ctree.c 152.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15

16 17
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
18 19 20
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
21
static int push_node_left(struct btrfs_trans_handle *trans,
22 23
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
24
			  struct extent_buffer *src, int empty);
25
static int balance_node_right(struct btrfs_trans_handle *trans,
26
			      struct btrfs_fs_info *fs_info,
27 28
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46 47 48 49 50 51
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 53 54 55 56
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
57 58 59 60 61
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
62
 */
63
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64
					struct extent_buffer *held, int held_rw)
65 66
{
	int i;
67

68 69 70 71 72 73 74
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
75 76 77
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 79 80 81 82 83 84
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
85
	}
86 87

	if (held)
88
		btrfs_clear_lock_blocking_rw(held, held_rw);
89 90
}

C
Chris Mason 已提交
91
/* this also releases the path */
C
Chris Mason 已提交
92
void btrfs_free_path(struct btrfs_path *p)
93
{
94 95
	if (!p)
		return;
96
	btrfs_release_path(p);
C
Chris Mason 已提交
97
	kmem_cache_free(btrfs_path_cachep, p);
98 99
}

C
Chris Mason 已提交
100 101 102 103 104 105
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
106
noinline void btrfs_release_path(struct btrfs_path *p)
107 108
{
	int i;
109

C
Chris Mason 已提交
110
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111
		p->slots[i] = 0;
112
		if (!p->nodes[i])
113 114
			continue;
		if (p->locks[i]) {
115
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 117
			p->locks[i] = 0;
		}
118
		free_extent_buffer(p->nodes[i]);
119
		p->nodes[i] = NULL;
120 121 122
	}
}

C
Chris Mason 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
133 134 135
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
136

137 138 139 140 141 142
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
143
		 * it was COWed but we may not get the new root node yet so do
144 145 146 147 148 149 150 151 152 153
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
154 155 156
	return eb;
}

C
Chris Mason 已提交
157 158 159 160
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
161 162 163 164
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
165
	while (1) {
166 167
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
168
		if (eb == root->node)
169 170 171 172 173 174 175
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

176 177 178 179
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
180
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
195 196 197 198
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
199 200
static void add_root_to_dirty_list(struct btrfs_root *root)
{
201 202
	struct btrfs_fs_info *fs_info = root->fs_info;

203 204 205 206
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

207
	spin_lock(&fs_info->trans_lock);
208 209 210 211
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
212
				       &fs_info->dirty_cowonly_roots);
213 214
		else
			list_move(&root->dirty_list,
215
				  &fs_info->dirty_cowonly_roots);
216
	}
217
	spin_unlock(&fs_info->trans_lock);
218 219
}

C
Chris Mason 已提交
220 221 222 223 224
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
225 226 227 228 229
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
230
	struct btrfs_fs_info *fs_info = root->fs_info;
231 232 233
	struct extent_buffer *cow;
	int ret = 0;
	int level;
234
	struct btrfs_disk_key disk_key;
235

236
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237
		trans->transid != fs_info->running_transaction->transid);
238 239
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
240 241

	level = btrfs_header_level(buf);
242 243 244 245
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
246

247 248
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
249
	if (IS_ERR(cow))
250 251
		return PTR_ERR(cow);

252
	copy_extent_buffer_full(cow, buf);
253 254
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
255 256 257 258 259 260 261
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
262

263
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
264

265
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267
		ret = btrfs_inc_ref(trans, root, cow, 1);
268
	else
269
		ret = btrfs_inc_ref(trans, root, cow, 0);
270

271 272 273 274 275 276 277 278
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
296
	u64 logical;
297
	u64 seq;
298 299 300 301 302 303 304 305 306 307 308 309 310
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 312 313 314
	struct {
		int dst_slot;
		int nr_items;
	} move;
315 316 317 318 319

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

320
/*
J
Josef Bacik 已提交
321
 * Pull a new tree mod seq number for our operation.
322
 */
J
Josef Bacik 已提交
323
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 325 326 327
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

328 329 330 331 332 333 334 335 336 337
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
338
{
339
	write_lock(&fs_info->tree_mod_log_lock);
340
	spin_lock(&fs_info->tree_mod_seq_lock);
341
	if (!elem->seq) {
J
Josef Bacik 已提交
342
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 344
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
345
	spin_unlock(&fs_info->tree_mod_seq_lock);
346
	write_unlock(&fs_info->tree_mod_log_lock);
347

J
Josef Bacik 已提交
348
	return elem->seq;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
367
	elem->seq = 0;
368 369

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370
		if (cur_elem->seq < min_seq) {
371 372 373 374 375
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
376 377
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
378 379 380 381
			}
			min_seq = cur_elem->seq;
		}
	}
382 383
	spin_unlock(&fs_info->tree_mod_seq_lock);

384 385 386 387
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
388
	write_lock(&fs_info->tree_mod_log_lock);
389 390 391
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
392
		tm = rb_entry(node, struct tree_mod_elem, node);
393
		if (tm->seq > min_seq)
394 395 396 397
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
398
	write_unlock(&fs_info->tree_mod_log_lock);
399 400 401 402
}

/*
 * key order of the log:
403
 *       node/leaf start address -> sequence
404
 *
405 406 407
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
408
 *
409
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 411 412 413 414 415 416 417
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
418

J
Josef Bacik 已提交
419
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 421 422 423

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
424
		cur = rb_entry(*new, struct tree_mod_elem, node);
425
		parent = *new;
426
		if (cur->logical < tm->logical)
427
			new = &((*new)->rb_left);
428
		else if (cur->logical > tm->logical)
429
			new = &((*new)->rb_right);
430
		else if (cur->seq < tm->seq)
431
			new = &((*new)->rb_left);
432
		else if (cur->seq > tm->seq)
433
			new = &((*new)->rb_right);
434 435
		else
			return -EEXIST;
436 437 438 439
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
440
	return 0;
441 442
}

443 444 445 446
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
447
 * write unlock fs_info::tree_mod_log_lock.
448
 */
449 450 451 452 453
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
454 455
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
456

457
	write_lock(&fs_info->tree_mod_log_lock);
458
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459
		write_unlock(&fs_info->tree_mod_log_lock);
460 461 462
		return 1;
	}

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
482
{
483
	struct tree_mod_elem *tm;
484

485 486
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
487
		return NULL;
488

489
	tm->logical = eb->start;
490 491 492 493 494 495 496
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
497
	RB_CLEAR_NODE(&tm->node);
498

499
	return tm;
500 501
}

502 503
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
504
{
505 506 507
	struct tree_mod_elem *tm;
	int ret;

508
	if (!tree_mod_need_log(eb->fs_info, eb))
509 510 511 512 513 514
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

515
	if (tree_mod_dont_log(eb->fs_info, eb)) {
516
		kfree(tm);
517
		return 0;
518 519
	}

520
	ret = __tree_mod_log_insert(eb->fs_info, tm);
521
	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 523
	if (ret)
		kfree(tm);
524

525
	return ret;
526 527
}

528 529
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
530
{
531 532 533
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
534
	int i;
535
	int locked = 0;
536

537
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
538
		return 0;
539

540
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 542 543
	if (!tm_list)
		return -ENOMEM;

544
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 546 547 548 549
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

550
	tm->logical = eb->start;
551 552 553 554 555 556 557
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 560 561 562 563 564
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

565
	if (tree_mod_dont_log(eb->fs_info, eb))
566 567 568
		goto free_tms;
	locked = 1;

569 570 571 572 573
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
574
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 577
		if (ret)
			goto free_tms;
578 579
	}

580
	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 582
	if (ret)
		goto free_tms;
583
	write_unlock(&eb->fs_info->tree_mod_log_lock);
584
	kfree(tm_list);
J
Jan Schmidt 已提交
585

586 587 588 589
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 592 593
		kfree(tm_list[i]);
	}
	if (locked)
594
		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 596
	kfree(tm_list);
	kfree(tm);
597

598
	return ret;
599 600
}

601 602 603 604
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
605
{
606
	int i, j;
607 608 609
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
610 611 612 613 614 615 616
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
617
	}
618 619

	return 0;
620 621
}

622 623
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
624
{
625
	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 627 628 629 630
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
631

632
	if (!tree_mod_need_log(fs_info, NULL))
633 634
		return 0;

635 636
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
637
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638
				  GFP_NOFS);
639 640 641 642 643 644
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 647 648 649 650 651
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
652

653
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 655 656 657
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
658

659
	tm->logical = new_root->start;
660 661 662 663 664
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665 666 667 668 669 670 671 672
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

673
	write_unlock(&fs_info->tree_mod_log_lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
689 690 691 692 693 694 695 696 697 698 699
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

700
	read_lock(&fs_info->tree_mod_log_lock);
701 702 703
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
704
		cur = rb_entry(node, struct tree_mod_elem, node);
705
		if (cur->logical < start) {
706
			node = node->rb_left;
707
		} else if (cur->logical > start) {
708
			node = node->rb_right;
709
		} else if (cur->seq < min_seq) {
710 711 712 713
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
714
				BUG_ON(found->seq > cur->seq);
715 716
			found = cur;
			node = node->rb_left;
717
		} else if (cur->seq > min_seq) {
718 719
			/* we want the node with the smallest seq */
			if (found)
720
				BUG_ON(found->seq < cur->seq);
721 722 723 724 725 726 727
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
728
	read_unlock(&fs_info->tree_mod_log_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

756
static noinline int
757 758
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
759
		     unsigned long src_offset, int nr_items)
760
{
761 762 763
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764
	int i;
765
	int locked = 0;
766

767 768
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
769

770
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 772
		return 0;

773
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 775 776
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
777

778 779
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
780
	for (i = 0; i < nr_items; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
807
	}
808

809
	write_unlock(&fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
821
		write_unlock(&fs_info->tree_mod_log_lock);
822 823 824
	kfree(tm_list);

	return ret;
825 826
}

827
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828
{
829 830 831 832 833 834 835 836
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

837
	if (!tree_mod_need_log(eb->fs_info, NULL))
838 839 840
		return 0;

	nritems = btrfs_header_nritems(eb);
841
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

854
	if (tree_mod_dont_log(eb->fs_info, eb))
855 856
		goto free_tms;

857
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858
	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
871 872
}

873 874 875 876 877 878 879
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
880
	 * Tree blocks not in reference counted trees and tree roots
881 882 883 884
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
885
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 887 888 889 890
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
891

892 893 894 895 896 897
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
898 899
				       struct extent_buffer *cow,
				       int *last_ref)
900
{
901
	struct btrfs_fs_info *fs_info = root->fs_info;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
926
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
927 928
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
929 930
		if (ret)
			return ret;
931 932
		if (refs == 0) {
			ret = -EROFS;
933
			btrfs_handle_fs_error(fs_info, ret, NULL);
934 935
			return ret;
		}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
953
			ret = btrfs_inc_ref(trans, root, buf, 1);
954 955
			if (ret)
				return ret;
956 957 958

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
959
				ret = btrfs_dec_ref(trans, root, buf, 0);
960 961
				if (ret)
					return ret;
962
				ret = btrfs_inc_ref(trans, root, cow, 1);
963 964
				if (ret)
					return ret;
965 966 967 968 969 970
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
971
				ret = btrfs_inc_ref(trans, root, cow, 1);
972
			else
973
				ret = btrfs_inc_ref(trans, root, cow, 0);
974 975
			if (ret)
				return ret;
976 977
		}
		if (new_flags != 0) {
978 979
			int level = btrfs_header_level(buf);

