422
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1423

1424 1425 1426 1427
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1428

1429
        print_hrm_post_compaction();
1430 1431
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1432

1433 1434 1435 1436
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1437
      }
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1475

J
johnc 已提交
1476 1477 1478
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1479 1480 1481
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1482

1483 1484 1485
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1486

1487 1488
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
1489
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1490

1491 1492 1493 1494 1495
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1496

1497 1498
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1499

1500
      _hrm.verify_optional();
1501
      verify_region_sets_optional();
1502

1503 1504
      verify_after_gc();

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

1517 1518 1519
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1520

1521
      clear_cset_fast_test();
1522

1523
      _allocator->init_mutator_alloc_region();
1524

1525 1526
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1527

1528 1529 1530
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1531

1532 1533 1534 1535 1536
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1537

1538 1539
      gc_epilogue(true);
    }
1540

1541
    if (G1Log::finer()) {
1542
      g1_policy()->print_detailed_heap_transition(true /* full */);
1543
    }
1544 1545

    print_heap_after_gc();
S
sla 已提交
1546 1547 1548
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1549

1550
    gc_timer->register_gc_end();
S
sla 已提交
1551
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552
  }
1553

1554
  return true;
1555 1556 1557
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1558 1559 1560 1561 1562 1563 1564 1565
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1578 1579 1580 1581
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1582
  // We don't have floating point command-line arguments
1583
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1584
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1585
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1586 1587
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1624

1625
  if (capacity_after_gc < minimum_desired_capacity) {
1626 1627
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1638 1639

    // No expansion, now see if we want to shrink
1640
  } else if (capacity_after_gc > maximum_desired_capacity) {
1641 1642
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1643 1644 1645 1646 1647 1648 1649 1650 1651
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1652 1653 1654 1655 1656 1657
    shrink(shrink_bytes);
  }
}


HeapWord*
1658
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1659
                                           AllocationContext_t context,
1660
                                           bool* succeeded) {
1661
  assert_at_safepoint(true /* should_be_vm_thread */);
1662 1663 1664

  *succeeded = true;
  // Let's attempt the allocation first.
1665 1666
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
1667 1668
                                    context,
                                    false /* expect_null_mutator_alloc_region */);
1669 1670 1671 1672
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1673 1674 1675 1676 1677

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
1678
  result = expand_and_allocate(word_size, context);
1679
  if (result != NULL) {
1680
    assert(*succeeded, "sanity");
1681 1682 1683
    return result;
  }

1684 1685 1686 1687 1688 1689 1690 1691
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1692

1693 1694
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1695 1696
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1697
  if (result != NULL) {
1698
    assert(*succeeded, "sanity");
1699 1700 1701
    return result;
  }

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1713 1714
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1715
  if (result != NULL) {
1716
    assert(*succeeded, "sanity");
1717 1718 1719
    return result;
  }

1720
  assert(!collector_policy()->should_clear_all_soft_refs(),
1721
         "Flag should have been handled and cleared prior to this point");
1722

1723 1724 1725 1726
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1727
  assert(*succeeded, "sanity");
1728 1729 1730 1731 1732 1733 1734 1735
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

1736
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1737 1738 1739
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1740

1741
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1742 1743 1744 1745 1746
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1747
  if (expand(expand_bytes)) {
1748
    _hrm.verify_optional();
1749 1750
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1751 1752
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
1753
  }
1754
  return NULL;
1755 1756
}

1757 1758
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1759 1760
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1761 1762 1763 1764 1765
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1766

1767
  if (is_maximal_no_gc()) {
1768 1769 1770 1771 1772 1773
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1774 1775
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");
1776

1777
  uint expanded_by = _hrm.expand_by(regions_to_expand);
1778

1779 1780
  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1781
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1782
    g1_policy()->record_new_heap_size(num_regions());
1783
  } else {
1784 1785 1786
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1787 1788 1789
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
1790
        _hrm.available() >= regions_to_expand) {
1791
      // We had head room...
1792
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1793 1794
    }
  }
1795
  return regions_to_expand > 0;
1796 1797
}

1798
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1799 1800 1801 1802
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1803 1804
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

1805
  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1806
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1807 1808 1809 1810 1811 1812

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1813 1814
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
1815
    g1_policy()->record_new_heap_size(num_regions());
1816 1817 1818 1819
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1820 1821 1822 1823
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1824 1825
  verify_region_sets_optional();

1826 1827 1828
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
1829
  _allocator->abandon_gc_alloc_regions();
1830

1831 1832 1833
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1834
  tear_down_region_sets(true /* free_list_only */);
1835
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1836
  rebuild_region_sets(true /* free_list_only */);
1837

1838
  _hrm.verify_optional();
1839
  verify_region_sets_optional();
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1852
  _dirty_card_queue_set(false),
J
johnc 已提交
1853
  _into_cset_dirty_card_queue_set(false),
1854 1855 1856 1857
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1858 1859
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1860
  _evac_failure_scan_stack(NULL),
1861
  _mark_in_progress(false),
1862
  _cg1r(NULL),
1863
  _g1mm(NULL),
1864 1865
  _refine_cte_cl(NULL),
  _full_collection(false),
1866 1867 1868
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1869 1870
  _humongous_is_live(),
  _has_humongous_reclaim_candidates(false),
1871
  _free_regions_coming(false),
1872 1873
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1874 1875
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1876
  _expand_heap_after_alloc_failure(true),
1877
  _surviving_young_words(NULL),
1878 1879
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1880
  _concurrent_cycle_started(false),
1881
  _in_cset_fast_test(),
1882 1883
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1884 1885 1886 1887 1888 1889 1890
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1891 1892 1893
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1894

1895
  _allocator = G1Allocator::create_allocator(_g1h);
1896 1897
  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1898 1899 1900
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1901
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1902 1903
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1904 1905
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1906
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1907

1908 1909 1910 1911
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1912
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1913
  }
1914 1915
  clear_cset_start_regions();

1916 1917 1918
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1919 1920 1921 1922
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1923
  CollectedHeap::pre_initialize();
1924 1925
  os::enable_vtime();

1926 1927
  G1Log::init();

1928 1929 1930 1931
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1932 1933 1934 1935
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1936 1937 1938 1939 1940 1941 1942 1943 1944
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1945
  size_t heap_alignment = collector_policy()->heap_alignment();
1946 1947 1948 1949

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1950
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1951

1952 1953 1954
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1955 1956

  // Reserve the maximum.
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

1969
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1970
                                                 heap_alignment);
1971 1972

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
1973
  // temporarily think something is in the heap.  (I've actually seen this
1974 1975 1976 1977 1978 1979 1980 1981
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
1982 1983
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1984 1985 1986 1987
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1988
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1989 1990 1991

  // Carve out the G1 part of the heap.

