ctree.c 152.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15

16 17
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
18 19 20
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
21
static int push_node_left(struct btrfs_trans_handle *trans,
22 23
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
24
			  struct extent_buffer *src, int empty);
25
static int balance_node_right(struct btrfs_trans_handle *trans,
26
			      struct btrfs_fs_info *fs_info,
27 28
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46 47 48 49 50 51
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 53 54 55 56
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
57 58 59 60 61
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
62
 */
63
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64
					struct extent_buffer *held, int held_rw)
65 66
{
	int i;
67

68 69 70 71 72 73 74
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
75 76 77
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 79 80 81 82 83 84
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
85
	}
86 87

	if (held)
88
		btrfs_clear_lock_blocking_rw(held, held_rw);
89 90
}

C
Chris Mason 已提交
91
/* this also releases the path */
C
Chris Mason 已提交
92
void btrfs_free_path(struct btrfs_path *p)
93
{
94 95
	if (!p)
		return;
96
	btrfs_release_path(p);
C
Chris Mason 已提交
97
	kmem_cache_free(btrfs_path_cachep, p);
98 99
}

C
Chris Mason 已提交
100 101 102 103 104 105
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
106
noinline void btrfs_release_path(struct btrfs_path *p)
107 108
{
	int i;
109

C
Chris Mason 已提交
110
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111
		p->slots[i] = 0;
112
		if (!p->nodes[i])
113 114
			continue;
		if (p->locks[i]) {
115
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 117
			p->locks[i] = 0;
		}
118
		free_extent_buffer(p->nodes[i]);
119
		p->nodes[i] = NULL;
120 121 122
	}
}

C
Chris Mason 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
133 134 135
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
136

137 138 139 140 141 142
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
143
		 * it was COWed but we may not get the new root node yet so do
144 145 146 147 148 149 150 151 152 153
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
154 155 156
	return eb;
}

C
Chris Mason 已提交
157 158 159 160
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
161 162 163 164
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
165
	while (1) {
166 167
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
168
		if (eb == root->node)
169 170 171 172 173 174 175
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

176 177 178 179
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
180
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
195 196 197 198
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
199 200
static void add_root_to_dirty_list(struct btrfs_root *root)
{
201 202
	struct btrfs_fs_info *fs_info = root->fs_info;

203 204 205 206
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

207
	spin_lock(&fs_info->trans_lock);
208 209 210 211
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
212
				       &fs_info->dirty_cowonly_roots);
213 214
		else
			list_move(&root->dirty_list,
215
				  &fs_info->dirty_cowonly_roots);
216
	}
217
	spin_unlock(&fs_info->trans_lock);
218 219
}

C
Chris Mason 已提交
220 221 222 223 224
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
225 226 227 228 229
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
230
	struct btrfs_fs_info *fs_info = root->fs_info;
231 232 233
	struct extent_buffer *cow;
	int ret = 0;
	int level;
234
	struct btrfs_disk_key disk_key;
235

236
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237
		trans->transid != fs_info->running_transaction->transid);
238 239
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
240 241

	level = btrfs_header_level(buf);
242 243 244 245
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
246

247 248
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
249
	if (IS_ERR(cow))
250 251
		return PTR_ERR(cow);

252
	copy_extent_buffer_full(cow, buf);
253 254
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
255 256 257 258 259 260 261
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
262

263
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
264

265
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267
		ret = btrfs_inc_ref(trans, root, cow, 1);
268
	else
269
		ret = btrfs_inc_ref(trans, root, cow, 0);
270

271 272 273 274 275 276 277 278
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
296
	u64 logical;
297
	u64 seq;
298 299 300 301 302 303 304 305 306 307 308 309 310
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 312 313 314
	struct {
		int dst_slot;
		int nr_items;
	} move;
315 316 317 318 319

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

320
/*
J
Josef Bacik 已提交
321
 * Pull a new tree mod seq number for our operation.
322
 */
J
Josef Bacik 已提交
323
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 325 326 327
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

328 329 330 331 332 333 334 335 336 337
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
338
{
339
	write_lock(&fs_info->tree_mod_log_lock);
340
	spin_lock(&fs_info->tree_mod_seq_lock);
341
	if (!elem->seq) {
J
Josef Bacik 已提交
342
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 344
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
345
	spin_unlock(&fs_info->tree_mod_seq_lock);
346
	write_unlock(&fs_info->tree_mod_log_lock);
347

J
Josef Bacik 已提交
348
	return elem->seq;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
367
	elem->seq = 0;
368 369

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370
		if (cur_elem->seq < min_seq) {
371 372 373 374 375
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
376 377
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
378 379 380 381
			}
			min_seq = cur_elem->seq;
		}
	}
382 383
	spin_unlock(&fs_info->tree_mod_seq_lock);