980
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
981 982
							  buf->start,
							  buf->len,
983
							  new_flags, level, 0);
984 985
			if (ret)
				return ret;
986 987 988 989 990
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
991
				ret = btrfs_inc_ref(trans, root, cow, 1);
992
			else
993
				ret = btrfs_inc_ref(trans, root, cow, 0);
994 995
			if (ret)
				return ret;
996
			ret = btrfs_dec_ref(trans, root, buf, 1);
997 998
			if (ret)
				return ret;
999
		}
1000
		clean_tree_block(fs_info, buf);
1001
		*last_ref = 1;
1002 1003 1004 1005
	}
	return 0;
}

C
Chris Mason 已提交
1006
/*
C
Chris Mason 已提交
1007 1008 1009 1010
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1011 1012 1013
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1014 1015 1016
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1017
 */
C
Chris Mason 已提交
1018
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1019 1020 1021 1022
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1023
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1024
{
1025
	struct btrfs_fs_info *fs_info = root->fs_info;
1026
	struct btrfs_disk_key disk_key;
1027
	struct extent_buffer *cow;
1028
	int level, ret;
1029
	int last_ref = 0;
1030
	int unlock_orig = 0;
1031
	u64 parent_start = 0;
1032

1033 1034 1035
	if (*cow_ret == buf)
		unlock_orig = 1;

1036
	btrfs_assert_tree_locked(buf);
1037

1038
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1039
		trans->transid != fs_info->running_transaction->transid);
1040 1041
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1042

1043
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1044

1045 1046 1047 1048 1049
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1050 1051
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * If we are COWing a node/leaf from the extent, chunk or device trees,
	 * make sure that we do not finish block group creation of pending block
	 * groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk and device trees, therefore we could
	 * deadlock with ourselves since we are holding a lock on an extent
	 * buffer that btrfs_create_pending_block_groups() may try to COW later.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root)
		trans->can_flush_pending_bgs = false;

1069 1070 1071
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1072
	trans->can_flush_pending_bgs = true;
1073 1074
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1075

1076 1077
	/* cow is set to blocking by btrfs_init_new_buffer */

1078
	copy_extent_buffer_full(cow, buf);
1079
	btrfs_set_header_bytenr(cow, cow->start);
1080
	btrfs_set_header_generation(cow, trans->transid);
1081 1082 1083 1084 1085 1086 1087
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1088

1089
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1090

1091
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1092
	if (ret) {
1093
		btrfs_abort_transaction(trans, ret);
1094 1095
		return ret;
	}
Z
Zheng Yan 已提交
1096

1097
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1098
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1099
		if (ret) {
1100
			btrfs_abort_transaction(trans, ret);
1101
			return ret;
1102
		}
1103
	}
1104

C
Chris Mason 已提交
1105
	if (buf == root->node) {
1106
		WARN_ON(parent && parent != buf);
1107 1108 1109
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1110

1111
		extent_buffer_get(cow);
1112 1113
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1114
		rcu_assign_pointer(root->node, cow);
1115

1116
		btrfs_free_tree_block(trans, root, buf, parent_start,
1117
				      last_ref);
1118
		free_extent_buffer(buf);
1119
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1120
	} else {
1121
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1122
		tree_mod_log_insert_key(parent, parent_slot,
1123
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1124
		btrfs_set_node_blockptr(parent, parent_slot,
1125
					cow->start);
1126 1127
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1128
		btrfs_mark_buffer_dirty(parent);
1129
		if (last_ref) {
1130
			ret = tree_mod_log_free_eb(buf);
1131
			if (ret) {
1132
				btrfs_abort_transaction(trans, ret);
1133 1134 1135
				return ret;
			}
		}
1136
		btrfs_free_tree_block(trans, root, buf, parent_start,
1137
				      last_ref);
C
Chris Mason 已提交
1138
	}
1139 1140
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1141
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1142
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1143
	*cow_ret = cow;
C
Chris Mason 已提交
1144 1145 1146
	return 0;
}

J
Jan Schmidt 已提交
1147 1148 1149 1150
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1151 1152
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1153 1154 1155
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1156
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1157 1158 1159
	int looped = 0;

	if (!time_seq)
1160
		return NULL;
J
Jan Schmidt 已提交
1161 1162

	/*
1163 1164 1165 1166
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1167 1168
	 */
	while (1) {
1169
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1170 1171
						time_seq);
		if (!looped && !tm)
1172
			return NULL;
J
Jan Schmidt 已提交
1173
		/*
1174 1175 1176
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1177
		 */
1178 1179
		if (!tm)
			break;
J
Jan Schmidt 已提交
1180

1181 1182 1183 1184 1185
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1186 1187 1188 1189 1190 1191 1192 1193
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1194 1195 1196 1197
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1198 1199 1200 1201 1202
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1203
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1204 1205 1206
 * time_seq).
 */
static void
1207 1208
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1218
	read_lock(&fs_info->tree_mod_log_lock);
1219
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1220 1221 1222 1223 1224 1225 1226 1227
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1228
			/* Fallthrough */
1229
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1230
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1231 1232 1233 1234
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1235
			n++;
J
Jan Schmidt 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1245
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1246 1247 1248
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1249 1250 1251
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1269
		tm = rb_entry(next, struct tree_mod_elem, node);
1270
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1271 1272
			break;
	}
1273
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1274 1275 1276
	btrfs_set_header_nritems(eb, n);
}

1277
/*
1278
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1279 1280 1281 1282 1283
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1284
static struct extent_buffer *
1285 1286
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1301 1302 1303
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1304 1305
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1306
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1307
		if (!eb_rewin) {
1308
			btrfs_tree_read_unlock_blocking(eb);
1309 1310 1311
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1312 1313 1314 1315
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1316
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1317 1318
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1319
		if (!eb_rewin) {
1320
			btrfs_tree_read_unlock_blocking(eb);
1321 1322 1323
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1324 1325
	}

1326 1327
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1328 1329
	free_extent_buffer(eb);

1330 1331
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1332
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1333
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1334
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1335 1336 1337 1338

	return eb_rewin;
}

1339 1340 1341 1342 1343 1344 1345
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1346 1347 1348
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1349
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1350
	struct tree_mod_elem *tm;
1351 1352
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1353
	struct extent_buffer *old;
1354
	struct tree_mod_root *old_root = NULL;
1355
	u64 old_generation = 0;
1356
	u64 logical;
1357
	int level;
J
Jan Schmidt 已提交
1358

1359
	eb_root = btrfs_read_lock_root_node(root);
1360
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1361
	if (!tm)
1362
		return eb_root;
J
Jan Schmidt 已提交
1363

1364 1365 1366 1367
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1368
		level = old_root->level;
1369
	} else {
1370
		logical = eb_root->start;
1371
		level = btrfs_header_level(eb_root);
1372
	}
J
Jan Schmidt 已提交
1373

1374
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1375
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376 1377
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1378
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1379 1380 1381
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1382 1383 1384
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1385
		} else {
1386 1387
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1388 1389
		}
	} else if (old_root) {
1390 1391
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1392
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1393
	} else {
1394
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1395
		eb = btrfs_clone_extent_buffer(eb_root);
1396
		btrfs_tree_read_unlock_blocking(eb_root);
1397
		free_extent_buffer(eb_root);
1398 1399
	}

1400 1401
	if (!eb)
		return NULL;
1402
	extent_buffer_get(eb);
1403
	btrfs_tree_read_lock(eb);
1404
	if (old_root) {
J
Jan Schmidt 已提交
1405 1406
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1407
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1408 1409
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1410
	}
1411
	if (tm)
1412
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1413 1414
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1415
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1416 1417 1418 1419

	return eb;
}

J
Jan Schmidt 已提交
1420 1421 1422 1423
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1424
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1425

1426
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1427 1428 1429
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1430
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1431
	}
1432
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1433 1434 1435 1436

	return level;
}

1437 1438 1439 1440
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1441
	if (btrfs_is_testing(root->fs_info))
1442
		return 0;
1443

1444 1445
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1454
	 *    when we create snapshot during committing the transaction,
1455 1456 1457
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1458 1459 1460
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1461
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1462
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1463 1464 1465 1466
		return 0;
	return 1;
}

C
Chris Mason 已提交
1467 1468
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1469
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1470 1471
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1472
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1473 1474
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1475
		    struct extent_buffer **cow_ret)
1476
{
1477
	struct btrfs_fs_info *fs_info = root->fs_info;
1478
	u64 search_start;
1479
	int ret;
C
Chris Mason 已提交
1480

1481
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1482
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1483
		       trans->transid,
1484
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1485

1486
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1487
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1488
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1489

1490
	if (!should_cow_block(trans, root, buf)) {
1491
		trans->dirty = true;
1492 1493 1494
		*cow_ret = buf;
		return 0;
	}
1495

1496
	search_start = buf->start & ~((u64)SZ_1G - 1);
1497 1498 1499 1500 1501

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1502
	ret = __btrfs_cow_block(trans, root, buf, parent,
1503
				 parent_slot, cow_ret, search_start, 0);
1504 1505 1506

	trace_btrfs_cow_block(root, buf, *cow_ret);

1507
	return ret;
1508 1509
}

C
Chris Mason 已提交
1510 1511 1512 1513
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1514
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1515
{
1516
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1517
		return 1;
1518
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1519 1520 1521 1522
		return 1;
	return 0;
}

1523 1524 1525
/*
 * compare two keys in a memcmp fashion
 */
1526 1527
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1528 1529 1530 1531 1532
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1533
	return btrfs_comp_cpu_keys(&k1, k2);
1534 1535
}

1536 1537 1538
/*
 * same as comp_keys only with two btrfs_key's
 */
1539
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1555

C
Chris Mason 已提交
1556 1557 1558 1559 1560
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1561
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1562
		       struct btrfs_root *root, struct extent_buffer *parent,
1563
		       int start_slot, u64 *last_ret,
1564
		       struct btrfs_key *progress)
1565
{
1566
	struct btrfs_fs_info *fs_info = root->fs_info;
1567
	struct extent_buffer *cur;
1568
	u64 blocknr;
1569
	u64 gen;
1570 1571
	u64 search_start = *last_ret;
	u64 last_block = 0;
1572 1573 1574 1575 1576
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1577
	int parent_level;
1578 1579
	int uptodate;
	u32 blocksize;
1580 1581
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1582

1583 1584
	parent_level = btrfs_header_level(parent);

1585 1586
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1587

1588
	parent_nritems = btrfs_header_nritems(parent);
1589
	blocksize = fs_info->nodesize;
1590
	end_slot = parent_nritems - 1;
1591

1592
	if (parent_nritems <= 1)
1593 1594
		return 0;

1595 1596
	btrfs_set_lock_blocking(parent);

1597
	for (i = start_slot; i <= end_slot; i++) {
1598
		struct btrfs_key first_key;
1599
		int close = 1;
1600

1601 1602 1603 1604 1605
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1606
		blocknr = btrfs_node_blockptr(parent, i);
1607
		gen = btrfs_node_ptr_generation(parent, i);
1608
		btrfs_node_key_to_cpu(parent, &first_key, i);
1609 1610
		if (last_block == 0)
			last_block = blocknr;
1611