1992
  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
                                         UseLargePages ? os::large_page_size() : os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  heap_storage->set_mapping_changed_listener(&_listener);

  // Reserve space for the block offset table. We do not support automatic uncommit
  // for the card table at this time. BOT only.
  ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* bot_storage =
    G1RegionToSpaceMapper::create_mapper(bot_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
    G1RegionToSpaceMapper::create_mapper(cardtable_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for the card counts table.
  ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* card_counts_storage =
    G1RegionToSpaceMapper::create_mapper(card_counts_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         G1BlockOffsetSharedArray::N_bytes,
                                         mtGC);

  // Reserve space for prev and next bitmap.
  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());

  ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* prev_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

  ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  G1RegionToSpaceMapper* next_bitmap_storage =
    G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
                                         os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         CMBitMap::mark_distance(),
                                         mtGC);

2047
  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2048 2049 2050
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);
2051

2052 2053
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2054
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2055 2056 2057
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2058
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2059
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2060
            "too many cards per region");
2061

2062
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2063

2064
  _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2065 2066 2067

  _g1h = this;

2068 2069
  _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2070

2071 2072
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2073
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2074 2075 2076 2077
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2078 2079 2080 2081 2082
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2083
  // Now expand into the initial heap size.
2084
  if (!expand(init_byte_size)) {
2085
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2086 2087
    return JNI_ENOMEM;
  }
2088 2089 2090 2091 2092 2093

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2094
                                               G1SATBProcessCompletedThreshold,
2095
                                               Shared_SATB_Q_lock);
2096

2097 2098
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2099
                                                DirtyCardQ_FL_lock,
2100 2101
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2102 2103
                                                Shared_DirtyCardQ_lock);

2104 2105 2106 2107 2108 2109 2110
  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());
J
johnc 已提交
2111 2112 2113

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2114 2115
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2116 2117 2118 2119 2120 2121
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2122 2123 2124 2125
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2126 2127
  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
2128
  HeapRegion* dummy_region = _hrm.get_dummy_region();
2129

2130 2131 2132
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
2133 2134
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
2135 2136 2137 2138
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

2139
  _allocator->init_mutator_alloc_region();
2140

2141 2142
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2143
  _g1mm = new G1MonitoringSupport(this);
2144

P
pliden 已提交
2145 2146
  G1StringDedup::initialize();

2147 2148 2149
  return JNI_OK;
}

2150
void G1CollectedHeap::stop() {
2151 2152
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2153
  // that are destroyed during shutdown.
2154 2155 2156 2157 2158
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2159 2160
}

2161 2162 2163 2164 2165
void G1CollectedHeap::clear_humongous_is_live_table() {
  guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  _humongous_is_live.clear();
}

2166 2167 2168 2169
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2170
void G1CollectedHeap::ref_processing_init() {
2171 2172
  // Reference processing in G1 currently works as follows:
  //
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2205

2206 2207
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2222
                           &_is_alive_closure_cm);
2223 2224 2225 2226 2227
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2228
    new ReferenceProcessor(mr,    // span
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2239
                           &_is_alive_closure_stw);
2240 2241
                                // is alive closure
                                // (for efficiency/performance)
2242 2243 2244
}

size_t G1CollectedHeap::capacity() const {
2245
  return _hrm.length() * HeapRegion::GrainBytes;
2246 2247
}

2248 2249 2250 2251
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
2252
    uint first_index = hr->hrm_index() + 1;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2293 2294 2295
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2296
                                                 uint worker_i) {
2297
  // Clean cards in the hot card cache
2298 2299
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2300

2301 2302
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2303
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2304 2305
    n_completed_buffers++;
  }
2306
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2307 2308 2309 2310 2311 2312 2313
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
2314
  return _allocator->used();
2315 2316
}

2317
size_t G1CollectedHeap::used_unlocked() const {
2318
  return _allocator->used_unlocked();
2319 2320
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2335 2336
  double recalculate_used_start = os::elapsedTime();

2337
  SumUsedClosure blk;
2338
  heap_region_iterate(&blk);
2339 2340

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2341 2342 2343
  return blk.result();
}

2344
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2345 2346 2347 2348
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
2349
    case GCCause::_update_allocation_context_stats_inc: return true;
2350 2351
    default:                                return false;
  }
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
2363 2364
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2387 2388
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2389 2390 2391 2392 2393
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2394 2395 2396 2397 2398 2399 2400 2401
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2402
  assert(concurrent ||
2403 2404 2405 2406 2407
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2408 2409

  // This is the case for the outer caller, i.e. the concurrent cycle.
2410
  assert(!concurrent ||
2411
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2412
         err_msg("for outer caller (concurrent cycle): "
2413 2414 2415
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2416

2417
  _old_marking_cycles_completed += 1;
2418

2419 2420 2421
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2422
  // incorrectly see that a marking cycle is still in progress.
2423
  if (concurrent) {
2424 2425 2426
    _cmThread->clear_in_progress();
  }

2427 2428 2429 2430 2431 2432 2433
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2434
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2447

2448
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2477
void G1CollectedHeap::collect(GCCause::Cause cause) {
2478
  assert_heap_not_locked();
2479

2480
  unsigned int gc_count_before;
2481
  unsigned int old_marking_count_before;
2482
  unsigned int full_gc_count_before;
2483 2484 2485 2486 2487 2488 2489
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2490

2491 2492
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2493
      full_gc_count_before = total_full_collections();
2494
      old_marking_count_before = _old_marking_cycles_started;
2495 2496 2497 2498 2499 2500
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2501
      VM_G1IncCollectionPause op(gc_count_before,
2502
                                 0,     /* word_size */
2503
                                 true,  /* should_initiate_conc_mark */
2504 2505
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2506
      op.set_allocation_context(AllocationContext::current());
2507

2508
      VMThread::execute(&op);
2509
      if (!op.pause_succeeded()) {
2510
        if (old_marking_count_before == _old_marking_cycles_started) {
2511
          retry_gc = op.should_retry_gc();
2512 2513 2514 2515 2516
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2517 2518 2519 2520 2521 2522

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2523
      }
2524
    } else {
2525
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2538
        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2539 2540
        VMThread::execute(&op);
      }
2541
    }
2542
  } while (retry_gc);
2543 2544 2545
}

bool G1CollectedHeap::is_in(const void* p) const {
2546
  if (_hrm.reserved().contains(p)) {
2547
    // Given that we know that p is in the reserved space,
S
stefank 已提交
2548 2549 2550
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2551 2552
    return hr->is_in(p);
  } else {
2553
    return false;
2554 2555 2556
  }
}

2557 2558 2559
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
2560
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2561 2562 2563 2564 2565 2566 2567 2568
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

2569 2570
// Iteration functions.

2571
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2572 2573

class IterateOopClosureRegionClosure: public HeapRegionClosure {
2574
  ExtendedOopClosure* _cl;
2575
public:
2576
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2577
  bool doHeapRegion(HeapRegion* r) {
2578
    if (!r->continuesHumongous()) {
2579 2580 2581 2582 2583 2584
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2585
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2586
  IterateOopClosureRegionClosure blk(cl);
2587
  heap_region_iterate(&blk);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2604
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2605
  IterateObjectClosureRegionClosure blk(cl);
2606
  heap_region_iterate(&blk);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2623
  heap_region_iterate(&blk);
2624 2625
}

2626
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2627
  _hrm.iterate(cl);
2628 2629 2630 2631
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2632
                                                 uint worker_id,
2633 2634
                                                 uint num_workers,
                                                 jint claim_value) const {
2635
  _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2636 2637
}

2638 2639 2640 2641 2642 2643 2644 2645
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2646
void G1CollectedHeap::reset_heap_region_claim_values() {
2647 2648 2649 2650
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2651 2652 2653 2654 2655
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2656 2657 2658 2659 2660 2661 2662 2663 2664
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2665
  uint _failures;
2666
  HeapRegion* _sh_region;
2667

2668 2669 2670 2671 2672
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2673
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2674
                             "claim value = %d, should be %d",
2675 2676
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2677 2678 2679 2680 2681 2682 2683 2684
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2685
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2686
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2687
                               HR_FORMAT_PARAMS(r),
2688 2689 2690 2691 2692 2693 2694
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2695
  uint failures() { return _failures; }
2696 2697 2698 2699 2700 2701 2702
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2703 2704

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2705 2706 2707
private:
  jint _claim_value;
  uint _failures;
2708 2709 2710

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2711
    _claim_value(claim_value), _failures(0) { }
2712

2713
  uint failures() { return _failures; }
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2734 2735
#endif // ASSERT