384 385 386 387
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
388
	write_lock(&fs_info->tree_mod_log_lock);
389 390 391
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
392
		tm = rb_entry(node, struct tree_mod_elem, node);
393
		if (tm->seq > min_seq)
394 395 396 397
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
398
	write_unlock(&fs_info->tree_mod_log_lock);
399 400 401 402
}

/*
 * key order of the log:
403
 *       node/leaf start address -> sequence
404
 *
405 406 407
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
408
 *
409
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 411 412 413 414 415 416 417
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
418

J
Josef Bacik 已提交
419
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 421 422 423

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
424
		cur = rb_entry(*new, struct tree_mod_elem, node);
425
		parent = *new;
426
		if (cur->logical < tm->logical)
427
			new = &((*new)->rb_left);
428
		else if (cur->logical > tm->logical)
429
			new = &((*new)->rb_right);
430
		else if (cur->seq < tm->seq)
431
			new = &((*new)->rb_left);
432
		else if (cur->seq > tm->seq)
433
			new = &((*new)->rb_right);
434 435
		else
			return -EEXIST;
436 437 438 439
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
440
	return 0;
441 442
}

443 444 445 446
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
447
 * write unlock fs_info::tree_mod_log_lock.
448
 */
449 450 451 452 453
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
454 455
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
456

457
	write_lock(&fs_info->tree_mod_log_lock);
458
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459
		write_unlock(&fs_info->tree_mod_log_lock);
460 461 462
		return 1;
	}

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
482
{
483
	struct tree_mod_elem *tm;
484

485 486
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
487
		return NULL;
488

489
	tm->logical = eb->start;
490 491 492 493 494 495 496
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
497
	RB_CLEAR_NODE(&tm->node);
498

499
	return tm;
500 501
}

502 503
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
504
{
505 506 507
	struct tree_mod_elem *tm;
	int ret;

508
	if (!tree_mod_need_log(eb->fs_info, eb))
509 510 511 512 513 514
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

515
	if (tree_mod_dont_log(eb->fs_info, eb)) {
516
		kfree(tm);
517
		return 0;
518 519
	}

520
	ret = __tree_mod_log_insert(eb->fs_info, tm);
521
	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 523
	if (ret)
		kfree(tm);
524

525
	return ret;
526 527
}

528 529
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
530
{
531 532 533
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
534
	int i;
535
	int locked = 0;
536

537
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
538
		return 0;
539

540
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 542 543
	if (!tm_list)
		return -ENOMEM;

544
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 546 547 548 549
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

550
	tm->logical = eb->start;
551 552 553 554 555 556 557
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 560 561 562 563 564
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

565
	if (tree_mod_dont_log(eb->fs_info, eb))
566 567 568
		goto free_tms;
	locked = 1;

569 570 571 572 573
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
574
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 577
		if (ret)
			goto free_tms;
578 579
	}

580
	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 582
	if (ret)
		goto free_tms;
583
	write_unlock(&eb->fs_info->tree_mod_log_lock);
584
	kfree(tm_list);
J
Jan Schmidt 已提交
585

586 587 588 589
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 592 593
		kfree(tm_list[i]);
	}
	if (locked)
594
		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 596
	kfree(tm_list);
	kfree(tm);
597

598
	return ret;
599 600
}

601 602 603 604
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
605
{
606
	int i, j;
607 608 609
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
610 611 612 613 614 615 616
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
617
	}
618 619

	return 0;
620 621
}

622 623
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
624
{
625
	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 627 628 629 630
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
631

632
	if (!tree_mod_need_log(fs_info, NULL))
633 634
		return 0;

635 636
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
637
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638
				  GFP_NOFS);
639 640 641 642 643 644
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 647 648 649 650 651
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
652

653
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 655 656 657
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
658

659
	tm->logical = new_root->start;
660 661 662 663 664
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665 666 667 668 669 670 671 672
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

673
	write_unlock(&fs_info->tree_mod_log_lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
689 690 691 692 693 694 695 696 697 698 699
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

700
	read_lock(&fs_info->tree_mod_log_lock);
701 702 703
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
704
		cur = rb_entry(node, struct tree_mod_elem, node);
705
		if (cur->logical < start) {
706
			node = node->rb_left;
707
		} else if (cur->logical > start) {
708
			node = node->rb_right;
709
		} else if (cur->seq < min_seq) {
710 711 712 713
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
714
				BUG_ON(found->seq > cur->seq);
715 716
			found = cur;
			node = node->rb_left;
717
		} else if (cur->seq > min_seq) {
718 719
			/* we want the node with the smallest seq */
			if (found)
720
				BUG_ON(found->seq < cur->seq);
721 722 723 724 725 726 727
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
728
	read_unlock(&fs_info->tree_mod_log_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

756
static noinline int
757 758
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
759
		     unsigned long src_offset, int nr_items)
760
{
761 762 763
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764
	int i;
765
	int locked = 0;
766

767 768
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
769

770
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 772
		return 0;

773
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 775 776
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
777

778 779
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
780
	for (i = 0; i < nr_items; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
807
	}
808