1612
		if (i > 0) {
1613 1614
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1615
		}
1616
		if (!close && i < end_slot) {
1617 1618
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1619
		}
1620 1621
		if (close) {
			last_block = blocknr;
1622
			continue;
1623
		}
1624

1625
		cur = find_extent_buffer(fs_info, blocknr);
1626
		if (cur)
1627
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1628 1629
		else
			uptodate = 0;
1630
		if (!cur || !uptodate) {
1631
			if (!cur) {
1632 1633 1634
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1635 1636 1637
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1638
					free_extent_buffer(cur);
1639
					return -EIO;
1640
				}
1641
			} else if (!uptodate) {
1642 1643
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1644 1645 1646 1647
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1648
			}
1649
		}
1650
		if (search_start == 0)
1651
			search_start = last_block;
1652

1653
		btrfs_tree_lock(cur);
1654
		btrfs_set_lock_blocking(cur);
1655
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1656
					&cur, search_start,
1657
					min(16 * blocksize,
1658
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1659
		if (err) {
1660
			btrfs_tree_unlock(cur);
1661
			free_extent_buffer(cur);
1662
			break;
Y
Yan 已提交
1663
		}
1664 1665
		search_start = cur->start;
		last_block = cur->start;
1666
		*last_ret = search_start;
1667 1668
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1669 1670 1671 1672
	}
	return err;
}

C
Chris Mason 已提交
1673
/*
1674 1675 1676
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1677 1678 1679 1680 1681 1682
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1683
static noinline int generic_bin_search(struct extent_buffer *eb,
1684 1685
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1686
				       int max, int *slot)
1687 1688 1689 1690 1691
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1692
	struct btrfs_disk_key *tmp = NULL;
1693 1694 1695 1696 1697
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1698
	int err;
1699

1700 1701 1702 1703 1704 1705 1706 1707
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1708
	while (low < high) {
1709
		mid = (low + high) / 2;
1710 1711
		offset = p + mid * item_size;

1712
		if (!kaddr || offset < map_start ||
1713 1714
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1715 1716

			err = map_private_extent_buffer(eb, offset,
1717
						sizeof(struct btrfs_disk_key),
1718
						&kaddr, &map_start, &map_len);
1719 1720 1721 1722

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1723
			} else if (err == 1) {
1724 1725 1726
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1727 1728
			} else {
				return err;
1729
			}
1730 1731 1732 1733 1734

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1750 1751 1752 1753
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1754 1755
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1756
{
1757
	if (level == 0)
1758 1759
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1760
					  sizeof(struct btrfs_item),
1761
					  key, btrfs_header_nritems(eb),
1762
					  slot);
1763
	else
1764 1765
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1766
					  sizeof(struct btrfs_key_ptr),
1767
					  key, btrfs_header_nritems(eb),
1768
					  slot);
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1787 1788 1789
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1790 1791 1792
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1793
{
1794
	int level = btrfs_header_level(parent);
1795
	struct extent_buffer *eb;
1796
	struct btrfs_key first_key;
1797

1798 1799
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1800 1801 1802

	BUG_ON(level == 0);

1803
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1804
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1805 1806
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1807 1808 1809
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1810 1811 1812
	}

	return eb;
1813 1814
}

C
Chris Mason 已提交
1815 1816 1817 1818 1819
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1820
static noinline int balance_level(struct btrfs_trans_handle *trans,
1821 1822
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1823
{
1824
	struct btrfs_fs_info *fs_info = root->fs_info;
1825 1826 1827 1828
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1829 1830 1831 1832
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1833
	u64 orig_ptr;
1834 1835 1836 1837

	if (level == 0)
		return 0;

1838
	mid = path->nodes[level];
1839

1840 1841
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1842 1843
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1844
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1845

L
Li Zefan 已提交
1846
	if (level < BTRFS_MAX_LEVEL - 1) {
1847
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1848 1849
		pslot = path->slots[level + 1];
	}
1850

C
Chris Mason 已提交
1851 1852 1853 1854
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1855 1856
	if (!parent) {
		struct extent_buffer *child;
1857

1858
		if (btrfs_header_nritems(mid) != 1)
1859 1860 1861
			return 0;

		/* promote the child to a root */
1862
		child = read_node_slot(fs_info, mid, 0);
1863 1864
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1865
			btrfs_handle_fs_error(fs_info, ret, NULL);
1866 1867 1868
			goto enospc;
		}

1869
		btrfs_tree_lock(child);
1870
		btrfs_set_lock_blocking(child);
1871
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1872 1873 1874 1875 1876
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1877

1878 1879
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1880
		rcu_assign_pointer(root->node, child);
1881

1882
		add_root_to_dirty_list(root);
1883
		btrfs_tree_unlock(child);
1884

1885
		path->locks[level] = 0;
1886
		path->nodes[level] = NULL;
1887
		clean_tree_block(fs_info, mid);
1888
		btrfs_tree_unlock(mid);
1889
		/* once for the path */
1890
		free_extent_buffer(mid);
1891 1892

		root_sub_used(root, mid->len);
1893
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1894
		/* once for the root ptr */
1895
		free_extent_buffer_stale(mid);
1896
		return 0;
1897
	}
1898
	if (btrfs_header_nritems(mid) >
1899
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1900 1901
		return 0;

1902
	left = read_node_slot(fs_info, parent, pslot - 1);
1903 1904 1905
	if (IS_ERR(left))
		left = NULL;

1906
	if (left) {
1907
		btrfs_tree_lock(left);
1908
		btrfs_set_lock_blocking(left);
1909
		wret = btrfs_cow_block(trans, root, left,
1910
				       parent, pslot - 1, &left);
1911 1912 1913 1914
		if (wret) {
			ret = wret;
			goto enospc;
		}
1915
	}
1916

1917
	right = read_node_slot(fs_info, parent, pslot + 1);
1918 1919 1920
	if (IS_ERR(right))
		right = NULL;

1921
	if (right) {
1922
		btrfs_tree_lock(right);
1923
		btrfs_set_lock_blocking(right);
1924
		wret = btrfs_cow_block(trans, root, right,
1925
				       parent, pslot + 1, &right);
1926 1927 1928 1929 1930 1931 1932
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1933 1934
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1935
		wret = push_node_left(trans, fs_info, left, mid, 1);
1936 1937
		if (wret < 0)
			ret = wret;
1938
	}
1939 1940 1941 1942

	/*
	 * then try to empty the right most buffer into the middle
	 */
1943
	if (right) {
1944
		wret = push_node_left(trans, fs_info, mid, right, 1);
1945
		if (wret < 0 && wret != -ENOSPC)
1946
			ret = wret;
1947
		if (btrfs_header_nritems(right) == 0) {
1948
			clean_tree_block(fs_info, right);
1949
			btrfs_tree_unlock(right);
1950
			del_ptr(root, path, level + 1, pslot + 1);
1951
			root_sub_used(root, right->len);
1952
			btrfs_free_tree_block(trans, root, right, 0, 1);
1953
			free_extent_buffer_stale(right);
1954
			right = NULL;
1955
		} else {
1956 1957
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1958 1959 1960
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1961 1962
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1963 1964
		}
	}
1965
	if (btrfs_header_nritems(mid) == 1) {
1966 1967 1968 1969 1970 1971 1972 1973 1974
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1975 1976
		if (!left) {
			ret = -EROFS;
1977
			btrfs_handle_fs_error(fs_info, ret, NULL);
1978 1979
			goto enospc;
		}
1980
		wret = balance_node_right(trans, fs_info, mid, left);
1981
		if (wret < 0) {
1982
			ret = wret;
1983 1984
			goto enospc;
		}
1985
		if (wret == 1) {
1986
			wret = push_node_left(trans, fs_info, left, mid, 1);
1987 1988 1989
			if (wret < 0)
				ret = wret;
		}
1990 1991
		BUG_ON(wret == 1);
	}
1992
	if (btrfs_header_nritems(mid) == 0) {
1993
		clean_tree_block(fs_info, mid);
1994
		btrfs_tree_unlock(mid);
1995
		del_ptr(root, path, level + 1, pslot);
1996
		root_sub_used(root, mid->len);
1997
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1998
		free_extent_buffer_stale(mid);
1999
		mid = NULL;
2000 2001
	} else {
		/* update the parent key to reflect our changes */
2002 2003
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2004 2005 2006
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2007 2008
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2009
	}
2010

2011
	/* update the path */
2012 2013 2014
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2015
			/* left was locked after cow */
2016
			path->nodes[level] = left;
2017 2018
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2019 2020
			if (mid) {
				btrfs_tree_unlock(mid);
2021
				free_extent_buffer(mid);
2022
			}
2023
		} else {
2024
			orig_slot -= btrfs_header_nritems(left);
2025 2026 2027
			path->slots[level] = orig_slot;
		}
	}
2028
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2029
	if (orig_ptr !=
2030
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2031
		BUG();
2032
enospc:
2033 2034
	if (right) {
		btrfs_tree_unlock(right);
2035
		free_extent_buffer(right);
2036 2037 2038 2039
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2040
		free_extent_buffer(left);
2041
	}
2042 2043 2044
	return ret;
}

C
Chris Mason 已提交
2045 2046 2047 2048
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2049
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2050 2051
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2052
{
2053
	struct btrfs_fs_info *fs_info = root->fs_info;
2054 2055 2056 2057
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2058 2059 2060 2061 2062 2063 2064 2065
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2066
	mid = path->nodes[level];
2067
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2068

L
Li Zefan 已提交
2069
	if (level < BTRFS_MAX_LEVEL - 1) {
2070
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2071 2072
		pslot = path->slots[level + 1];
	}
2073

2074
	if (!parent)
2075 2076
		return 1;

2077
	left = read_node_slot(fs_info, parent, pslot - 1);
2078 2079
	if (IS_ERR(left))
		left = NULL;
2080 2081

	/* first, try to make some room in the middle buffer */
2082
	if (left) {
2083
		u32 left_nr;
2084 2085

		btrfs_tree_lock(left);
2086 2087
		btrfs_set_lock_blocking(left);

2088
		left_nr = btrfs_header_nritems(left);
2089
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2090 2091
			wret = 1;
		} else {
2092
			ret = btrfs_cow_block(trans, root, left, parent,
2093
					      pslot - 1, &left);
2094 2095 2096
			if (ret)
				wret = 1;
			else {
2097
				wret = push_node_left(trans, fs_info,
2098
						      left, mid, 0);
2099
			}
C
Chris Mason 已提交
2100
		}
2101 2102 2103
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2104
			struct btrfs_disk_key disk_key;
2105
			orig_slot += left_nr;
2106
			btrfs_node_key(mid, &disk_key, 0);
2107 2108 2109
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2110 2111 2112 2113
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2114 2115
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2116
				btrfs_tree_unlock(mid);
2117
				free_extent_buffer(mid);
2118 2119
			} else {
				orig_slot -=
2120
					btrfs_header_nritems(left);
2121
				path->slots[level] = orig_slot;
2122
				btrfs_tree_unlock(left);
2123
				free_extent_buffer(left);
2124 2125 2126
			}
			return 0;
		}
2127
		btrfs_tree_unlock(left);
2128
		free_extent_buffer(left);
2129
	}
2130
	right = read_node_slot(fs_info, parent, pslot + 1);
2131 2132
	if (IS_ERR(right))
		right = NULL;
2133 2134 2135 2136