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2748

2749 2750
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2751
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2779
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2780
    uint cs_size = g1_policy()->cset_region_length();
2781
    uint active_workers = workers()->active_workers();
2782 2783 2784 2785
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2786 2787
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2788 2789 2790 2791 2792 2793 2794 2795 2796

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2797
    for (uint i = start_ind; i < end_ind; i++) {
2798 2799 2800
      result = result->next_in_collection_set();
    }
  }
2801 2802 2803 2804 2805 2806 2807 2808 2809

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2810 2811 2812
  return result;
}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2827 2828 2829 2830 2831
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

2854
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2855
  HeapRegion* result = _hrm.next_region_in_heap(from);
2856
  while (result != NULL && result->isHumongous()) {
2857
    result = _hrm.next_region_in_heap(result);
2858
  }
2859
  return result;
2860 2861 2862
}

Space* G1CollectedHeap::space_containing(const void* addr) const {
2863
  return heap_region_containing(addr);
2864 2865 2866 2867
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
2868
  return sp->block_start(addr);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2897 2898 2899 2900 2901 2902
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2903
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
2904
  // since we can't allow tlabs to grow big enough to accommodate
2905 2906
  // humongous objects.

2907
  HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
B
brutisso 已提交
2908
  size_t max_tlab = max_tlab_size() * wordSize;
2909
  if (hr == NULL) {
B
brutisso 已提交
2910
    return max_tlab;
2911
  } else {
B
brutisso 已提交
2912
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2913 2914 2915 2916
  }
}

size_t G1CollectedHeap::max_capacity() const {
2917
  return _hrm.reserved().byte_size();
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

2977
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3013
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3112
class VerifyLivenessOopClosure: public OopClosure {
3113 3114
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3115
public:
3116 3117 3118
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3119 3120 3121 3122 3123
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3124
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3125
              "Dead object referenced by a not dead object");
3126 3127 3128 3129
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3130
private:
3131 3132 3133
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3134
  VerifyOption _vo;
3135
public:
3136 3137 3138 3139 3140
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3141 3142 3143
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3144
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3145
    assert(o != NULL, "Huh?");
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3158
      o->oop_iterate_no_header(&isLive);
3159 3160 3161 3162
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3198
private:
3199 3200 3201
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3202
public:
3203 3204 3205
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3206 3207
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3208
      _vo(vo),
3209 3210 3211 3212 3213
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3214

3215
  bool doHeapRegion(HeapRegion* r) {
3216
    if (!r->continuesHumongous()) {
3217
      bool failures = false;
3218
      r->verify(_vo, &failures);
3219 3220 3221
      if (failures) {
        _failures = true;
      } else {
3222
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3223
        r->object_iterate(&not_dead_yet_cl);
3224 3225 3226 3227 3228 3229 3230
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3231
                                 not_dead_yet_cl.live_bytes());
3232 3233 3234 3235 3236 3237
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3238 3239
        }
      }
3240
    }
3241
    return false; // stop the region iteration if we hit a failure
3242 3243 3244
  }
};

J
johnc 已提交
3245
// This is the task used for parallel verification of the heap regions
3246 3247 3248 3249

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3250 3251
  VerifyOption     _vo;
  bool             _failures;
3252 3253

public:
3254 3255 3256
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3257
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3258
    AbstractGangTask("Parallel verify task"),
3259
    _g1h(g1h),
3260
    _vo(vo),
3261 3262 3263 3264 3265
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3266

3267
  void work(uint worker_id) {
3268
    HandleMark hm;
3269
    VerifyRegionClosure blk(true, _vo);
3270
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3271
                                          _g1h->workers()->active_workers(),
3272
                                          HeapRegion::ParVerifyClaimValue);
3273 3274 3275
    if (blk.failures()) {
      _failures = true;
    }
3276 3277 3278
  }
};

J
johnc 已提交
3279
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3280
  if (SafepointSynchronize::is_at_safepoint()) {
3281
    assert(Thread::current()->is_VM_thread(),
3282
           "Expected to be executed serially by the VM thread at this point");
3283

J
johnc 已提交
3284 3285
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
3286
    VerifyKlassClosure klassCl(this, &rootsCl);
3287
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3288

3289
    // We apply the relevant closures to all the oops in the
3290 3291
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
3292 3293
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3294 3295 3296 3297 3298 3299

    process_all_roots(true,            // activate StrongRootsScope
                      SO_AllCodeCache, // roots scanning options
                      &rootsCl,
                      &cldCl,
                      &blobsCl);
3300

J
johnc 已提交
3301
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3312
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3313 3314 3315 3316
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3317
      G1ParVerifyTask task(this, vo);
3318 3319 3320 3321
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3322 3323 3324
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3325 3326 3327
      if (task.failures()) {
        failures = true;
      }
3328

3329 3330
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3331 3332 3333 3334 3335 3336 3337 3338
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3339
      VerifyRegionClosure blk(false, vo);
3340
      heap_region_iterate(&blk);
3341 3342 3343
      if (blk.failures()) {
        failures = true;
      }
3344
    }
3345
    if (!silent) gclog_or_tty->print("RemSet ");
3346
    rem_set()->verify();
3347

P
pliden 已提交
3348 3349 3350 3351 3352
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3353 3354
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3355 3356 3357 3358
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3359
      gclog_or_tty->cr();
3360
#ifndef PRODUCT
3361
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3362
        concurrent_mark()->print_reachable("at-verification-failure",
3363
                                           vo, false /* all */);
3364
      }
3365
#endif
3366 3367 3368
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3369
  } else {
P
pliden 已提交
3370 3371 3372 3373 3374 3375 3376
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3377 3378 3379
  }
}

J
johnc 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3441
void G1CollectedHeap::print_on(outputStream* st) const {
3442 3443
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3444
            capacity()/K, used_unlocked()/K);
3445
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3446 3447 3448
            _hrm.reserved().start(),
            _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
            _hrm.reserved().end());
3449
  st->cr();
3450
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3451 3452 3453 3454 3455 3456
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3457
  st->cr();
3458
  MetaspaceAux::print_on(st);
3459 3460
}

3461 3462 3463 3464 3465
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3466 3467 3468 3469 3470
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3471
  PrintRegionClosure blk(st);
3472
  heap_region_iterate(&blk);
3473 3474
}

3475 3476 3477 3478 3479 3480 3481 3482 3483
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3484
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3485
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3486
    workers()->print_worker_threads_on(st);
3487
  }
T
tonyp 已提交
3488
  _cmThread->print_on(st);
3489
  st->cr();
T
tonyp 已提交
3490 3491
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3492 3493 3494
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3495 3496 3497
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3498
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3499 3500 3501
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3502
  _cg1r->threads_do(tc);
P
pliden 已提交
3503 3504 3505
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3506 3507 3508 3509 3510 3511 3512 3513 3514
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3515
  if (G1SummarizeRSetStats) {
3516 3517
    g1_rem_set()->print_summary_info();
  }
3518
  if (G1SummarizeConcMark) {
3519 3520 3521 3522 3523 3524
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3553
    gclog_or_tty->print_cr("%s", msg);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3575 3576 3577 3578 3579 3580 3581
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3582
  // always_do_update_barrier = false;
3583 3584
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3585
  accumulate_statistics_all_tlabs();
3586
  ensure_parsability(true);
3587 3588 3589 3590 3591

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3592 3593
}

3594
void G1CollectedHeap::gc_epilogue(bool full) {
3595 3596 3597 3598 3599

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3600
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3601 3602
  }

3603 3604 3605 3606 3607
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3608
  // always_do_update_barrier = true;
3609

B
brutisso 已提交
3610
  resize_all_tlabs();
3611
  allocation_context_stats().update(full);
B
brutisso 已提交
3612