809
	write_unlock(&fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
821
		write_unlock(&fs_info->tree_mod_log_lock);
822 823 824
	kfree(tm_list);

	return ret;
825 826
}

827
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828
{
829 830 831 832 833 834 835 836
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

837
	if (!tree_mod_need_log(eb->fs_info, NULL))
838 839 840
		return 0;

	nritems = btrfs_header_nritems(eb);
841
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

854
	if (tree_mod_dont_log(eb->fs_info, eb))
855 856
		goto free_tms;

857
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858
	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
871 872
}

873 874 875 876 877 878 879
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
880
	 * Tree blocks not in reference counted trees and tree roots
881 882 883 884
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
885
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 887 888 889 890 891
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
893 894 895 896 897 898 899 900 901
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
902 903
				       struct extent_buffer *cow,
				       int *last_ref)
904
{
905
	struct btrfs_fs_info *fs_info = root->fs_info;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
930
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
931 932
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
933 934
		if (ret)
			return ret;
935 936
		if (refs == 0) {
			ret = -EROFS;
937
			btrfs_handle_fs_error(fs_info, ret, NULL);
938 939
			return ret;
		}
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
957
			ret = btrfs_inc_ref(trans, root, buf, 1);
958 959
			if (ret)
				return ret;
960 961 962

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
963
				ret = btrfs_dec_ref(trans, root, buf, 0);
964 965
				if (ret)
					return ret;
966
				ret = btrfs_inc_ref(trans, root, cow, 1);
967 968
				if (ret)
					return ret;
969 970 971 972 973 974
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
975
				ret = btrfs_inc_ref(trans, root, cow, 1);
976
			else
977
				ret = btrfs_inc_ref(trans, root, cow, 0);
978 979
			if (ret)
				return ret;
980 981
		}
		if (new_flags != 0) {
982 983
			int level = btrfs_header_level(buf);

984
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
985 986
							  buf->start,
							  buf->len,
987
							  new_flags, level, 0);
988 989
			if (ret)
				return ret;
990 991 992 993 994
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
995
				ret = btrfs_inc_ref(trans, root, cow, 1);
996
			else
997
				ret = btrfs_inc_ref(trans, root, cow, 0);
998 999
			if (ret)
				return ret;
1000
			ret = btrfs_dec_ref(trans, root, buf, 1);
1001 1002
			if (ret)
				return ret;
1003
		}
1004
		clean_tree_block(fs_info, buf);
1005
		*last_ref = 1;
1006 1007 1008 1009
	}
	return 0;
}

C
Chris Mason 已提交
1010
/*
C
Chris Mason 已提交
1011 1012 1013 1014
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1015 1016 1017
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1018 1019 1020
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1021
 */
C
Chris Mason 已提交
1022
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023 1024 1025 1026
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1027
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1028
{
1029
	struct btrfs_fs_info *fs_info = root->fs_info;
1030
	struct btrfs_disk_key disk_key;
1031
	struct extent_buffer *cow;
1032
	int level, ret;
1033
	int last_ref = 0;
1034
	int unlock_orig = 0;
1035
	u64 parent_start = 0;
1036

1037 1038 1039
	if (*cow_ret == buf)
		unlock_orig = 1;

1040
	btrfs_assert_tree_locked(buf);
1041

1042
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043
		trans->transid != fs_info->running_transaction->transid);
1044 1045
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1046

1047
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1048

1049 1050 1051 1052 1053
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1054 1055
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1056

1057 1058 1059
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1060 1061
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1062

1063 1064
	/* cow is set to blocking by btrfs_init_new_buffer */

1065
	copy_extent_buffer_full(cow, buf);
1066
	btrfs_set_header_bytenr(cow, cow->start);
1067
	btrfs_set_header_generation(cow, trans->transid);
1068 1069 1070 1071 1072 1073 1074
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1075

1076
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1077

1078
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079
	if (ret) {
1080
		btrfs_abort_transaction(trans, ret);
1081 1082
		return ret;
	}
Z
Zheng Yan 已提交
1083

1084
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086
		if (ret) {
1087
			btrfs_abort_transaction(trans, ret);
1088
			return ret;
1089
		}
1090
	}
1091

C
Chris Mason 已提交
1092
	if (buf == root->node) {
1093
		WARN_ON(parent && parent != buf);
1094 1095 1096
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1097

1098
		extent_buffer_get(cow);
1099 1100
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1101
		rcu_assign_pointer(root->node, cow);
1102

1103
		btrfs_free_tree_block(trans, root, buf, parent_start,
1104
				      last_ref);
1105
		free_extent_buffer(buf);
1106
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1107
	} else {
1108
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1109
		tree_mod_log_insert_key(parent, parent_slot,
1110
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111
		btrfs_set_node_blockptr(parent, parent_slot,
1112
					cow->start);
1113 1114
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1115
		btrfs_mark_buffer_dirty(parent);
1116
		if (last_ref) {
1117
			ret = tree_mod_log_free_eb(buf);
1118
			if (ret) {
1119
				btrfs_abort_transaction(trans, ret);
1120 1121 1122
				return ret;
			}
		}
1123
		btrfs_free_tree_block(trans, root, buf, parent_start,
1124
				      last_ref);
C
Chris Mason 已提交
1125
	}
1126 1127
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1128
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1129
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1130
	*cow_ret = cow;
C
Chris Mason 已提交
1131 1132 1133
	return 0;
}