	/*
	 * then try to empty the right most buffer into the middle
	 */
2137
	if (right) {
C
Chris Mason 已提交
2138
		u32 right_nr;
2139

2140
		btrfs_tree_lock(right);
2141 2142
		btrfs_set_lock_blocking(right);

2143
		right_nr = btrfs_header_nritems(right);
2144
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2145 2146
			wret = 1;
		} else {
2147 2148
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2149
					      &right);
2150 2151 2152
			if (ret)
				wret = 1;
			else {
2153
				wret = balance_node_right(trans, fs_info,
2154
							  right, mid);
2155
			}
C
Chris Mason 已提交
2156
		}
2157 2158 2159
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2160 2161 2162
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2163 2164 2165
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2166 2167 2168 2169 2170
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2171 2172
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2173
					btrfs_header_nritems(mid);
2174
				btrfs_tree_unlock(mid);
2175
				free_extent_buffer(mid);
2176
			} else {
2177
				btrfs_tree_unlock(right);
2178
				free_extent_buffer(right);
2179 2180 2181
			}
			return 0;
		}
2182
		btrfs_tree_unlock(right);
2183
		free_extent_buffer(right);
2184 2185 2186 2187
	}
	return 1;
}

2188
/*
C
Chris Mason 已提交
2189 2190
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2191
 */
2192
static void reada_for_search(struct btrfs_fs_info *fs_info,
2193 2194
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2195
{
2196
	struct extent_buffer *node;
2197
	struct btrfs_disk_key disk_key;
2198 2199
	u32 nritems;
	u64 search;
2200
	u64 target;
2201
	u64 nread = 0;
2202
	struct extent_buffer *eb;
2203 2204 2205
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2206

2207
	if (level != 1)
2208 2209 2210
		return;

	if (!path->nodes[level])
2211 2212
		return;

2213
	node = path->nodes[level];
2214

2215
	search = btrfs_node_blockptr(node, slot);
2216 2217
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2218 2219
	if (eb) {
		free_extent_buffer(eb);
2220 2221 2222
		return;
	}

2223
	target = search;
2224

2225
	nritems = btrfs_header_nritems(node);
2226
	nr = slot;
2227

C
Chris Mason 已提交
2228
	while (1) {
2229
		if (path->reada == READA_BACK) {
2230 2231 2232
			if (nr == 0)
				break;
			nr--;
2233
		} else if (path->reada == READA_FORWARD) {
2234 2235 2236
			nr++;
			if (nr >= nritems)
				break;
2237
		}
2238
		if (path->reada == READA_BACK && objectid) {
2239 2240 2241 2242
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2243
		search = btrfs_node_blockptr(node, nr);
2244 2245
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2246
			readahead_tree_block(fs_info, search);
2247 2248 2249
			nread += blocksize;
		}
		nscan++;
2250
		if ((nread > 65536 || nscan > 32))
2251
			break;
2252 2253
	}
}
2254

2255
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2256
				       struct btrfs_path *path, int level)
2257 2258 2259 2260 2261 2262 2263 2264 2265
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2266
	parent = path->nodes[level + 1];
2267
	if (!parent)
J
Josef Bacik 已提交
2268
		return;
2269 2270

	nritems = btrfs_header_nritems(parent);
2271
	slot = path->slots[level + 1];
2272 2273 2274 2275

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2276
		eb = find_extent_buffer(fs_info, block1);
2277 2278 2279 2280 2281 2282
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2283 2284 2285
			block1 = 0;
		free_extent_buffer(eb);
	}
2286
	if (slot + 1 < nritems) {
2287 2288
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2289
		eb = find_extent_buffer(fs_info, block2);
2290
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2291 2292 2293
			block2 = 0;
		free_extent_buffer(eb);
	}
2294

J
Josef Bacik 已提交
2295
	if (block1)
2296
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2297
	if (block2)
2298
		readahead_tree_block(fs_info, block2);
2299 2300 2301
}


C
Chris Mason 已提交
2302
/*
C
Chris Mason 已提交
2303 2304 2305 2306
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2307
 *
C
Chris Mason 已提交
2308 2309 2310
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2311
 *
C
Chris Mason 已提交
2312 2313
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2314
 */
2315
static noinline void unlock_up(struct btrfs_path *path, int level,
2316 2317
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2318 2319 2320
{
	int i;
	int skip_level = level;
2321
	int no_skips = 0;
2322 2323 2324 2325 2326 2327 2328
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2329
		if (!no_skips && path->slots[i] == 0) {
2330 2331 2332
			skip_level = i + 1;
			continue;
		}
2333
		if (!no_skips && path->keep_locks) {
2334 2335 2336
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2337
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2338 2339 2340 2341
				skip_level = i + 1;
				continue;
			}
		}
2342 2343 2344
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2345
		t = path->nodes[i];
2346
		if (i >= lowest_unlock && i > skip_level) {
2347
			btrfs_tree_unlock_rw(t, path->locks[i]);
2348
			path->locks[i] = 0;
2349 2350 2351 2352 2353
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2354 2355 2356 2357
		}
	}
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2371
	if (path->keep_locks)
2372 2373 2374 2375
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2376
			continue;
2377
		if (!path->locks[i])
2378
			continue;
2379
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2380 2381 2382 2383
		path->locks[i] = 0;
	}
}

2384 2385 2386 2387 2388 2389 2390 2391 2392
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2393 2394
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2395
		      const struct btrfs_key *key)
2396
{
2397
	struct btrfs_fs_info *fs_info = root->fs_info;
2398 2399 2400 2401
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2402
	struct btrfs_key first_key;
2403
	int ret;
2404
	int parent_level;
2405 2406 2407

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2408 2409
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2410

2411
	tmp = find_extent_buffer(fs_info, blocknr);
2412
	if (tmp) {
2413
		/* first we do an atomic uptodate check */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2428
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2429 2430 2431
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2432
		}
2433 2434 2435
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2436 2437 2438 2439 2440
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2441 2442 2443
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2444
	 */
2445 2446 2447
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2448
	if (p->reada != READA_NONE)
2449
		reada_for_search(fs_info, p, level, slot, key->objectid);
2450

2451
	ret = -EAGAIN;
2452
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2453
			      &first_key);
2454
	if (!IS_ERR(tmp)) {
2455 2456 2457 2458 2459 2460
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2461
		if (!extent_buffer_uptodate(tmp))
2462
			ret = -EIO;
2463
		free_extent_buffer(tmp);
2464 2465
	} else {
		ret = PTR_ERR(tmp);
2466
	}
2467 2468

	btrfs_release_path(p);
2469
	return ret;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2484 2485
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2486
{
2487
	struct btrfs_fs_info *fs_info = root->fs_info;
2488
	int ret;
2489

2490
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2491
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2492 2493
		int sret;

2494 2495 2496 2497 2498 2499
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2500
		btrfs_set_path_blocking(p);
2501
		reada_for_balance(fs_info, p, level);
2502
		sret = split_node(trans, root, p, level);
2503
		btrfs_clear_path_blocking(p, NULL, 0);
2504 2505 2506 2507 2508 2509 2510 2511

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2512
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2513 2514
		int sret;

2515 2516 2517 2518 2519 2520
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2521
		btrfs_set_path_blocking(p);
2522
		reada_for_balance(fs_info, p, level);
2523
		sret = balance_level(trans, root, p, level);
2524
		btrfs_clear_path_blocking(p, NULL, 0);
2525 2526 2527 2528 2529 2530 2531

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2532
			btrfs_release_path(p);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2545
static void key_search_validate(struct extent_buffer *b,
2546
				const struct btrfs_key *key,
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2565
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2566 2567 2568
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2569
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2570 2571 2572 2573 2574 2575 2576 2577 2578
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2579
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2580 2581 2582 2583 2584 2585
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2586 2587

	ASSERT(path);
2588
	ASSERT(found_key);
2589 2590 2591 2592 2593 2594

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2595
	if (ret < 0)
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
		/* The commit roots are read only so we always do read locks */
		if (p->need_commit_sem)
			down_read(&fs_info->commit_root_sem);
		b = root->commit_root;
		extent_buffer_get(b);
		level = btrfs_header_level(b);
		if (p->need_commit_sem)
			up_read(&fs_info->commit_root_sem);
2635 2636 2637 2638 2639
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2651 2652
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2653
	 */
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2686
/*
2687 2688
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2689
 *
2690 2691 2692 2693 2694 2695 2696 2697
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2698
 *
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2710
 */
2711 2712 2713
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2714
{
2715
	struct btrfs_fs_info *fs_info = root->fs_info;
2716
	struct extent_buffer *b;
2717 2718
	int slot;
	int ret;
2719
	int err;
2720
	int level;
2721
	int lowest_unlock = 1;
2722 2723
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2724
	u8 lowest_level = 0;
2725
	int min_write_lock_level;
2726
	int prev_cmp;
2727

2728
	lowest_level = p->lowest_level;
2729
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2730
	WARN_ON(p->nodes[0] != NULL);
2731
	BUG_ON(!cow && ins_len);
2732

2733
	if (ins_len < 0) {
2734
		lowest_unlock = 2;
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2752
	if (cow && (p->keep_locks || p->lowest_level))
2753 2754
		write_lock_level = BTRFS_MAX_LEVEL;

2755 2756
	min_write_lock_level = write_lock_level;

2757
again:
2758
	prev_cmp = -1;
2759
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2760

2761
	while (b) {
2762
		level = btrfs_header_level(b);
2763 2764 2765 2766 2767

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2768
		if (cow) {
2769 2770
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2771 2772 2773 2774 2775
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2776 2777
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2778
				goto cow_done;
2779
			}
2780

2781 2782 2783 2784
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2785 2786 2787 2788
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2789 2790 2791 2792 2793
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2794
			btrfs_set_path_blocking(p);
2795 2796 2797 2798 2799 2800 2801
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2802 2803
			if (err) {
				ret = err;
2804
				goto done;
2805
			}
C
Chris Mason 已提交
2806
		}
2807
cow_done:
2808
		p->nodes[level] = b;
2809
		btrfs_clear_path_blocking(p, NULL, 0);
2810 2811 2812 2813 2814 2815 2816

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2817 2818 2819 2820
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2821
		 */
2822 2823 2824 2825 2826 2827 2828 2829
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2830

2831
		ret = key_search(b, key, level, &prev_cmp, &slot);
2832 2833
		if (ret < 0)
			goto done;
2834

2835
		if (level != 0) {
2836 2837 2838
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2839
				slot -= 1;
2840
			}
2841
			p->slots[level] = slot;
2842
			err = setup_nodes_for_search(trans, root, p, b, level,
2843
					     ins_len, &write_lock_level);
2844
			if (err == -EAGAIN)
2845
				goto again;
2846 2847
			if (err) {
				ret = err;
2848
				goto done;
2849
			}
2850 2851
			b = p->nodes[level];
			slot = p->slots[level];
2852

2853 2854 2855 2856 2857 2858
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2859
			if (slot == 0 && ins_len &&
2860 2861 2862 2863 2864 2865
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2866 2867
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2868

2869
			if (level == lowest_level) {
2870 2871
				if (dec)
					p->slots[level]++;
2872
				goto done;
2873
			}
2874