3613 3614 3615
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3616 3617
}

3618 3619
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3620 3621
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3622
  assert_heap_not_locked_and_not_at_safepoint();
3623
  g1_policy()->record_stop_world_start();
3624 3625 3626 3627
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3628
                             gc_cause);
3629 3630

  op.set_allocation_context(AllocationContext::current());
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3641 3642 3643 3644
}

void
G1CollectedHeap::doConcurrentMark() {
3645 3646 3647 3648
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3664 3665 3666 3667
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3668 3669 3670
}

size_t G1CollectedHeap::cards_scanned() {
3671
  return g1_rem_set()->cardsScanned();
3672 3673
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  HeapRegion* region = region_at(index);
  assert(region->startsHumongous(), "Must start a humongous object");
  return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
}

class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;
 public:
  RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

3694
    uint region_idx = r->hrm_index();
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
    // Is_candidate already filters out humongous regions with some remembered set.
    // This will not lead to humongous object that we mistakenly keep alive because
    // during young collection the remembered sets will only be added to.
    if (is_candidate) {
      g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
      _candidate_humongous++;
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }
};

void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
    return;
  }

  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

  if (_has_humongous_reclaim_candidates) {
    clear_humongous_is_live_table();
  }
}

3729 3730
void
G1CollectedHeap::setup_surviving_young_words() {
3731 3732
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3733
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3734
  if (_surviving_young_words == NULL) {
3735
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3736 3737
                          "Not enough space for young surv words summary.");
  }
3738
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3739
#ifdef ASSERT
3740
  for (uint i = 0;  i < array_length; ++i) {
3741
    assert( _surviving_young_words[i] == 0, "memset above" );
3742
  }
3743
#endif // !ASSERT
3744 3745 3746 3747 3748
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3749 3750
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3751
    _surviving_young_words[i] += surv_young_words[i];
3752
  }
3753 3754 3755 3756 3757
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3758
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3759 3760 3761
  _surviving_young_words = NULL;
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3779 3780 3781
    return false;
  }
};
3782
#endif // ASSERT
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3795
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3806
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3807 3808 3809 3810 3811 3812
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3813 3814 3815 3816 3817
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3818
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3819 3820

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3821
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3847
  gclog_or_tty->flush();
3848 3849
}

3850
bool
3851
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3852 3853 3854
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3855
  if (GC_locker::check_active_before_gc()) {
3856
    return false;
3857 3858
  }

3859
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3860 3861 3862

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3863
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3864 3865
  ResourceMark rm;

3866
  print_heap_before_gc();
S
sla 已提交
3867
  trace_heap_before_gc(_gc_tracer_stw);
3868

3869
  verify_region_sets_optional();
3870
  verify_dirty_young_regions();
3871

3872 3873 3874 3875 3876 3877 3878 3879
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3880

3881 3882
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3883

3884 3885 3886 3887
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3888

3889 3890
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3891 3892
    EvacuationInfo evacuation_info;

3893 3894 3895
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3896
      increment_old_marking_cycles_started();
S
sla 已提交
3897
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3898
    }
S
sla 已提交
3899 3900 3901

    _gc_tracer_stw->report_yc_type(yc_type());

3902
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3903

3904 3905
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3906 3907
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3908
    log_gc_header();
3909

3910
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3911
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3912

T
tonyp 已提交
3913 3914 3915 3916 3917 3918
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3919
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3920
      append_secondary_free_list_if_not_empty_with_lock();
3921
    }
3922

J
johnc 已提交
3923 3924 3925
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3926

3927 3928 3929 3930
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3931 3932 3933 3934 3935
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3936
      increment_gc_time_stamp();
3937

3938
      verify_before_gc();
3939
      check_bitmaps("GC Start");
3940

3941
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3942

3943 3944 3945
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3946

3947 3948 3949
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
3960
        _allocator->release_mutator_alloc_region();
3961 3962 3963 3964 3965 3966

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3967 3968 3969 3970 3971 3972
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3973 3974
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
3975
        double sample_start_time_sec = os::elapsedTime();
3976

3977
#if YOUNG_LIST_VERBOSE
3978 3979 3980
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3981 3982
#endif // YOUNG_LIST_VERBOSE

3983
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3984

3985 3986 3987 3988 3989 3990
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
3991
        double wait_time_ms = 0.0;
3992 3993
        if (waited) {
          double scan_wait_end = os::elapsedTime();
3994
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3995
        }
3996
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3997

3998
#if YOUNG_LIST_VERBOSE
3999 4000
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4001
#endif // YOUNG_LIST_VERBOSE
4002

4003 4004 4005
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4006

4007
#if YOUNG_LIST_VERBOSE
4008 4009 4010
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4011
#endif // YOUNG_LIST_VERBOSE
4012

S
sla 已提交
4013
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4014

4015 4016
        register_humongous_regions_with_in_cset_fast_test();

4017 4018 4019
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4020
        // GC). We also call this after finalize_cset() to
4021 4022 4023 4024 4025 4026
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4027 4028 4029 4030 4031
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4032 4033 4034
          }
        }

4035
#ifdef ASSERT
4036 4037
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4038
#endif // ASSERT
4039

4040
        setup_surviving_young_words();
4041

4042
        // Initialize the GC alloc regions.
4043
        _allocator->init_gc_alloc_regions(evacuation_info);
4044

4045
        // Actually do the work...
S
sla 已提交
4046
        evacuate_collection_set(evacuation_info);
4047

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4058
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4059 4060 4061

        eagerly_reclaim_humongous_regions();

4062
        g1_policy()->clear_collection_set();
4063

4064
        cleanup_surviving_young_words();
4065

4066 4067
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4068

4069
        clear_cset_fast_test();
4070

4071
        _young_list->reset_sampled_info();
4072

4073 4074 4075 4076 4077 4078
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4079 4080

#if YOUNG_LIST_VERBOSE
4081 4082
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4083
#endif // YOUNG_LIST_VERBOSE
4084

4085
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4086 4087
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4088

4089
        _young_list->reset_auxilary_lists();
4090

4091
        if (evacuation_failed()) {
4092
          _allocator->set_used(recalculate_used());
S
sla 已提交
4093 4094 4095 4096 4097 4098
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4099 4100 4101
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
4102
          _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4103
        }
4104

4105
        if (g1_policy()->during_initial_mark_pause()) {
4106 4107 4108
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4109 4110
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4111 4112 4113
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4114
        }
4115

4116
        allocate_dummy_regions();
4117

4118
#if YOUNG_LIST_VERBOSE
4119 4120 4121
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4122
#endif // YOUNG_LIST_VERBOSE
4123

4124
        _allocator->init_mutator_alloc_region();
4125 4126 4127 4128 4129

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4130 4131
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4132
            if (!expand(expand_bytes)) {
4133
              // We failed to expand the heap. Cannot do anything about it.
4134
            }
4135 4136 4137
          }
        }

S
sla 已提交
4138
        // We redo the verification but now wrt to the new CSet which
4139 4140 4141 4142 4143 4144 4145
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4146 4147 4148 4149 4150
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4151
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4178
        verify_after_gc();
4179
        check_bitmaps("GC End");
4180

4181 4182
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4183

4184 4185
        // CM reference discovery will be re-enabled if necessary.
      }
4186

4187 4188 4189 4190 4191 4192
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4193
#ifdef TRACESPINNING
4194
      ParallelTaskTerminator::print_termination_counts();
4195
#endif
4196

4197 4198
      gc_epilogue(false);
    }
4199

4200 4201 4202
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4203
    // It is not yet to safe to tell the concurrent mark to
4204 4205 4206
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4207