J
Jan Schmidt 已提交
1134 1135 1136 1137
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1138 1139
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1140 1141 1142
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1143
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1144 1145 1146
	int looped = 0;

	if (!time_seq)
1147
		return NULL;
J
Jan Schmidt 已提交
1148 1149

	/*
1150 1151 1152 1153
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1154 1155
	 */
	while (1) {
1156
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1157 1158
						time_seq);
		if (!looped && !tm)
1159
			return NULL;
J
Jan Schmidt 已提交
1160
		/*
1161 1162 1163
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1164
		 */
1165 1166
		if (!tm)
			break;
J
Jan Schmidt 已提交
1167

1168 1169 1170 1171 1172
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1173 1174 1175 1176 1177 1178 1179 1180
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1181 1182 1183 1184
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1185 1186 1187 1188 1189
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1190
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1191 1192 1193
 * time_seq).
 */
static void
1194 1195
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1205
	read_lock(&fs_info->tree_mod_log_lock);
1206
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1207 1208 1209 1210 1211 1212 1213 1214
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1215
			/* Fallthrough */
1216
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1218 1219 1220 1221
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1222
			n++;
J
Jan Schmidt 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1232
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1233 1234 1235
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1236 1237 1238
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1256
		tm = rb_entry(next, struct tree_mod_elem, node);
1257
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1258 1259
			break;
	}
1260
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1261 1262 1263
	btrfs_set_header_nritems(eb, n);
}

1264
/*
1265
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 1267 1268 1269 1270
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1271
static struct extent_buffer *
1272 1273
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1288 1289 1290
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1291 1292
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1293
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294
		if (!eb_rewin) {
1295
			btrfs_tree_read_unlock_blocking(eb);
1296 1297 1298
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1299 1300 1301 1302
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1304 1305
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1306
		if (!eb_rewin) {
1307
			btrfs_tree_read_unlock_blocking(eb);
1308 1309 1310
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1311 1312
	}

1313 1314
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1315 1316
	free_extent_buffer(eb);

1317 1318
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1319
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1322 1323 1324 1325

	return eb_rewin;
}

1326 1327 1328 1329 1330 1331 1332
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1333 1334 1335
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1336
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1337
	struct tree_mod_elem *tm;
1338 1339
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1340
	struct extent_buffer *old;
1341
	struct tree_mod_root *old_root = NULL;
1342
	u64 old_generation = 0;
1343
	u64 logical;
1344
	int level;
J
Jan Schmidt 已提交
1345

1346
	eb_root = btrfs_read_lock_root_node(root);
1347
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1348
	if (!tm)
1349
		return eb_root;
J
Jan Schmidt 已提交
1350

1351 1352 1353 1354
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1355
		level = old_root->level;
1356
	} else {
1357
		logical = eb_root->start;
1358
		level = btrfs_header_level(eb_root);
1359
	}
J
Jan Schmidt 已提交
1360

1361
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 1364
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1365
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 1367 1368
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1369 1370 1371
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1372
		} else {
1373 1374
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1375 1376
		}
	} else if (old_root) {
1377 1378
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1379
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380
	} else {
1381
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382
		eb = btrfs_clone_extent_buffer(eb_root);
1383
		btrfs_tree_read_unlock_blocking(eb_root);
1384
		free_extent_buffer(eb_root);
1385 1386
	}

1387 1388
	if (!eb)
		return NULL;
1389
	extent_buffer_get(eb);
1390
	btrfs_tree_read_lock(eb);
1391
	if (old_root) {
J
Jan Schmidt 已提交
1392 1393
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395 1396
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1397
	}
1398
	if (tm)
1399
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400 1401
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1402
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1403 1404 1405 1406

	return eb;
}

J
Jan Schmidt 已提交
1407 1408 1409 1410
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1411
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1412

1413
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1414 1415 1416
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1417
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1418
	}
1419
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1420 1421 1422 1423

	return level;
}

1424 1425 1426 1427
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1428
	if (btrfs_is_testing(root->fs_info))
1429
		return 0;
1430

1431 1432
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1433 1434 1435 1436 1437 1438 1439 1440

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1441
	 *    when we create snapshot during committing the transaction,
1442 1443 1444
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1445 1446 1447
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450 1451 1452 1453
		return 0;
	return 1;
}

C
Chris Mason 已提交
1454 1455
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1456
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1457 1458
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1459
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460 1461
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1462
		    struct extent_buffer **cow_ret)
1463
{
1464
	struct btrfs_fs_info *fs_info = root->fs_info;
1465
	u64 search_start;
1466
	int ret;
C
Chris Mason 已提交
1467