2875
			err = read_block_for_search(root, p, &b, level,
2876
						    slot, key);
2877
			if (err == -EAGAIN)
2878
				goto again;
2879 2880
			if (err) {
				ret = err;
2881
				goto done;
2882
			}
2883

2884
			if (!p->skip_locking) {
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2896
					err = btrfs_tree_read_lock_atomic(b);
2897 2898 2899 2900 2901 2902 2903
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2904
				}
2905
				p->nodes[level] = b;
2906
			}
2907 2908
		} else {
			p->slots[level] = slot;
2909
			if (ins_len > 0 &&
2910
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2911 2912 2913 2914 2915 2916
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2917
				btrfs_set_path_blocking(p);
2918 2919
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2920
				btrfs_clear_path_blocking(p, NULL, 0);
2921

2922 2923 2924
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2925 2926
					goto done;
				}
C
Chris Mason 已提交
2927
			}
2928
			if (!p->search_for_split)
2929 2930
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2931
			goto done;
2932 2933
		}
	}
2934 2935
	ret = 1;
done:
2936 2937 2938 2939
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2940 2941
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2942
	if (ret < 0 && !p->skip_release_on_error)
2943
		btrfs_release_path(p);
2944
	return ret;
2945 2946
}

J
Jan Schmidt 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2958
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2959 2960
			  struct btrfs_path *p, u64 time_seq)
{
2961
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2962 2963 2964 2965 2966 2967 2968
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2969
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2997
		/*
2998
		 * Since we can unwind ebs we want to do a real search every
2999 3000 3001
		 * time.
		 */
		prev_cmp = -1;
3002
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3019
			err = read_block_for_search(root, p, &b, level,
3020
						    slot, key);
J
Jan Schmidt 已提交
3021 3022 3023 3024 3025 3026 3027 3028
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3029
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3030 3031 3032 3033 3034 3035
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3036
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3037 3038 3039 3040
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3072 3073 3074
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3109 3110 3111 3112 3113
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3114 3115 3116
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3117
				return 0;
3118
			}
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3130 3131 3132 3133 3134 3135
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3136 3137 3138 3139 3140 3141
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3142
 *
C
Chris Mason 已提交
3143
 */
3144
static void fixup_low_keys(struct btrfs_path *path,
3145
			   struct btrfs_disk_key *key, int level)
3146 3147
{
	int i;
3148
	struct extent_buffer *t;
3149
	int ret;
3150

C
Chris Mason 已提交
3151
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3152
		int tslot = path->slots[i];
3153

3154
		if (!path->nodes[i])
3155
			break;
3156
		t = path->nodes[i];
3157 3158 3159
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3160
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3161
		btrfs_mark_buffer_dirty(path->nodes[i]);
3162 3163 3164 3165 3166
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3167 3168 3169 3170 3171 3172
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3173 3174
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3175
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3185
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3186 3187 3188
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3189
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3190 3191 3192 3193 3194 3195
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3196
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3197 3198
}

C
Chris Mason 已提交
3199 3200
/*
 * try to push data from one node into the next node left in the
3201
 * tree.
C
Chris Mason 已提交
3202 3203 3204
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3205
 */
3206
static int push_node_left(struct btrfs_trans_handle *trans,
3207 3208
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3209
			  struct extent_buffer *src, int empty)
3210 3211
{
	int push_items = 0;
3212 3213
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3214
	int ret = 0;
3215

3216 3217
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3218
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3219 3220
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3221

3222
	if (!empty && src_nritems <= 8)
3223 3224
		return 1;

C
Chris Mason 已提交
3225
	if (push_items <= 0)
3226 3227
		return 1;

3228
	if (empty) {
3229
		push_items = min(src_nritems, push_items);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3242

3243
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3244 3245
				   push_items);
	if (ret) {
3246
		btrfs_abort_transaction(trans, ret);
3247 3248
		return ret;
	}
3249 3250 3251
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3252
			   push_items * sizeof(struct btrfs_key_ptr));
3253

3254
	if (push_items < src_nritems) {
3255
		/*
3256 3257
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3258
		 */
3259 3260 3261 3262 3263 3264 3265 3266 3267
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3281
static int balance_node_right(struct btrfs_trans_handle *trans,
3282
			      struct btrfs_fs_info *fs_info,
3283 3284
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3285 3286 3287 3288 3289 3290 3291
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3292 3293 3294
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3295 3296
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3297
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3298
	if (push_items <= 0)
3299
		return 1;
3300

C
Chris Mason 已提交
3301
	if (src_nritems < 4)
3302
		return 1;
3303 3304 3305

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3306
	if (max_push >= src_nritems)
3307
		return 1;
Y
Yan 已提交
3308

3309 3310 3311
	if (max_push < push_items)
		push_items = max_push;

3312 3313
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3314 3315 3316 3317
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3318

3319
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3320 3321
				   src_nritems - push_items, push_items);
	if (ret) {
3322
		btrfs_abort_transaction(trans, ret);
3323 3324
		return ret;
	}
3325 3326 3327
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3328
			   push_items * sizeof(struct btrfs_key_ptr));
3329

3330 3331
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3332

3333 3334
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3335

C
Chris Mason 已提交
3336
	return ret;
3337 3338
}

C
Chris Mason 已提交
3339 3340 3341 3342
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3343 3344
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3345
 */
C
Chris Mason 已提交
3346
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3347
			   struct btrfs_root *root,
3348
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3349
{
3350
	struct btrfs_fs_info *fs_info = root->fs_info;
3351
	u64 lower_gen;
3352 3353
	struct extent_buffer *lower;
	struct extent_buffer *c;
3354
	struct extent_buffer *old;
3355
	struct btrfs_disk_key lower_key;
3356
	int ret;
C
Chris Mason 已提交
3357 3358 3359 3360

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3361 3362 3363 3364 3365 3366
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3367 3368
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3369 3370
	if (IS_ERR(c))
		return PTR_ERR(c);
3371

3372
	root_add_used(root, fs_info->nodesize);
3373

3374 3375
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3376
	btrfs_set_node_blockptr(c, 0, lower->start);
3377
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3378
	WARN_ON(lower_gen != trans->transid);
3379 3380

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3381

3382
	btrfs_mark_buffer_dirty(c);
3383

3384
	old = root->node;
3385 3386
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3387
	rcu_assign_pointer(root->node, c);
3388 3389 3390 3391

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3392
	add_root_to_dirty_list(root);
3393 3394
	extent_buffer_get(c);
	path->nodes[level] = c;
3395
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3396 3397 3398 3399
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3400 3401 3402
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3403
 *
C
Chris Mason 已提交
3404 3405 3406
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3407
static void insert_ptr(struct btrfs_trans_handle *trans,
3408
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3409
		       struct btrfs_disk_key *key, u64 bytenr,
3410
		       int slot, int level)
C
Chris Mason 已提交
3411
{
3412
	struct extent_buffer *lower;
C
Chris Mason 已提交
3413
	int nritems;
3414
	int ret;
C
Chris Mason 已提交
3415 3416

	BUG_ON(!path->nodes[level]);
3417
	btrfs_assert_tree_locked(path->nodes[level]);
3418 3419
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3420
	BUG_ON(slot > nritems);
3421
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3422
	if (slot != nritems) {
3423 3424
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3425
					nritems - slot);
3426 3427
			BUG_ON(ret < 0);
		}
3428 3429 3430
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3431
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3432
	}
3433
	if (level) {
3434 3435
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3436 3437
		BUG_ON(ret < 0);
	}
3438
	btrfs_set_node_key(lower, key, slot);
3439
	btrfs_set_node_blockptr(lower, slot, bytenr);
3440 3441
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442 3443
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3444 3445
}

C
Chris Mason 已提交
3446 3447 3448 3449 3450 3451
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3452 3453
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3454
 */
3455 3456 3457
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3458
{
3459
	struct btrfs_fs_info *fs_info = root->fs_info;
3460 3461 3462
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3463
	int mid;
C
Chris Mason 已提交
3464
	int ret;
3465
	u32 c_nritems;
3466

3467
	c = path->nodes[level];
3468
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3469
	if (c == root->node) {
3470
		/*
3471 3472
		 * trying to split the root, lets make a new one
		 *
3473
		 * tree mod log: We don't log_removal old root in
3474 3475 3476 3477 3478
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3479
		 */
3480
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3481 3482
		if (ret)
			return ret;
3483
	} else {
3484
		ret = push_nodes_for_insert(trans, root, path, level);
3485 3486
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3487
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3488
			return 0;
3489 3490
		if (ret < 0)
			return ret;
3491
	}
3492

3493
	c_nritems = btrfs_header_nritems(c);
3494 3495
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3496

3497 3498
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3499 3500 3501
	if (IS_ERR(split))
		return PTR_ERR(split);

3502
	root_add_used(root, fs_info->nodesize);
3503
	ASSERT(btrfs_header_level(c) == level);
3504

3505
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3506
	if (ret) {
3507
		btrfs_abort_transaction(trans, ret);
3508 3509
		return ret;
	}
3510 3511 3512 3513 3514 3515
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3516 3517
	ret = 0;

3518 3519 3520
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3521
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3522
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3523

C
Chris Mason 已提交
3524
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3525
		path->slots[level] -= mid;
3526
		btrfs_tree_unlock(c);
3527 3528
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3529 3530
		path->slots[level + 1] += 1;
	} else {
3531
		btrfs_tree_unlock(split);
3532
		free_extent_buffer(split);
3533
	}
C
Chris Mason 已提交
3534
	return ret;
3535 3536
}

C
Chris Mason 已提交
3537 3538 3539 3540 3541
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3542
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3543
{
J
Josef Bacik 已提交
3544 3545 3546
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3547
	int data_len;
3548
	int nritems = btrfs_header_nritems(l);
3549
	int end = min(nritems, start + nr) - 1;
3550 3551 3552

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3553
	btrfs_init_map_token(&token);
3554 3555
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3556 3557 3558
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3559
	data_len += sizeof(struct btrfs_item) * nr;
3560
	WARN_ON(data_len < 0);
3561 3562 3563
	return data_len;
}

3564 3565 3566 3567 3568
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3569
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3570
				   struct extent_buffer *leaf)
3571
{
3572 3573
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3574 3575

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3576
	if (ret < 0) {
3577 3578 3579 3580 3581
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3582 3583
	}
	return ret;
3584 3585
}

3586 3587 3588 3589
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3590
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3591 3592 3593
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3594 3595
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3596
{
3597
	struct extent_buffer *left = path->nodes[0];
3598
	struct extent_buffer *upper = path->nodes[1];
3599
	struct btrfs_map_token token;
3600
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3601
	int slot;
3602
	u32 i;
C
Chris Mason 已提交
3603 3604
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3605
	struct btrfs_item *item;
3606
	u32 nr;
3607
	u32 right_nritems;
3608
	u32 data_end;
3609
	u32 this_item_size;
C
Chris Mason 已提交
3610

3611 3612
	btrfs_init_map_token(&token);

3613 3614 3615
	if (empty)
		nr = 0;
	else
3616
		nr = max_t(u32, 1, min_slot);
3617

Z
Zheng Yan 已提交
3618
	if (path->slots[0] >= left_nritems)
3619
		push_space += data_size;
Z
Zheng Yan 已提交
3620

3621
	slot = path->slots[1];
3622 3623
	i = left_nritems - 1;
	while (i >= nr) {
3624
		item = btrfs_item_nr(i);
3625