4208
    _hrm.verify_optional();
4209 4210 4211 4212
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4213

4214
    print_heap_after_gc();
S
sla 已提交
4215
    trace_heap_after_gc(_gc_tracer_stw);
4216

4217 4218 4219 4220 4221
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4222

S
sla 已提交
4223 4224
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4225
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4226 4227
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4239
    // SuspendibleThreadSet::desynchronize().
4240 4241 4242
    doConcurrentMark();
  }

4243
  return true;
4244 4245
}

4246 4247 4248 4249 4250
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4251
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4252 4253
      break;
    case GCAllocForTenured:
4254
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4255 4256 4257
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4258
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4259 4260
      break;
  }
4261 4262 4263 4264 4265 4266

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4267 4268
}

4269 4270 4271
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4272
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4273 4274 4275 4276 4277 4278 4279
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4280
  delete _evac_failure_scan_stack;
4281 4282 4283
  _evac_failure_scan_stack = NULL;
}

4284 4285
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4286

4287 4288
  double remove_self_forwards_start = os::elapsedTime();

4289
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4290

4291 4292 4293 4294
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4295
  } else {
4296
    rsfp_task.work(0);
4297
  }
4298 4299 4300 4301 4302 4303 4304

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4305 4306

  // Now restore saved marks, if any.
4307 4308 4309 4310 4311 4312
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4313
  }
4314 4315
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4316 4317

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4335
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4336
                                               oop old) {
4337 4338 4339
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4340 4341 4342 4343
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4344 4345 4346
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4347

S
sla 已提交
4348 4349
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4368 4369 4370 4371 4372 4373 4374
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4385
    _hr_printer.evac_failure(r);
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4399 4400 4401 4402
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4403 4404
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4405 4406 4407 4408
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4409 4410
                                                  size_t word_size,
                                                  AllocationContext_t context) {
4411
  if (purpose == GCAllocForSurvived) {
4412
    HeapWord* result = survivor_attempt_allocation(word_size, context);
4413 4414
    if (result != NULL) {
      return result;
4415
    } else {
4416 4417
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
4418
      return old_attempt_allocation(word_size, context);
4419
    }
4420 4421
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
4422
    HeapWord* result = old_attempt_allocation(word_size, context);
4423 4424
    if (result != NULL) {
      return result;
4425
    } else {
4426 4427
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
4428
      return survivor_attempt_allocation(word_size, context);
4429 4430 4431
    }
  }

4432 4433 4434
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4435 4436
}

4437
void G1ParCopyHelper::mark_object(oop obj) {
4438
  assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4439 4440

  // We know that the object is not moving so it's safe to read its size.
4441
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4442 4443
}

4444
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4445 4446 4447 4448
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

4449 4450
  assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4451 4452 4453 4454 4455

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4456
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4457 4458
}

4459 4460 4461 4462 4463 4464 4465
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4466
template <G1Barrier barrier, G1Mark do_mark_object>
4467
template <class T>
4468
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4469 4470 4471 4472 4473 4474 4475
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4476

4477 4478
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4479 4480 4481
  G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);

  if (state == G1CollectedHeap::InCSet) {
4482
    oop forwardee;
4483
    if (obj->is_forwarded()) {
4484
      forwardee = obj->forwardee();
4485
    } else {
4486
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4487 4488 4489
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
4490
    if (do_mark_object != G1MarkNone && forwardee != obj) {
4491 4492 4493
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4494
    }
4495

4496
    if (barrier == G1BarrierKlass) {
4497
      do_klass_barrier(p, forwardee);
4498
    }
4499
  } else {
4500 4501 4502
    if (state == G1CollectedHeap::IsHumongous) {
      _g1->set_humongous_is_live(obj);
    }
4503
    // The object is not in collection set. If we're a root scanning
4504 4505
    // closure during an initial mark pause then attempt to mark the object.
    if (do_mark_object == G1MarkFromRoot) {
4506
      mark_object(obj);
4507
    }
4508
  }
4509

4510
  if (barrier == G1BarrierEvac) {
4511
    _par_scan_state->update_rs(_from, p, _worker_id);
4512
  }
4513 4514
}

4515 4516
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4537
  void do_void();
4538

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4555
    pss->steal_and_trim_queue(queues());
4556 4557
  } while (!offer_termination());
}
4558

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
class G1CodeBlobClosure : public CodeBlobClosure {
  class HeapRegionGatheringOopClosure : public OopClosure {
    G1CollectedHeap* _g1h;
    OopClosure* _work;
    nmethod* _nm;

    template <typename T>
    void do_oop_work(T* p) {
      _work->do_oop(p);
      T oop_or_narrowoop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(oop_or_narrowoop)) {
        oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
        HeapRegion* hr = _g1h->heap_region_containing_raw(o);
        assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
        hr->add_strong_code_root(_nm);
      }
    }

  public:
    HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}

    void do_oop(oop* o) {
      do_oop_work(o);
    }

    void do_oop(narrowOop* o) {
      do_oop_work(o);
    }

    void set_nm(nmethod* nm) {
      _nm = nm;
    }
  };

  HeapRegionGatheringOopClosure _oc;
public:
  G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      if (!nm->test_set_oops_do_mark()) {
        _oc.set_nm(nm);
        nm->oops_do(&_oc);
        nm->fix_oop_relocations();
      }
    }
  }
};

4635 4636 4637 4638 4639
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4640
  uint _n_workers;
4641 4642 4643 4644 4645

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

public:
4646
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4647 4648 4649
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4650 4651
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4652 4653 4654 4655 4656 4657 4658 4659
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
  // Helps out with CLD processing.
  //
  // During InitialMark we need to:
  // 1) Scavenge all CLDs for the young GC.
  // 2) Mark all objects directly reachable from strong CLDs.
  template <G1Mark do_mark_object>
  class G1CLDClosure : public CLDClosure {
    G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
    G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
    G1KlassScanClosure                                _klass_in_cld_closure;
    bool                                              _claim;

   public:
    G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
                 bool only_young, bool claim)
        : _oop_closure(oop_closure),
          _oop_in_klass_closure(oop_closure->g1(),
                                oop_closure->pss(),
                                oop_closure->rp()),
          _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
          _claim(claim) {

    }

    void do_cld(ClassLoaderData* cld) {
      cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
    }
  };

4703 4704
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4705 4706

    double start_time_ms = os::elapsedTime() * 1000.0;
4707
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4708

4709 4710 4711
    {
      ResourceMark rm;
      HandleMark   hm;
4712

4713
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4714

4715
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4716
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4717

4718
      pss.set_evac_failure_closure(&evac_failure_cl);
4719

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
      G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
      // IM Weak code roots are handled later.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;
      CodeBlobClosure* strong_code_cl;
4748

4749 4750
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
4751 4752 4753
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
        strong_code_cl = &scan_mark_code_cl;
4754 4755 4756 4757 4758 4759 4760
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
4761 4762 4763 4764 4765 4766
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
        strong_code_cl = &scan_only_code_cl;
4767
      }
4768

4769

4770
      G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4771

4772
      pss.start_strong_roots();
4773 4774 4775 4776 4777 4778 4779 4780
      _g1h->g1_process_roots(strong_root_cl,
                             weak_root_cl,
                             &push_heap_rs_cl,
                             strong_cld_cl,
                             weak_cld_cl,
                             strong_code_cl,
                             worker_id);

4781
      pss.end_strong_roots();
4782

4783 4784 4785 4786 4787 4788
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4789
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4790
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4791 4792 4793 4794 4795 4796 4797 4798
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4799

4800
      assert(pss.queue_is_empty(), "should be empty");
4801

4802 4803 4804
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4805 4806
    }

4807
    double end_time_ms = os::elapsedTime() * 1000.0;
4808
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4809 4810 4811 4812 4813
  }
};

// *** Common G1 Evacuation Stuff

4814 4815
// This method is run in a GC worker.