1468
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1469
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470
		       trans->transid,
1471
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1472

1473
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1474
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1476

1477
	if (!should_cow_block(trans, root, buf)) {
1478
		trans->dirty = true;
1479 1480 1481
		*cow_ret = buf;
		return 0;
	}
1482

1483
	search_start = buf->start & ~((u64)SZ_1G - 1);
1484 1485 1486 1487 1488

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1489
	ret = __btrfs_cow_block(trans, root, buf, parent,
1490
				 parent_slot, cow_ret, search_start, 0);
1491 1492 1493

	trace_btrfs_cow_block(root, buf, *cow_ret);

1494
	return ret;
1495 1496
}

C
Chris Mason 已提交
1497 1498 1499 1500
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1501
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502
{
1503
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504
		return 1;
1505
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 1507 1508 1509
		return 1;
	return 0;
}

1510 1511 1512
/*
 * compare two keys in a memcmp fashion
 */
1513 1514
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1515 1516 1517 1518 1519
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1520
	return btrfs_comp_cpu_keys(&k1, k2);
1521 1522
}

1523 1524 1525
/*
 * same as comp_keys only with two btrfs_key's
 */
1526
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1542

C
Chris Mason 已提交
1543 1544 1545 1546 1547
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1548
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549
		       struct btrfs_root *root, struct extent_buffer *parent,
1550
		       int start_slot, u64 *last_ret,
1551
		       struct btrfs_key *progress)
1552
{
1553
	struct btrfs_fs_info *fs_info = root->fs_info;
1554
	struct extent_buffer *cur;
1555
	u64 blocknr;
1556
	u64 gen;
1557 1558
	u64 search_start = *last_ret;
	u64 last_block = 0;
1559 1560 1561 1562 1563
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1564
	int parent_level;
1565 1566
	int uptodate;
	u32 blocksize;
1567 1568
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1569

1570 1571
	parent_level = btrfs_header_level(parent);

1572 1573
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1574

1575
	parent_nritems = btrfs_header_nritems(parent);
1576
	blocksize = fs_info->nodesize;
1577
	end_slot = parent_nritems - 1;
1578

1579
	if (parent_nritems <= 1)
1580 1581
		return 0;

1582 1583
	btrfs_set_lock_blocking(parent);

1584
	for (i = start_slot; i <= end_slot; i++) {
1585
		struct btrfs_key first_key;
1586
		int close = 1;
1587

1588 1589 1590 1591 1592
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1593
		blocknr = btrfs_node_blockptr(parent, i);
1594
		gen = btrfs_node_ptr_generation(parent, i);
1595
		btrfs_node_key_to_cpu(parent, &first_key, i);
1596 1597
		if (last_block == 0)
			last_block = blocknr;
1598

1599
		if (i > 0) {
1600 1601
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1602
		}
1603
		if (!close && i < end_slot) {
1604 1605
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1606
		}
1607 1608
		if (close) {
			last_block = blocknr;
1609
			continue;
1610
		}
1611

1612
		cur = find_extent_buffer(fs_info, blocknr);
1613
		if (cur)
1614
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615 1616
		else
			uptodate = 0;
1617
		if (!cur || !uptodate) {
1618
			if (!cur) {
1619 1620 1621
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1622 1623 1624
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1625
					free_extent_buffer(cur);
1626
					return -EIO;
1627
				}
1628
			} else if (!uptodate) {
1629 1630
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1631 1632 1633 1634
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1635
			}
1636
		}
1637
		if (search_start == 0)
1638
			search_start = last_block;
1639

1640
		btrfs_tree_lock(cur);
1641
		btrfs_set_lock_blocking(cur);
1642
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1643
					&cur, search_start,
1644
					min(16 * blocksize,
1645
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1646
		if (err) {
1647
			btrfs_tree_unlock(cur);
1648
			free_extent_buffer(cur);
1649
			break;
Y
Yan 已提交
1650
		}
1651 1652
		search_start = cur->start;
		last_block = cur->start;
1653
		*last_ret = search_start;
1654 1655
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1656 1657 1658 1659
	}
	return err;
}

C
Chris Mason 已提交
1660
/*
1661 1662 1663
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1664 1665 1666 1667 1668 1669
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1670
static noinline int generic_bin_search(struct extent_buffer *eb,
1671 1672
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1673
				       int max, int *slot)
1674 1675 1676 1677 1678
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1679
	struct btrfs_disk_key *tmp = NULL;
1680 1681 1682 1683 1684
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1685
	int err;
1686

1687 1688 1689 1690 1691 1692 1693 1694
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1695
	while (low < high) {
1696
		mid = (low + high) / 2;
1697 1698
		offset = p + mid * item_size;