Z
Zheng Yan 已提交
3626 3627 3628 3629
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3630
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3631 3632 3633 3634 3635
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3636
		if (path->slots[0] == i)
3637
			push_space += data_size;
3638 3639 3640

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3641
			break;
Z
Zheng Yan 已提交
3642

C
Chris Mason 已提交
3643
		push_items++;
3644
		push_space += this_item_size + sizeof(*item);
3645 3646 3647
		if (i == 0)
			break;
		i--;
3648
	}
3649

3650 3651
	if (push_items == 0)
		goto out_unlock;
3652

J
Julia Lawall 已提交
3653
	WARN_ON(!empty && push_items == left_nritems);
3654

C
Chris Mason 已提交
3655
	/* push left to right */
3656
	right_nritems = btrfs_header_nritems(right);
3657

3658
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3659
	push_space -= leaf_data_end(fs_info, left);
3660

C
Chris Mason 已提交
3661
	/* make room in the right data area */
3662
	data_end = leaf_data_end(fs_info, right);
3663
	memmove_extent_buffer(right,
3664 3665
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3666
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3667

C
Chris Mason 已提交
3668
	/* copy from the left data area */
3669
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3670
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3671
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3672
		     push_space);
3673 3674 3675 3676 3677

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3678
	/* copy the items from left to right */
3679 3680 3681
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3682 3683

	/* update the item pointers */
3684
	right_nritems += push_items;
3685
	btrfs_set_header_nritems(right, right_nritems);
3686
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3687
	for (i = 0; i < right_nritems; i++) {
3688
		item = btrfs_item_nr(i);
3689 3690
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3691 3692
	}

3693
	left_nritems -= push_items;
3694
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3695

3696 3697
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3698
	else
3699
		clean_tree_block(fs_info, left);
3700

3701
	btrfs_mark_buffer_dirty(right);
3702

3703 3704
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3705
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3706

C
Chris Mason 已提交
3707
	/* then fixup the leaf pointer in the path */
3708 3709
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3710
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3711
			clean_tree_block(fs_info, path->nodes[0]);
3712
		btrfs_tree_unlock(path->nodes[0]);
3713 3714
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3715 3716
		path->slots[1] += 1;
	} else {
3717
		btrfs_tree_unlock(right);
3718
		free_extent_buffer(right);
C
Chris Mason 已提交
3719 3720
	}
	return 0;
3721 3722 3723 3724 3725

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3726
}
3727

3728 3729 3730 3731 3732 3733
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3734 3735 3736
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3737 3738
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3739 3740 3741
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3742
{
3743
	struct btrfs_fs_info *fs_info = root->fs_info;
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3762
	right = read_node_slot(fs_info, upper, slot + 1);
3763 3764 3765 3766 3767
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3768 3769
		return 1;

3770 3771 3772
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3773
	free_space = btrfs_leaf_free_space(fs_info, right);
3774 3775 3776 3777 3778 3779 3780 3781 3782
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3783
	free_space = btrfs_leaf_free_space(fs_info, right);
3784 3785 3786 3787 3788 3789 3790
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3804
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3805
				right, free_space, left_nritems, min_slot);
3806 3807 3808 3809 3810 3811
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3812 3813 3814
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3815 3816 3817 3818
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3819
 */
3820
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3821 3822
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3823 3824
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3825
{
3826 3827
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3828 3829 3830
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3831
	struct btrfs_item *item;
3832
	u32 old_left_nritems;
3833
	u32 nr;
C
Chris Mason 已提交
3834
	int ret = 0;
3835 3836
	u32 this_item_size;
	u32 old_left_item_size;
3837 3838 3839
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3840

3841
	if (empty)
3842
		nr = min(right_nritems, max_slot);
3843
	else
3844
		nr = min(right_nritems - 1, max_slot);
3845 3846

	for (i = 0; i < nr; i++) {
3847
		item = btrfs_item_nr(i);
3848

Z
Zheng Yan 已提交
3849 3850 3851 3852
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3853
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3854 3855 3856 3857 3858
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3859
		if (path->slots[0] == i)
3860
			push_space += data_size;
3861 3862 3863

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3864
			break;
3865

3866
		push_items++;
3867 3868 3869
		push_space += this_item_size + sizeof(*item);
	}

3870
	if (push_items == 0) {
3871 3872
		ret = 1;
		goto out;
3873
	}
3874
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3875

3876
	/* push data from right to left */
3877 3878 3879 3880 3881
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3882
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3883
		     btrfs_item_offset_nr(right, push_items - 1);
3884

3885
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3886
		     leaf_data_end(fs_info, left) - push_space,
3887
		     BTRFS_LEAF_DATA_OFFSET +
3888
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3889
		     push_space);
3890
	old_left_nritems = btrfs_header_nritems(left);
3891
	BUG_ON(old_left_nritems <= 0);
3892

3893
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3894
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3895
		u32 ioff;
3896

3897
		item = btrfs_item_nr(i);
3898

3899 3900
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3901
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3902
		      &token);
3903
	}
3904
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3905 3906

	/* fixup right node */
J
Julia Lawall 已提交
3907 3908
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3909
		       right_nritems);
3910 3911 3912

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3913
						  leaf_data_end(fs_info, right);
3914
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3915
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3916
				      BTRFS_LEAF_DATA_OFFSET +
3917
				      leaf_data_end(fs_info, right), push_space);
3918 3919

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3920 3921 3922
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3923
	}
3924 3925
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3926
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3927
	for (i = 0; i < right_nritems; i++) {
3928
		item = btrfs_item_nr(i);
3929

3930 3931 3932
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3933
	}
3934

3935
	btrfs_mark_buffer_dirty(left);
3936 3937
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3938
	else
3939
		clean_tree_block(fs_info, right);
3940

3941
	btrfs_item_key(right, &disk_key, 0);
3942
	fixup_low_keys(path, &disk_key, 1);
3943 3944 3945 3946

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3947
		btrfs_tree_unlock(path->nodes[0]);
3948 3949
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3950 3951
		path->slots[1] -= 1;
	} else {
3952
		btrfs_tree_unlock(left);
3953
		free_extent_buffer(left);
3954 3955
		path->slots[0] -= push_items;
	}
3956
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3957
	return ret;
3958 3959 3960 3961
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3962 3963
}

3964 3965 3966
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3967 3968 3969 3970
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3971 3972
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3973 3974
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3975
{
3976
	struct btrfs_fs_info *fs_info = root->fs_info;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3996
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3997 3998 3999 4000 4001
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4002 4003
		return 1;

4004 4005 4006
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

4007
	free_space = btrfs_leaf_free_space(fs_info, left);
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4018 4019
		if (ret == -ENOSPC)
			ret = 1;
4020 4021 4022
		goto out;
	}

4023
	free_space = btrfs_leaf_free_space(fs_info, left);
4024 4025 4026 4027 4028
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4029
	return __push_leaf_left(fs_info, path, min_data_size,
4030 4031
			       empty, left, free_space, right_nritems,
			       max_slot);
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4042
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4043
				    struct btrfs_fs_info *fs_info,
4044 4045 4046 4047
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4048 4049 4050 4051 4052
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4053 4054 4055
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4056 4057 4058

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4059
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4060 4061 4062 4063 4064 4065

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4066 4067
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4068
		     leaf_data_end(fs_info, l), data_copy_size);
4069

4070
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4071 4072

	for (i = 0; i < nritems; i++) {
4073
		struct btrfs_item *item = btrfs_item_nr(i);
4074 4075
		u32 ioff;

4076 4077 4078
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4079 4080 4081 4082
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4083
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4084
		   path->slots[1] + 1, 1);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4119
	struct btrfs_fs_info *fs_info = root->fs_info;
4120 4121 4122 4123
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4124
	int space_needed = data_size;
4125 4126

	slot = path->slots[0];
4127
	if (slot < btrfs_header_nritems(path->nodes[0]))
4128
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4129 4130 4131 4132 4133

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4134
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4149
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4150 4151 4152 4153
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4154 4155 4156
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4157
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4169 4170 4171
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4172 4173
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4174
 */
4175 4176
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4177
			       const struct btrfs_key *ins_key,
4178 4179
			       struct btrfs_path *path, int data_size,
			       int extend)
4180
{
4181
	struct btrfs_disk_key disk_key;
4182
	struct extent_buffer *l;
4183
	u32 nritems;
4184 4185
	int mid;
	int slot;
4186
	struct extent_buffer *right;
4187
	struct btrfs_fs_info *fs_info = root->fs_info;
4188
	int ret = 0;
C
Chris Mason 已提交
4189
	int wret;
4190
	int split;
4191
	int num_doubles = 0;
4192
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4193

4194 4195 4196
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4197
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4198 4199
		return -EOVERFLOW;

C
Chris Mason 已提交
4200
	/* first try to make some room by pushing left and right */
4201
	if (data_size && path->nodes[1]) {
4202 4203 4204
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4205
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4206 4207 4208

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4209
		if (wret < 0)
C
Chris Mason 已提交
4210
			return wret;
4211
		if (wret) {
4212 4213 4214 4215
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4216 4217
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4218 4219 4220 4221
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4222

4223
		/* did the pushes work? */
4224
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4225
			return 0;
4226
	}
C
Chris Mason 已提交
4227

C
Chris Mason 已提交
4228
	if (!path->nodes[1]) {
4229
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4230 4231 4232
		if (ret)
			return ret;
	}
4233
again:
4234
	split = 1;
4235
	l = path->nodes[0];
4236
	slot = path->slots[0];
4237
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4238
	mid = (nritems + 1) / 2;
4239

4240 4241 4242
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4243
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4244 4245 4246 4247 4248 4249
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4250
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4251 4252
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4253 4254 4255 4256 4257 4258
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4259
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4260 4261 4262 4263 4264 4265 4266 4267
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4268
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4269 4270
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4271
					split = 2;
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4282 4283
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4284
	if (IS_ERR(right))
4285
		return PTR_ERR(right);
4286

4287
	root_add_used(root, fs_info->nodesize);
4288

4289 4290 4291
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4292 4293
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4294 4295 4296 4297 4298 4299 4300
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4301 4302
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4303 4304 4305 4306
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4307
			if (path->slots[1] == 0)
4308
				fixup_low_keys(path, &disk_key, 1);
4309
		}
4310 4311 4312 4313 4314
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4315
		return ret;
4316
	}
C
Chris Mason 已提交
4317

4318
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4319

4320
	if (split == 2) {
4321 4322 4323
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4324
	}
4325

4326
	return 0;
4327 4328 4329 4330

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4331
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4332 4333
		return 0;
	goto again;
4334 4335
}

Y
Yan, Zheng 已提交
4336 4337 4338
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4339
{
4340
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4341
	struct btrfs_key key;
4342
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4343 4344 4345 4346
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4347 4348

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4349 4350 4351 4352 4353
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4354
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4355
		return 0;
4356 4357

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4358 4359 4360 4361 4362
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4363
	btrfs_release_path(path);
4364 4365

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4366 4367
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4368
	path->search_for_split = 0;
4369 4370
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4371 4372
	if (ret < 0)
		goto err;
4373

Y
Yan, Zheng 已提交
4374 4375
	ret = -EAGAIN;
	leaf = path->nodes[0];
4376 4377
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4378 4379
		goto err;