4816 4817
void
G1CollectedHeap::
4818 4819
g1_process_roots(OopClosure* scan_non_heap_roots,
                 OopClosure* scan_non_heap_weak_roots,
4820
                 G1ParPushHeapRSClosure* scan_rs,
4821 4822 4823 4824 4825 4826
                 CLDClosure* scan_strong_clds,
                 CLDClosure* scan_weak_clds,
                 CodeBlobClosure* scan_strong_code,
                 uint worker_i) {

  // First scan the shared roots.
4827 4828 4829
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

4830
  bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4831
  bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4832

4833
  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4834
  BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4835

4836 4837 4838 4839 4840
  process_roots(false, // no scoping; this is parallel code
                SharedHeap::SO_None,
                &buf_scan_non_heap_roots,
                &buf_scan_non_heap_weak_roots,
                scan_strong_clds,
4841 4842
                // Unloading Initial Marks handle the weak CLDs separately.
                (trace_metadata ? NULL : scan_weak_clds),
4843
                scan_strong_code);
4844

4845
  // Now the CM ref_processor roots.
4846
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4847 4848 4849 4850 4851
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4852 4853
  }

4854
  if (trace_metadata) {
4855 4856 4857 4858 4859 4860 4861 4862
    // Barrier to make sure all workers passed
    // the strong CLD and strong nmethods phases.
    active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());

    // Now take the complement of the strong CLDs.
    ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  }

4863
  // Finish up any enqueued closure apps (attributed as object copy time).
4864
  buf_scan_non_heap_roots.done();
4865
  buf_scan_non_heap_weak_roots.done();
4866

4867 4868
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
      + buf_scan_non_heap_weak_roots.closure_app_seconds();
4869

4870
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4871

4872
  double ext_root_time_ms =
4873
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4874

4875
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4876

4877 4878 4879
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
4880
  double satb_filtering_ms = 0.0;
4881 4882
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
4883 4884
      double satb_filter_start = os::elapsedTime();

4885
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
4886 4887

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4888
    }
4889
  }
4890
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4891 4892

  // Now scan the complement of the collection set.
4893
  G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4894 4895

  g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4896

4897 4898 4899
  _process_strong_tasks->all_tasks_completed();
}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4913 4914

  bool _do_in_parallel;
4915 4916
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4917 4918
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
4919
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4934
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4935 4936
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4937
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4938 4939
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4940 4941 4942 4943 4944 4945 4946 4947

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
                             "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                             "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
4948 4949 4950
  }

  void work(uint worker_id) {
4951
    if (_do_in_parallel) {
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    nmethod* last;

    do {
      *num_claimed_nmethods = 0;

      first = last = (nmethod*)_claimed_nmethod;

      if (first != NULL) {
        for (int i = 0; i < MaxClaimNmethods; i++) {
          last = CodeCache::alive_nmethod(CodeCache::next(last));

          if (last == NULL) {
            break;
          }

          claimed_nmethods[i] = last;
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
5137 5138 5139 5140

    // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
    // Need to retire the buffers now that this thread has stopped cleaning nmethods.
    MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->oop_is_instance());

    return (InstanceKlass*)klass;
  }

public:

  void clean_klass(InstanceKlass* ik) {
    ik->clean_implementors_list(_is_alive);
    ik->clean_method_data(_is_alive);

    // G1 specific cleanup work that has
    // been moved here to be done in parallel.
    ik->clean_dependent_nmethods();
5193 5194 5195
    if (JvmtiExport::has_redefined_a_class()) {
      InstanceKlass::purge_previous_versions(ik);
    }
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

5230
  void pre_work_verification() {
5231 5232 5233
    // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
    assert(Thread::current()->is_VM_thread()
           || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5234 5235 5236 5237 5238 5239
  }

  void post_work_verification() {
    assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  }

5240 5241
  // The parallel work done by all worker threads.
  void work(uint worker_id) {
5242 5243
    pre_work_verification();

5244 5245 5246
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

5247
    // Let the threads mark that the first pass is done.
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
5262 5263

    post_work_verification();
5264 5265 5266 5267 5268 5269 5270 5271
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
5272
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5273
                    workers()->active_workers() : 1);
5274

5275 5276
  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
5277 5278 5279 5280 5281 5282 5283
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                     _g1h->workers()->active_workers() : 1);
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads(n_workers);
      workers()->run_task(&g1_unlink_task);
      set_par_threads(0);
    } else {
      g1_unlink_task.work(0);
    }
5299
  }
P
pliden 已提交
5300 5301 5302 5303

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5304 5305
}

5306 5307 5308 5309 5310 5311 5312 5313 5314
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
    double start_time = os::elapsedTime();

5315
    RedirtyLoggedCardTableEntryClosure cl;
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
    timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
    timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  }
5326 5327 5328 5329 5330
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5343 5344 5345 5346 5347 5348 5349 5350

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5381
  void do_oop(oop* p) {
5382
    oop obj = *p;
5383
    assert(obj != NULL, "the caller should have filtered out NULL values");
5384

5385
    G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5386
    if (cset_state == G1CollectedHeap::InNeither) {
5387 5388 5389
      return;
    }
    if (cset_state == G1CollectedHeap::InCSet) {
5390 5391
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
5392 5393 5394 5395 5396
    } else {
      assert(!obj->is_forwarded(), "invariant" );
      assert(cset_state == G1CollectedHeap::IsHumongous,
             err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
      _g1->set_humongous_is_live(obj);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

5426
    if (_g1h->is_in_cset_or_humongous(obj)) {
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5441
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5442
      // the referent object and update the pointer, while avoiding
5443 5444 5445 5446 5447
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5448
        assert(!Metaspace::contains((const void*)p),
5449
               err_msg("Unexpectedly found a pointer from metadata: "
5450
                              PTR_FORMAT, p));
5451
        _copy_non_heap_obj_cl->do_oop(p);
5452 5453
      }
    }
5454
  }
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5489
  FlexibleWorkGang*  _workers;
5490 5491 5492 5493
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5494
                        FlexibleWorkGang* workers,
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5531
  virtual void work(uint worker_id) {
5532 5533 5534 5535 5536 5537
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5538
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Keep alive closure.
5555
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5556 5557 5558 5559 5560

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5561
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5596 5597
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5598 5599 5600
  }
};

S
sla 已提交
5601
// Driver routine for parallel reference enqueueing.
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5626
  uint _n_workers;
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5637
  void work(uint worker_id) {
5638 5639 5640
    ResourceMark rm;
    HandleMark   hm;

5641
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5642 5643 5644 5645
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5646
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5664
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5665 5666 5667

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5668 5669
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5670 5671 5672 5673

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5674
    assert(0 <= worker_id && worker_id < limit, "sanity");
5675 5676 5677
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5678
    for (uint idx = worker_id; idx < limit; idx += stride) {
5679
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5700
    assert(pss.queue_is_empty(), "should be");
5701 5702 5703 5704
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5705
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5721
  // As a result the copy closure would not have been applied to the
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5732
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5733 5734
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5735

J
johnc 已提交
5736 5737 5738 5739
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5758
  G1ParScanThreadState            pss(this, 0, NULL);
5759 5760 5761 5762 5763 5764 5765 5766

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5767
  assert(pss.queue_is_empty(), "pre-condition");
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
  }

  // Keep alive closure.
5781
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5782 5783 5784 5785 5786 5787 5788