1699
		if (!kaddr || offset < map_start ||
1700 1701
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1702 1703

			err = map_private_extent_buffer(eb, offset,
1704
						sizeof(struct btrfs_disk_key),
1705
						&kaddr, &map_start, &map_len);
1706 1707 1708 1709

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1710
			} else if (err == 1) {
1711 1712 1713
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1714 1715
			} else {
				return err;
1716
			}
1717 1718 1719 1720 1721

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1737 1738 1739 1740
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1741 1742
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1743
{
1744
	if (level == 0)
1745 1746
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1747
					  sizeof(struct btrfs_item),
1748
					  key, btrfs_header_nritems(eb),
1749
					  slot);
1750
	else
1751 1752
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1753
					  sizeof(struct btrfs_key_ptr),
1754
					  key, btrfs_header_nritems(eb),
1755
					  slot);
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1774 1775 1776
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1777 1778 1779
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1780
{
1781
	int level = btrfs_header_level(parent);
1782
	struct extent_buffer *eb;
1783
	struct btrfs_key first_key;
1784

1785 1786
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1787 1788 1789

	BUG_ON(level == 0);

1790
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1791
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792 1793
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1794 1795 1796
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1797 1798 1799
	}

	return eb;
1800 1801
}

C
Chris Mason 已提交
1802 1803 1804 1805 1806
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1807
static noinline int balance_level(struct btrfs_trans_handle *trans,
1808 1809
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1810
{
1811
	struct btrfs_fs_info *fs_info = root->fs_info;
1812 1813 1814 1815
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1816 1817 1818 1819
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1820
	u64 orig_ptr;
1821 1822 1823 1824

	if (level == 0)
		return 0;

1825
	mid = path->nodes[level];
1826

1827 1828
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 1830
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1831
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832

L
Li Zefan 已提交
1833
	if (level < BTRFS_MAX_LEVEL - 1) {
1834
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1835 1836
		pslot = path->slots[level + 1];
	}
1837

C
Chris Mason 已提交
1838 1839 1840 1841
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1842 1843
	if (!parent) {
		struct extent_buffer *child;
1844

1845
		if (btrfs_header_nritems(mid) != 1)
1846 1847 1848
			return 0;

		/* promote the child to a root */
1849
		child = read_node_slot(fs_info, mid, 0);
1850 1851
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1852
			btrfs_handle_fs_error(fs_info, ret, NULL);
1853 1854 1855
			goto enospc;
		}

1856
		btrfs_tree_lock(child);
1857
		btrfs_set_lock_blocking(child);
1858
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859 1860 1861 1862 1863
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1864

1865 1866
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1867
		rcu_assign_pointer(root->node, child);
1868

1869
		add_root_to_dirty_list(root);
1870
		btrfs_tree_unlock(child);
1871

1872
		path->locks[level] = 0;
1873
		path->nodes[level] = NULL;
1874
		clean_tree_block(fs_info, mid);
1875
		btrfs_tree_unlock(mid);
1876
		/* once for the path */
1877
		free_extent_buffer(mid);
1878 1879

		root_sub_used(root, mid->len);
1880
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881
		/* once for the root ptr */
1882
		free_extent_buffer_stale(mid);
1883
		return 0;
1884
	}
1885
	if (btrfs_header_nritems(mid) >
1886
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887 1888
		return 0;

1889
	left = read_node_slot(fs_info, parent, pslot - 1);
1890 1891 1892
	if (IS_ERR(left))
		left = NULL;

1893
	if (left) {
1894
		btrfs_tree_lock(left);
1895
		btrfs_set_lock_blocking(left);
1896
		wret = btrfs_cow_block(trans, root, left,
1897
				       parent, pslot - 1, &left);
1898 1899 1900 1901
		if (wret) {
			ret = wret;
			goto enospc;
		}
1902
	}
1903

1904
	right = read_node_slot(fs_info, parent, pslot + 1);
1905 1906 1907
	if (IS_ERR(right))
		right = NULL;

1908
	if (right) {
1909
		btrfs_tree_lock(right);
1910
		btrfs_set_lock_blocking(right);
1911
		wret = btrfs_cow_block(trans, root, right,
1912
				       parent, pslot + 1, &right);
1913 1914 1915 1916 1917 1918 1919
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1920 1921
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1922
		wret = push_node_left(trans, fs_info, left, mid, 1);
1923 1924
		if (wret < 0)
			ret = wret;
1925
	}
1926 1927 1928 1929