4380
	/* the leaf has  changed, it now has room.  return now */
4381
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4382 4383
		goto err;

Y
Yan, Zheng 已提交
4384 4385 4386 4387 4388
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4389 4390
	}

4391
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4392
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4393 4394
	if (ret)
		goto err;
4395

Y
Yan, Zheng 已提交
4396
	path->keep_locks = 0;
4397
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4398 4399 4400 4401 4402 4403
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4404
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4405
			       struct btrfs_path *path,
4406
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4419
	leaf = path->nodes[0];
4420
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4421

4422 4423
	btrfs_set_path_blocking(path);

4424
	item = btrfs_item_nr(path->slots[0]);
4425 4426 4427 4428
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4429 4430 4431
	if (!buf)
		return -ENOMEM;

4432 4433 4434
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4435
	slot = path->slots[0] + 1;
4436 4437 4438 4439
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4440 4441
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4442 4443 4444 4445 4446
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4447
	new_item = btrfs_item_nr(slot);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4469
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4470
	kfree(buf);
Y
Yan, Zheng 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4492
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4493 4494 4495 4496 4497 4498 4499 4500
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4501
	ret = split_item(root->fs_info, path, new_key, split_offset);
4502 4503 4504
	return ret;
}

Y
Yan, Zheng 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4516
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4530
	setup_items_for_insert(root, path, new_key, &item_size,
4531 4532
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4533 4534 4535 4536 4537 4538 4539 4540
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4541 4542 4543 4544 4545 4546
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4547 4548
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4549 4550
{
	int slot;
4551 4552
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4553 4554 4555 4556 4557 4558
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4559 4560 4561
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4562

4563
	leaf = path->nodes[0];
4564 4565 4566 4567
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4568
		return;
C
Chris Mason 已提交
4569

4570
	nritems = btrfs_header_nritems(leaf);
4571
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4572

4573
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4574

C
Chris Mason 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4585
		u32 ioff;
4586
		item = btrfs_item_nr(i);
4587

4588 4589 4590
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4591
	}
4592

C
Chris Mason 已提交
4593
	/* shift the data */
4594
	if (from_end) {
4595 4596
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4617
				      (unsigned long)fi,
4618
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4619 4620 4621
			}
		}

4622 4623
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4624 4625 4626 4627 4628 4629
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4630
			fixup_low_keys(path, &disk_key, 1);
4631
	}
4632

4633
	item = btrfs_item_nr(slot);
4634 4635
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4636

4637
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4638
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4639
		BUG();
4640
	}
C
Chris Mason 已提交
4641 4642
}

C
Chris Mason 已提交
4643
/*
S
Stefan Behrens 已提交
4644
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4645
 */
4646
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4647
		       u32 data_size)
4648 4649
{
	int slot;
4650 4651
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4652 4653 4654 4655 4656
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4657 4658 4659
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4660

4661
	leaf = path->nodes[0];
4662

4663
	nritems = btrfs_header_nritems(leaf);
4664
	data_end = leaf_data_end(fs_info, leaf);
4665

4666
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4667
		btrfs_print_leaf(leaf);
4668
		BUG();
4669
	}
4670
	slot = path->slots[0];
4671
	old_data = btrfs_item_end_nr(leaf, slot);
4672 4673

	BUG_ON(slot < 0);
4674
	if (slot >= nritems) {
4675
		btrfs_print_leaf(leaf);
4676 4677
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4678 4679
		BUG_ON(1);
	}
4680 4681 4682 4683 4684 4685

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4686
		u32 ioff;
4687
		item = btrfs_item_nr(i);
4688

4689 4690 4691
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4692
	}
4693

4694
	/* shift the data */
4695 4696
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4697
		      data_end, old_data - data_end);
4698

4699
	data_end = old_data;
4700
	old_size = btrfs_item_size_nr(leaf, slot);
4701
	item = btrfs_item_nr(slot);
4702 4703
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4704

4705
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4706
		btrfs_print_leaf(leaf);
4707
		BUG();
4708
	}
4709 4710
}

C
Chris Mason 已提交
4711
/*
4712 4713 4714
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4715
 */
4716
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4717
			    const struct btrfs_key *cpu_key, u32 *data_size,
4718
			    u32 total_data, u32 total_size, int nr)
4719
{
4720
	struct btrfs_fs_info *fs_info = root->fs_info;
4721
	struct btrfs_item *item;
4722
	int i;
4723
	u32 nritems;
4724
	unsigned int data_end;
C
Chris Mason 已提交
4725
	struct btrfs_disk_key disk_key;
4726 4727
	struct extent_buffer *leaf;
	int slot;
4728 4729
	struct btrfs_map_token token;

4730 4731
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4732
		fixup_low_keys(path, &disk_key, 1);
4733 4734 4735
	}
	btrfs_unlock_up_safe(path, 1);

4736
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4737

4738
	leaf = path->nodes[0];
4739
	slot = path->slots[0];
C
Chris Mason 已提交
4740

4741
	nritems = btrfs_header_nritems(leaf);
4742
	data_end = leaf_data_end(fs_info, leaf);
4743

4744
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4745
		btrfs_print_leaf(leaf);
4746
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4747
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4748
		BUG();
4749
	}
4750

4751
	if (slot != nritems) {
4752
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4753

4754
		if (old_data < data_end) {
4755
			btrfs_print_leaf(leaf);
4756
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4757
				   slot, old_data, data_end);
4758 4759
			BUG_ON(1);
		}
4760 4761 4762 4763
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4764
		for (i = slot; i < nritems; i++) {
4765
			u32 ioff;
4766

4767
			item = btrfs_item_nr(i);
4768 4769 4770
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4771
		}
4772
		/* shift the items */
4773
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4774
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4775
			      (nritems - slot) * sizeof(struct btrfs_item));
4776 4777

		/* shift the data */
4778 4779
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4780
			      data_end, old_data - data_end);
4781 4782
		data_end = old_data;
	}
4783

4784
	/* setup the item for the new data */
4785 4786 4787
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4788
		item = btrfs_item_nr(slot + i);
4789 4790
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4791
		data_end -= data_size[i];
4792
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4793
	}
4794

4795
	btrfs_set_header_nritems(leaf, nritems + nr);
4796
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4797

4798
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4799
		btrfs_print_leaf(leaf);
4800
		BUG();
4801
	}
4802 4803 4804 4805 4806 4807 4808 4809 4810
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4811
			    const struct btrfs_key *cpu_key, u32 *data_size,
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4828
		return ret;
4829 4830 4831 4832

	slot = path->slots[0];
	BUG_ON(slot < 0);

4833
	setup_items_for_insert(root, path, cpu_key, data_size,
4834
			       total_data, total_size, nr);
4835
	return 0;
4836 4837 4838 4839 4840 4841
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4842 4843 4844
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4845 4846
{
	int ret = 0;
C
Chris Mason 已提交
4847
	struct btrfs_path *path;
4848 4849
	struct extent_buffer *leaf;
	unsigned long ptr;
4850

C
Chris Mason 已提交
4851
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4852 4853
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4854
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4855
	if (!ret) {
4856 4857 4858 4859
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4860
	}
C
Chris Mason 已提交
4861
	btrfs_free_path(path);
C
Chris Mason 已提交
4862
	return ret;
4863 4864
}

C
Chris Mason 已提交
4865
/*
C
Chris Mason 已提交
4866
 * delete the pointer from a given node.
C
Chris Mason 已提交
4867
 *
C
Chris Mason 已提交
4868 4869
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4870
 */
4871 4872
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4873
{
4874
	struct extent_buffer *parent = path->nodes[level];
4875
	u32 nritems;
4876
	int ret;
4877

4878
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4879
	if (slot != nritems - 1) {
4880 4881
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4882
					nritems - slot - 1);
4883 4884
			BUG_ON(ret < 0);
		}
4885 4886 4887
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4888 4889
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4890
	} else if (level) {
4891 4892
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4893
		BUG_ON(ret < 0);
4894
	}
4895

4896
	nritems--;
4897
	btrfs_set_header_nritems(parent, nritems);
4898
	if (nritems == 0 && parent == root->node) {
4899
		BUG_ON(btrfs_header_level(root->node) != 1);
4900
		/* just turn the root into a leaf and break */
4901
		btrfs_set_header_level(root->node, 0);
4902
	} else if (slot == 0) {
4903 4904 4905
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4906
		fixup_low_keys(path, &disk_key, level + 1);
4907
	}
C
Chris Mason 已提交
4908
	btrfs_mark_buffer_dirty(parent);
4909 4910
}

4911 4912
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4913
 * path->nodes[1].
4914 4915 4916 4917 4918 4919 4920
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4921 4922 4923 4924
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4925
{
4926
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4927
	del_ptr(root, path, 1, path->slots[1]);
4928

4929 4930 4931 4932 4933 4934
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4935 4936
	root_sub_used(root, leaf->len);

4937
	extent_buffer_get(leaf);
4938
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4939
	free_extent_buffer_stale(leaf);
4940
}
C
Chris Mason 已提交
4941 4942 4943 4944
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4945 4946
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4947
{
4948
	struct btrfs_fs_info *fs_info = root->fs_info;
4949 4950
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4951 4952
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4953 4954
	int ret = 0;
	int wret;
4955
	int i;
4956
	u32 nritems;
4957 4958 4959
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4960

4961
	leaf = path->nodes[0];
4962 4963 4964 4965 4966
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4967
	nritems = btrfs_header_nritems(leaf);
4968

4969
	if (slot + nr != nritems) {
4970
		int data_end = leaf_data_end(fs_info, leaf);
4971

4972
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4973
			      data_end + dsize,
4974
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4975
			      last_off - data_end);
4976

4977
		for (i = slot + nr; i < nritems; i++) {
4978
			u32 ioff;
4979

4980
			item = btrfs_item_nr(i);
4981 4982 4983
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4984
		}
4985

4986
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4987
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4988
			      sizeof(struct btrfs_item) *
4989
			      (nritems - slot - nr));
4990
	}
4991 4992
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4993

C
Chris Mason 已提交
4994
	/* delete the leaf if we've emptied it */
4995
	if (nritems == 0) {
4996 4997
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4998
		} else {
4999
			btrfs_set_path_blocking(path);
5000
			clean_tree_block(fs_info, leaf);
5001
			btrfs_del_leaf(trans, root, path, leaf);
5002
		}
5003
	} else {
5004
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5005
		if (slot == 0) {
5006 5007 5008
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5009
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5010 5011
		}

C
Chris Mason 已提交
5012
		/* delete the leaf if it is mostly empty */
5013
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5014 5015 5016 5017
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5018
			slot = path->slots[1];
5019 5020
			extent_buffer_get(leaf);

5021
			btrfs_set_path_blocking(path);
5022 5023
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5024
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5025
				ret = wret;
5026 5027 5028

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5029 5030
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5031
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5032 5033
					ret = wret;
			}
5034 5035

			if (btrfs_header_nritems(leaf) == 0) {
5036
				path->slots[1] = slot;
5037
				btrfs_del_leaf(trans, root, path, leaf);
5038
				free_extent_buffer(leaf);
5039
				ret = 0;
C
Chris Mason 已提交
5040
			} else {
5041 5042 5043 5044 5045 5046 5047
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5048
				free_extent_buffer(leaf);
5049
			}
5050
		} else {
5051
			btrfs_mark_buffer_dirty(leaf);
5052 5053
		}
	}
C
Chris Mason 已提交
5054
	return ret;
5055 5056
}