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5789
  ReferenceProcessorStats stats;
5790 5791
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5792 5793 5794 5795
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5796 5797
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5798 5799
  } else {
    // Parallel reference processing
J
johnc 已提交
5800 5801
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5802

J
johnc 已提交
5803
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5804 5805 5806 5807
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5808 5809
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5810 5811
  }

S
sla 已提交
5812
  _gc_tracer_stw->report_gc_reference_stats(stats);
5813 5814

  // We have completed copying any necessary live referent objects.
5815
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5816 5817

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5818
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5819 5820 5821
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5822
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5834
    // Parallel reference enqueueing
5835

J
johnc 已提交
5836 5837 5838 5839
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5840

J
johnc 已提交
5841
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5842 5843 5844 5845 5846 5847 5848 5849 5850
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5851
  // and could significantly increase the pause time.
5852 5853

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5854
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5855 5856
}

S
sla 已提交
5857
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5858
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5859
  _evacuation_failed = false;
5860

5861 5862 5863
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5864
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5865 5866 5867 5868 5869

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5870

5871
  uint n_workers;
5872 5873 5874 5875 5876 5877 5878 5879
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5880
    workers()->set_active_workers(n_workers);
5881 5882 5883 5884 5885 5886 5887 5888
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5889 5890 5891 5892 5893

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5894
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5895 5896
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5897

5898
  {
5899
    StrongRootsScope srs(this);
5900 5901 5902 5903
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (g1_policy()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5924 5925
  }

5926
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5927
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5928 5929 5930

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5931
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5932

5933
  set_par_threads(0);
5934

5935 5936 5937 5938 5939
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5940
  process_discovered_references(n_workers);
5941

5942
  // Weak root processing.
5943
  {
5944
    G1STWIsAliveClosure is_alive(this);
5945 5946
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5947 5948 5949
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5950
  }
5951

5952
  _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5953
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5954

5955 5956 5957 5958 5959
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5960

5961 5962
  purge_code_root_memory();

J
johnc 已提交
5963 5964 5965 5966 5967
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5968 5969 5970 5971
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5972 5973 5974 5975 5976

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5977 5978
  }

5979 5980 5981
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5982
  // the act of enqueueing entries on to the pending list
5983 5984 5985
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5986
  enqueue_discovered_references(n_workers);
5987

5988
  redirty_logged_cards();
5989 5990 5991
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5992 5993
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5994 5995
                                  bool par,
                                  bool locked) {
5996
  assert(!hr->is_free(), "the region should not be free");
5997
  assert(!hr->is_empty(), "the region should not be empty");
5998
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5999 6000
  assert(free_list != NULL, "pre-condition");

6001 6002 6003 6004 6005
  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

6006 6007 6008 6009 6010 6011
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
6012
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
6013
  free_list->add_ordered(hr);
6014 6015 6016 6017 6018 6019 6020 6021 6022
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
6023 6024 6025
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6026
  hr->clear_humongous();
6027
  free_region(hr, free_list, par);
6028

6029
  uint i = hr->hrm_index() + 1;
6030
  while (i < last_index) {
6031
    HeapRegion* curr_hr = region_at(i);
6032
    assert(curr_hr->continuesHumongous(), "invariant");
6033
    curr_hr->clear_humongous();
6034
    free_region(curr_hr, free_list, par);
6035 6036
    i += 1;
  }
6037 6038 6039 6040 6041
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6042
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6043 6044
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6045
  }
6046 6047 6048 6049 6050 6051 6052

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6053
    _hrm.insert_list_into_free_list(list);
6054 6055 6056
  }
}

6057
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6058
  _allocator->decrease_used(bytes);
6059 6060
}

6061
class G1ParCleanupCTTask : public AbstractGangTask {
6062
  G1SATBCardTableModRefBS* _ct_bs;
6063
  G1CollectedHeap* _g1h;
6064
  HeapRegion* volatile _su_head;
6065
public:
6066
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6067
                     G1CollectedHeap* g1h) :
6068
    AbstractGangTask("G1 Par Cleanup CT Task"),
6069
    _ct_bs(ct_bs), _g1h(g1h) { }
6070

6071
  void work(uint worker_id) {
6072 6073 6074 6075 6076
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6077

6078
  void clear_cards(HeapRegion* r) {
6079
    // Cards of the survivors should have already been dirtied.
6080
    if (!r->is_survivor()) {
6081 6082 6083 6084 6085
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6086 6087
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6088
  G1CollectedHeap* _g1h;
6089
  G1SATBCardTableModRefBS* _ct_bs;
6090
public:
6091
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6092
    : _g1h(g1h), _ct_bs(ct_bs) { }
6093
  virtual bool doHeapRegion(HeapRegion* r) {
6094
    if (r->is_survivor()) {
6095
      _g1h->verify_dirty_region(r);
6096
    } else {
6097
      _g1h->verify_not_dirty_region(r);
6098 6099 6100 6101
    }
    return false;
  }
};
6102

6103 6104
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6105
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6118
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6119
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6120 6121 6122 6123 6124
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6125 6126
}

6127
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6128
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6129
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6130
    verify_dirty_region(hr);
6131 6132 6133 6134 6135 6136
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
            err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
                           bitmap_name, result);
    gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
                           bitmap_name, tams, end);
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
    gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) return false;

    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}
#endif // PRODUCT
6218

6219
void G1CollectedHeap::cleanUpCardTable() {
6220
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6221 6222
  double start = os::elapsedTime();

J
johnc 已提交
6223 6224 6225
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6226

6227 6228
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6241 6242
      }
    }
J
johnc 已提交
6243 6244 6245 6246 6247 6248
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6249
  }
6250

6251
  double elapsed = os::elapsedTime() - start;
6252
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6253 6254
}

S
sla 已提交
6255
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6256 6257 6258
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6259 6260 6261
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6262 6263 6264 6265 6266
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6277
    assert(!is_on_master_free_list(cur), "sanity");
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6288 6289 6290 6291
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6292

6293 6294 6295
        start_sec = os::elapsedTime();
        non_young = true;
      }
6296 6297
    }

6298
    rs_lengths += cur->rem_set()->occupied_locked();
6299 6300 6301 6302 6303 6304 6305 6306

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6307
      assert(index != -1, "invariant");
6308
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6309 6310
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6311 6312 6313 6314 6315 6316

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6317 6318
    } else {
      int index = cur->young_index_in_cset();
6319
      assert(index == -1, "invariant");
6320 6321 6322 6323 6324 6325 6326
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6327 6328
      MemRegion used_mr = cur->used_region();

6329
      // And the region is empty.
6330
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6331
      pre_used += cur->used();
6332
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6333 6334
    } else {
      cur->uninstall_surv_rate_group();
6335
      if (cur->is_young()) {
6336
        cur->set_young_index_in_cset(-1);
6337
      }
6338
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6339
      // The region is now considered to be old.
6340
      cur->set_old();
T
tonyp 已提交
6341
      _old_set.add(cur);
S
sla 已提交
6342
      evacuation_info.increment_collectionset_used_after(cur->used());
6343 6344 6345 6346
    }
    cur = next;
  }

S
sla 已提交
6347
  evacuation_info.set_regions_freed(local_free_list.length());
6348 6349 6350 6351 6352
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6353 6354

  if (non_young) {
6355
    non_young_time_ms += elapsed_ms;
6356
  } else {
6357
    young_time_ms += elapsed_ms;
6358
  }
6359

6360 6361
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6362 6363
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6364 6365
}