	/*
	 * then try to empty the right most buffer into the middle
	 */
1930
	if (right) {
1931
		wret = push_node_left(trans, fs_info, mid, right, 1);
1932
		if (wret < 0 && wret != -ENOSPC)
1933
			ret = wret;
1934
		if (btrfs_header_nritems(right) == 0) {
1935
			clean_tree_block(fs_info, right);
1936
			btrfs_tree_unlock(right);
1937
			del_ptr(root, path, level + 1, pslot + 1);
1938
			root_sub_used(root, right->len);
1939
			btrfs_free_tree_block(trans, root, right, 0, 1);
1940
			free_extent_buffer_stale(right);
1941
			right = NULL;
1942
		} else {
1943 1944
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1945 1946 1947
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1948 1949
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1950 1951
		}
	}
1952
	if (btrfs_header_nritems(mid) == 1) {
1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1962 1963
		if (!left) {
			ret = -EROFS;
1964
			btrfs_handle_fs_error(fs_info, ret, NULL);
1965 1966
			goto enospc;
		}
1967
		wret = balance_node_right(trans, fs_info, mid, left);
1968
		if (wret < 0) {
1969
			ret = wret;
1970 1971
			goto enospc;
		}
1972
		if (wret == 1) {
1973
			wret = push_node_left(trans, fs_info, left, mid, 1);
1974 1975 1976
			if (wret < 0)
				ret = wret;
		}
1977 1978
		BUG_ON(wret == 1);
	}
1979
	if (btrfs_header_nritems(mid) == 0) {
1980
		clean_tree_block(fs_info, mid);
1981
		btrfs_tree_unlock(mid);
1982
		del_ptr(root, path, level + 1, pslot);
1983
		root_sub_used(root, mid->len);
1984
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985
		free_extent_buffer_stale(mid);
1986
		mid = NULL;
1987 1988
	} else {
		/* update the parent key to reflect our changes */
1989 1990
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1991 1992 1993
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1994 1995
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1996
	}
1997

1998
	/* update the path */
1999 2000 2001
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2002
			/* left was locked after cow */
2003
			path->nodes[level] = left;
2004 2005
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2006 2007
			if (mid) {
				btrfs_tree_unlock(mid);
2008
				free_extent_buffer(mid);
2009
			}
2010
		} else {
2011
			orig_slot -= btrfs_header_nritems(left);
2012 2013 2014
			path->slots[level] = orig_slot;
		}
	}
2015
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2016
	if (orig_ptr !=
2017
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018
		BUG();
2019
enospc:
2020 2021
	if (right) {
		btrfs_tree_unlock(right);
2022
		free_extent_buffer(right);
2023 2024 2025 2026
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2027
		free_extent_buffer(left);
2028
	}
2029 2030 2031
	return ret;
}

C
Chris Mason 已提交
2032 2033 2034 2035
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2036
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 2038
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2039
{
2040
	struct btrfs_fs_info *fs_info = root->fs_info;
2041 2042 2043 2044
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2045 2046 2047 2048 2049 2050 2051 2052
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2053
	mid = path->nodes[level];
2054
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055

L
Li Zefan 已提交
2056
	if (level < BTRFS_MAX_LEVEL - 1) {
2057
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2058 2059
		pslot = path->slots[level + 1];
	}
2060

2061
	if (!parent)
2062 2063
		return 1;

2064
	left = read_node_slot(fs_info, parent, pslot - 1);
2065 2066
	if (IS_ERR(left))
		left = NULL;
2067 2068

	/* first, try to make some room in the middle buffer */
2069
	if (left) {
2070
		u32 left_nr;
2071 2072

		btrfs_tree_lock(left);
2073 2074
		btrfs_set_lock_blocking(left);

2075
		left_nr = btrfs_header_nritems(left);
2076
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2077 2078
			wret = 1;
		} else {
2079
			ret = btrfs_cow_block(trans, root, left, parent,
2080
					      pslot - 1, &left);
2081 2082 2083
			if (ret)
				wret = 1;
			else {
2084
				wret = push_node_left(trans, fs_info,
2085
						      left, mid, 0);
2086
			}
C
Chris Mason 已提交
2087
		}
2088 2089 2090
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2091
			struct btrfs_disk_key disk_key;
2092
			orig_slot += left_nr;
2093
			btrfs_node_key(mid, &disk_key, 0);
2094 2095 2096
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2097 2098 2099 2100
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2101 2102
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2103
				btrfs_tree_unlock(mid);
2104
				free_extent_buffer(mid);
2105 2106
			} else {
				orig_slot -=
2107
					btrfs_header_nritems(left);
2108
				path->slots[level] = orig_slot;
2109
				btrfs_tree_unlock(left);
2110
				free_extent_buffer(left);
2111 2112 2113
			}
			return 0;
		}
2114
		btrfs_tree_unlock(left);
2115
		free_extent_buffer(left);
2116
	}
2117
	right = read_node_slot(fs_info, parent, pslot + 1);
2118 2119
	if (IS_ERR(right))
		right = NULL;
2120 2121 2122 2123

	/*
	 * then try to empty the right most buffer into the middle
	 */
2124
	if (right) {
C
Chris Mason 已提交
2125
		u32 right_nr;
2126

2127
		btrfs_tree_lock(right);
2128 2129
		btrfs_set_lock_blocking(right);