5057
/*
5058
 * search the tree again to find a leaf with lesser keys
5059 5060
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5061 5062 5063
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5064
 */
5065
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5066
{
5067 5068 5069
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5070

5071
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5072

5073
	if (key.offset > 0) {
5074
		key.offset--;
5075
	} else if (key.type > 0) {
5076
		key.type--;
5077 5078
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5079
		key.objectid--;
5080 5081 5082
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5083
		return 1;
5084
	}
5085

5086
	btrfs_release_path(path);
5087 5088 5089 5090 5091
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5103 5104
		return 0;
	return 1;
5105 5106
}

5107 5108
/*
 * A helper function to walk down the tree starting at min_key, and looking
5109 5110
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5111 5112 5113 5114 5115 5116 5117 5118
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5119 5120 5121 5122
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5123 5124 5125 5126
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5127
			 struct btrfs_path *path,
5128 5129
			 u64 min_trans)
{
5130
	struct btrfs_fs_info *fs_info = root->fs_info;
5131 5132 5133
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5134
	int sret;
5135 5136 5137
	u32 nritems;
	int level;
	int ret = 1;
5138
	int keep_locks = path->keep_locks;
5139

5140
	path->keep_locks = 1;
5141
again:
5142
	cur = btrfs_read_lock_root_node(root);
5143
	level = btrfs_header_level(cur);
5144
	WARN_ON(path->nodes[level]);
5145
	path->nodes[level] = cur;
5146
	path->locks[level] = BTRFS_READ_LOCK;
5147 5148 5149 5150 5151

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5152
	while (1) {
5153 5154
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5155
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5156

5157 5158
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5159 5160
			if (slot >= nritems)
				goto find_next_key;
5161 5162 5163 5164 5165
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5166 5167
		if (sret && slot > 0)
			slot--;
5168
		/*
5169 5170
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5171
		 */
C
Chris Mason 已提交
5172
		while (slot < nritems) {
5173
			u64 gen;
5174

5175 5176 5177 5178 5179
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5180
			break;
5181
		}
5182
find_next_key:
5183 5184 5185 5186 5187
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5188
			path->slots[level] = slot;
5189
			btrfs_set_path_blocking(path);
5190
			sret = btrfs_find_next_key(root, path, min_key, level,
5191
						  min_trans);
5192
			if (sret == 0) {
5193
				btrfs_release_path(path);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5206
		btrfs_set_path_blocking(path);
5207
		cur = read_node_slot(fs_info, cur, slot);
5208 5209 5210 5211
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5212

5213
		btrfs_tree_read_lock(cur);
5214

5215
		path->locks[level - 1] = BTRFS_READ_LOCK;
5216
		path->nodes[level - 1] = cur;
5217
		unlock_up(path, level, 1, 0, NULL);
5218
		btrfs_clear_path_blocking(path, NULL, 0);
5219 5220
	}
out:
5221 5222 5223 5224
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5225
		memcpy(min_key, &found_key, sizeof(found_key));
5226
	}
5227 5228 5229
	return ret;
}

5230
static int tree_move_down(struct btrfs_fs_info *fs_info,
5231
			   struct btrfs_path *path,
5232
			   int *level)
5233
{
5234 5235
	struct extent_buffer *eb;

5236
	BUG_ON(*level == 0);
5237
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5238 5239 5240 5241
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5242 5243
	path->slots[*level - 1] = 0;
	(*level)--;
5244
	return 0;
5245 5246
}

5247
static int tree_move_next_or_upnext(struct btrfs_path *path,
5248 5249 5250 5251 5252 5253 5254 5255
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5256
	while (path->slots[*level] >= nritems) {
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5277
static int tree_advance(struct btrfs_fs_info *fs_info,
5278 5279 5280 5281 5282 5283 5284 5285
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5286
		ret = tree_move_next_or_upnext(path, level, root_level);
5287
	} else {
5288
		ret = tree_move_down(fs_info, path, level);
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5301
static int tree_compare_item(struct btrfs_path *left_path,
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5346
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5364 5365
	u64 left_gen;
	u64 right_gen;
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5378
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5379
	if (!tmp_buf) {
5380 5381
		ret = -ENOMEM;
		goto out;
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5425
	down_read(&fs_info->commit_root_sem);
5426 5427
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5428 5429 5430 5431 5432 5433 5434
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5435 5436 5437 5438
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5439 5440 5441 5442 5443 5444 5445
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5446
	extent_buffer_get(right_path->nodes[right_level]);
5447
	up_read(&fs_info->commit_root_sem);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5467
			ret = tree_advance(fs_info, left_path, &left_level,
5468 5469 5470
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5471
			if (ret == -1)
5472
				left_end_reached = ADVANCE;
5473 5474
			else if (ret < 0)
				goto out;
5475 5476 5477
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5478
			ret = tree_advance(fs_info, right_path, &right_level,
5479 5480 5481
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5482
			if (ret == -1)
5483
				right_end_reached = ADVANCE;
5484 5485
			else if (ret < 0)
				goto out;
5486 5487 5488 5489 5490 5491 5492 5493
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5494
				ret = changed_cb(left_path, right_path,
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5505
				ret = changed_cb(left_path, right_path,
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5519
				ret = changed_cb(left_path, right_path,
5520 5521 5522 5523 5524 5525 5526
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5527
				ret = changed_cb(left_path, right_path,
5528 5529 5530 5531 5532 5533 5534
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5535
				enum btrfs_compare_tree_result result;
5536

5537
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 5539
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5540
				if (ret)
5541
					result = BTRFS_COMPARE_TREE_CHANGED;
5542
				else
5543
					result = BTRFS_COMPARE_TREE_SAME;
5544
				ret = changed_cb(left_path, right_path,
5545
						 &left_key, result, ctx);
5546 5547
				if (ret < 0)
					goto out;
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5564 5565 5566 5567 5568 5569 5570 5571
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5593
	kvfree(tmp_buf);
5594 5595 5596
	return ret;
}

5597 5598 5599
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5600
 * tree based on the current path and the min_trans parameters.
5601 5602 5603 5604 5605 5606 5607
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5608
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609
			struct btrfs_key *key, int level, u64 min_trans)
5610 5611 5612 5613
{
	int slot;
	struct extent_buffer *c;

5614
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5615
	while (level < BTRFS_MAX_LEVEL) {
5616 5617 5618 5619 5620
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5621
next:
5622
		if (slot >= btrfs_header_nritems(c)) {
5623 5624 5625 5626 5627
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5628
				return 1;
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5642
			btrfs_release_path(path);
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5655
		}
5656

5657 5658
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5659 5660 5661 5662 5663 5664 5665
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5666
			btrfs_node_key_to_cpu(c, key, slot);
5667
		}
5668 5669 5670 5671 5672
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5673
/*
5674
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5675 5676
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5677
 */
C
Chris Mason 已提交
5678
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5679 5680 5681 5682 5683 5684
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5685 5686
{
	int slot;
5687
	int level;
5688
	struct extent_buffer *c;
5689
	struct extent_buffer *next;
5690 5691 5692
	struct btrfs_key key;
	u32 nritems;
	int ret;
5693
	int old_spinning = path->leave_spinning;
5694
	int next_rw_lock = 0;
5695 5696

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5697
	if (nritems == 0)
5698 5699
		return 1;

5700 5701 5702 5703
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5704
	next_rw_lock = 0;
5705
	btrfs_release_path(path);
5706

5707
	path->keep_locks = 1;
5708
	path->leave_spinning = 1;
5709

J
Jan Schmidt 已提交
5710 5711 5712 5713
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 5715 5716 5717 5718
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5719
	nritems = btrfs_header_nritems(path->nodes[0]);
5720 5721 5722 5723 5724 5725
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5726
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5727 5728
		if (ret == 0)
			path->slots[0]++;
5729
		ret = 0;
5730 5731
		goto done;
	}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5750

C
Chris Mason 已提交
5751
	while (level < BTRFS_MAX_LEVEL) {
5752 5753 5754 5755
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5756

5757 5758
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5759
		if (slot >= btrfs_header_nritems(c)) {
5760
			level++;
5761 5762 5763 5764
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5765 5766
			continue;
		}
5767

5768
		if (next) {
5769
			btrfs_tree_unlock_rw(next, next_rw_lock);
5770
			free_extent_buffer(next);
5771
		}
5772

5773
		next = c;
5774
		next_rw_lock = path->locks[level];
5775
		ret = read_block_for_search(root, path, &next, level,
5776
					    slot, &key);
5777 5778
		if (ret == -EAGAIN)
			goto again;
5779

5780
		if (ret < 0) {
5781
			btrfs_release_path(path);
5782 5783 5784
			goto done;
		}

5785
		if (!path->skip_locking) {
5786
			ret = btrfs_try_tree_read_lock(next);
5787 5788 5789 5790 5791 5792 5793 5794
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5795
				free_extent_buffer(next);
5796 5797 5798 5799
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5800 5801
			if (!ret) {
				btrfs_set_path_blocking(path);
5802
				btrfs_tree_read_lock(next);
5803
				btrfs_clear_path_blocking(path, next,
5804
							  BTRFS_READ_LOCK);
5805
			}
5806
			next_rw_lock = BTRFS_READ_LOCK;
5807
		}
5808 5809 5810
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5811
	while (1) {
5812 5813
		level--;
		c = path->nodes[level];
5814
		if (path->locks[level])
5815
			btrfs_tree_unlock_rw(c, path->locks[level]);
5816

5817
		free_extent_buffer(c);
5818 5819
		path->nodes[level] = next;
		path->slots[level] = 0;
5820
		if (!path->skip_locking)
5821
			path->locks[level] = next_rw_lock;
5822 5823
		if (!level)
			break;
5824

5825
		ret = read_block_for_search(root, path, &next, level,
5826
					    0, &key);
5827 5828 5829
		if (ret == -EAGAIN)
			goto again;

5830
		if (ret < 0) {
5831
			btrfs_release_path(path);
5832 5833 5834
			goto done;
		}

5835
		if (!path->skip_locking) {
5836
			ret = btrfs_try_tree_read_lock(next);
5837 5838
			if (!ret) {
				btrfs_set_path_blocking(path);
5839
				btrfs_tree_read_lock(next);
5840
				btrfs_clear_path_blocking(path, next,
5841 5842
							  BTRFS_READ_LOCK);
			}
5843
			next_rw_lock = BTRFS_READ_LOCK;
5844
		}
5845
	}
5846
	ret = 0;
5847
done:
5848
	unlock_up(path, 0, 1, 0, NULL);
5849 5850 5851 5852 5853
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5854
}
5855

5856 5857 5858 5859 5860 5861
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5862 5863 5864 5865 5866 5867
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5868
	u32 nritems;
5869 5870
	int ret;

C
Chris Mason 已提交
5871
	while (1) {
5872
		if (path->slots[0] == 0) {
5873
			btrfs_set_path_blocking(path);
5874 5875 5876 5877 5878 5879 5880
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5881 5882 5883 5884 5885 5886
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5887
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5888 5889
		if (found_key.objectid < min_objectid)
			break;
5890 5891
		if (found_key.type == type)
			return 0;
5892 5893 5894
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5895 5896 5897
	}
	return 1;
}
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}