6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

6385 6386 6387
    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
    // - never consider object arrays: while they are a valid target, they have not
    // been observed to be used as temporary objects.
    // - they would also pose considerable effort for cleaning up the the remembered
    // sets.
    // While this cleanup is not strictly necessary to be done (or done instantly),
    // given that their occurrence is very low, this saves us this additional
    // complexity.
6419
    uint region_idx = r->hrm_index();
6420 6421 6422 6423
    if (g1h->humongous_is_live(region_idx) ||
        g1h->humongous_region_is_always_live(region_idx)) {

      if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6424
        gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6425 6426 6427 6428
                               r->isHumongous(),
                               region_idx,
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
6429
                               next_bitmap->isMarked(r->bottom()),
6430
                               g1h->humongous_is_live(region_idx),
6431
                               obj->is_objArray()
6432 6433 6434 6435 6436 6437
                              );
      }

      return false;
    }

6438
    guarantee(!obj->is_objArray(),
6439 6440 6441 6442
              err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
                      r->bottom()));

    if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6443
      gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6444 6445 6446 6447 6448 6449
                             r->isHumongous(),
                             r->bottom(),
                             region_idx,
                             r->region_num(),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
6450
                             next_bitmap->isMarked(r->bottom()),
6451
                             g1h->humongous_is_live(region_idx),
6452
                             obj->is_objArray()
6453 6454
                            );
    }
6455 6456 6457 6458
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
    _freed_bytes += r->used();
    r->set_containing_set(NULL);
    _humongous_regions_removed.increment(1u, r->capacity());
    g1h->free_humongous_region(r, _free_region_list, false);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

  if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hr_printer = _g1h->hr_printer();
  if (hr_printer->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hr_printer->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6535 6536 6537 6538
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6539 6540
  }

6541 6542
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6543 6544
}

6545
void G1CollectedHeap::reset_free_regions_coming() {
6546 6547
  assert(free_regions_coming(), "pre-condition");

6548 6549 6550 6551
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6552 6553
  }

6554 6555 6556
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6557 6558 6559
  }
}

6560 6561 6562 6563 6564
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6565 6566
  }

6567 6568 6569
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6570 6571 6572
  }

  {
6573 6574 6575
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6576 6577 6578
    }
  }

6579 6580 6581
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6607 6608
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6609

6610
  if (check_heap) {
6611 6612 6613 6614 6615 6616 6617 6618
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6619 6620
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6621
  HeapRegionSet *_old_set;
6622

T
tonyp 已提交
6623
public:
6624
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6625

T
tonyp 已提交
6626
  bool doHeapRegion(HeapRegion* r) {
6627
    if (r->is_old()) {
T
tonyp 已提交
6628
      _old_set->remove(r);
6629 6630 6631 6632 6633 6634 6635
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->isHumongous(),
             "it cannot be another type");
T
tonyp 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6652 6653 6654 6655
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6656
  }
6657
  _hrm.remove_all_free_regions();
6658 6659
}

T
tonyp 已提交
6660 6661 6662
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6663
  HeapRegionSet*   _old_set;
6664
  HeapRegionManager*   _hrm;
T
tonyp 已提交
6665
  size_t          _total_used;
6666

6667
public:
T
tonyp 已提交
6668
  RebuildRegionSetsClosure(bool free_list_only,
6669
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
T
tonyp 已提交
6670
    _free_list_only(free_list_only),
6671 6672
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
T
tonyp 已提交
6673 6674 6675 6676
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6677

6678
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6679 6680 6681 6682 6683 6684
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
6685
      r->set_free();
6686
      r->set_allocation_context(AllocationContext::system());
6687
      _hrm->insert_into_free_list(r);
T
tonyp 已提交
6688 6689 6690 6691 6692 6693
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
6694 6695 6696 6697 6698
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such.
        r->set_old();
T
tonyp 已提交
6699
        _old_set->add(r);
6700
      }
T
tonyp 已提交
6701
      _total_used += r->used();
6702
    }
T
tonyp 已提交
6703

6704 6705 6706
    return false;
  }

T
tonyp 已提交
6707 6708
  size_t total_used() {
    return _total_used;
6709
  }
6710 6711
};

T
tonyp 已提交
6712 6713 6714
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6715 6716 6717 6718
  if (!free_list_only) {
    _young_list->empty_list();
  }

6719
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
T
tonyp 已提交
6720 6721 6722
  heap_region_iterate(&cl);

  if (!free_list_only) {
6723
    _allocator->set_used(cl.total_used());
T
tonyp 已提交
6724
  }
6725 6726
  assert(_allocator->used_unlocked() == recalculate_used(),
         err_msg("inconsistent _allocator->used_unlocked(), "
T
tonyp 已提交
6727
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6728
                 _allocator->used_unlocked(), recalculate_used()));
6729 6730 6731 6732 6733 6734
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6735 6736
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
6737
  return hr->is_in(p);
6738 6739
}

6740 6741
// Methods for the mutator alloc region

6742 6743 6744 6745 6746
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6747 6748
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6749
    HeapRegion* new_alloc_region = new_region(word_size,
6750
                                              false /* is_old */,
6751 6752 6753
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6754
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6755
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
6756 6757 6758 6759 6760 6761 6762 6763 6764
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6765
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6766 6767

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6768
  _allocator->increase_used(allocated_bytes);
6769
  _hr_printer.retire(alloc_region);
6770 6771 6772 6773
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6774 6775
}

6776 6777 6778
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6779
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6780
  uint n_workers = workers()->active_workers();
6781
  assert(UseDynamicNumberOfGCThreads ||
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6792 6793 6794
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6795
                                                 uint count,
6796 6797 6798 6799
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6800
    bool survivor = (ap == GCAllocForSurvived);
6801
    HeapRegion* new_alloc_region = new_region(word_size,
6802
                                              !survivor,
6803 6804 6805 6806 6807
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
6808
      new_alloc_region->record_top_and_timestamp();
6809
      if (survivor) {
6810 6811
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6812
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
6813
      } else {
6814
        new_alloc_region->set_old();
6815
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6816
        check_bitmaps("Old Region Allocation", new_alloc_region);
6817
      }
6818 6819
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6831 6832
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6833 6834 6835
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6836 6837
  } else {
    _old_set.add(alloc_region);
6838 6839 6840 6841
  }
  _hr_printer.retire(alloc_region);
}

6842 6843
// Heap region set verification

6844 6845
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6846 6847
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
6848
  HeapRegionManager*   _hrm;
6849 6850

public:
6851 6852 6853
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6854

6855 6856
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
6857 6858
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6859
    _old_count(), _humongous_count(), _free_count(){ }
6860 6861 6862 6863 6864 6865 6866 6867 6868

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6869
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6870
      _humongous_count.increment(1u, hr->capacity());
6871
    } else if (hr->is_empty()) {
6872
      assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6873
      _free_count.increment(1u, hr->capacity());
6874
    } else if (hr->is_old()) {
6875
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6876
      _old_count.increment(1u, hr->capacity());
6877 6878
    } else {
      ShouldNotReachHere();
6879
    }
6880 6881
    return false;
  }
6882

6883
  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6884 6885 6886 6887 6888 6889 6890 6891
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

6892
    guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6893 6894 6895
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6896 6897
};

6898 6899
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6900

6901
  // First, check the explicit lists.
6902
  _hrm.verify();
6903 6904 6905 6906 6907
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6908
    _secondary_free_list.verify_list();
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6924

T
tonyp 已提交
6925 6926 6927 6928
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6929

6930 6931
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6932

6933
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6934
  heap_region_iterate(&cl);
6935
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6936
}
J
johnc 已提交
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6949 6950 6951 6952
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6953

6954 6955
      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
J
johnc 已提交
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6976 6977 6978 6979 6980
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

7009 7010
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
7011
  G1CodeRootSet::purge();
7012 7013 7014 7015
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

7029
    if (ScavengeRootsInCode) {
J
johnc 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}