2130
		right_nr = btrfs_header_nritems(right);
2131
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2132 2133
			wret = 1;
		} else {
2134 2135
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2136
					      &right);
2137 2138 2139
			if (ret)
				wret = 1;
			else {
2140
				wret = balance_node_right(trans, fs_info,
2141
							  right, mid);
2142
			}
C
Chris Mason 已提交
2143
		}
2144 2145 2146
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2147 2148 2149
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2150 2151 2152
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2153 2154 2155 2156 2157
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2158 2159
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2160
					btrfs_header_nritems(mid);
2161
				btrfs_tree_unlock(mid);
2162
				free_extent_buffer(mid);
2163
			} else {
2164
				btrfs_tree_unlock(right);
2165
				free_extent_buffer(right);
2166 2167 2168
			}
			return 0;
		}
2169
		btrfs_tree_unlock(right);
2170
		free_extent_buffer(right);
2171 2172 2173 2174
	}
	return 1;
}

2175
/*
C
Chris Mason 已提交
2176 2177
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2178
 */
2179
static void reada_for_search(struct btrfs_fs_info *fs_info,
2180 2181
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2182
{
2183
	struct extent_buffer *node;
2184
	struct btrfs_disk_key disk_key;
2185 2186
	u32 nritems;
	u64 search;
2187
	u64 target;
2188
	u64 nread = 0;
2189
	struct extent_buffer *eb;
2190 2191 2192
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2193

2194
	if (level != 1)
2195 2196 2197
		return;

	if (!path->nodes[level])
2198 2199
		return;

2200
	node = path->nodes[level];
2201

2202
	search = btrfs_node_blockptr(node, slot);
2203 2204
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2205 2206
	if (eb) {
		free_extent_buffer(eb);
2207 2208 2209
		return;
	}

2210
	target = search;
2211

2212
	nritems = btrfs_header_nritems(node);
2213
	nr = slot;
2214

C
Chris Mason 已提交
2215
	while (1) {
2216
		if (path->reada == READA_BACK) {
2217 2218 2219
			if (nr == 0)
				break;
			nr--;
2220
		} else if (path->reada == READA_FORWARD) {
2221 2222 2223
			nr++;
			if (nr >= nritems)
				break;
2224
		}
2225
		if (path->reada == READA_BACK && objectid) {
2226 2227 2228 2229
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2230
		search = btrfs_node_blockptr(node, nr);
2231 2232
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2233
			readahead_tree_block(fs_info, search);
2234 2235 2236
			nread += blocksize;
		}
		nscan++;
2237
		if ((nread > 65536 || nscan > 32))
2238
			break;
2239 2240
	}
}
2241

2242
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2243
				       struct btrfs_path *path, int level)
2244 2245 2246 2247 2248 2249 2250 2251 2252
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2253
	parent = path->nodes[level + 1];
2254
	if (!parent)
J
Josef Bacik 已提交
2255
		return;
2256 2257

	nritems = btrfs_header_nritems(parent);
2258
	slot = path->slots[level + 1];
2259 2260 2261 2262

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2263
		eb = find_extent_buffer(fs_info, block1);
2264 2265 2266 2267 2268 2269
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270 2271 2272
			block1 = 0;
		free_extent_buffer(eb);
	}
2273
	if (slot + 1 < nritems) {
2274 2275
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2276
		eb = find_extent_buffer(fs_info, block2);
2277
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278 2279 2280
			block2 = 0;
		free_extent_buffer(eb);
	}
2281

J
Josef Bacik 已提交
2282
	if (block1)
2283
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2284
	if (block2)
2285
		readahead_tree_block(fs_info, block2);
2286 2287 2288
}


C
Chris Mason 已提交
2289
/*
C
Chris Mason 已提交
2290 2291 2292 2293
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2294
 *
C
Chris Mason 已提交
2295 2296 2297
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2298
 *
C
Chris Mason 已提交
2299 2300
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2301
 */
2302
static noinline void unlock_up(struct btrfs_path *path, int level,
2303 2304
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2305 2306 2307
{
	int i;
	int skip_level = level;
2308
	int no_skips = 0;
2309 2310 2311 2312 2313 2314 2315
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2316
		if (!no_skips && path->slots[i] == 0) {
2317 2318 2319
			skip_level = i + 1;
			continue;
		}
2320
		if (!no_skips && path->keep_locks) {
2321 2322 2323
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2324
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325 2326 2327 2328
				skip_level = i + 1;
				continue;
			}
		}
2329 2330 2331
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2332 2333
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2334
			btrfs_tree_unlock_rw(t, path->locks[i]);
2335
			path->locks[i] = 0;
2336 2337 2338 2339 2340
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2341 2342 2343 2344
		}
	}
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2358
	if (path->keep_locks)
2359 2360 2361 2362
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2363
			continue;
2364
		if (!path->locks[i])
2365
			continue;
2366
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367 2368 2369 2370
		path->locks[i] = 0;
	}
}

2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2380 2381
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2382
		      const struct btrfs_key *key)
2383
{
2384
	struct btrfs_fs_info *fs_info = root->fs_info;
2385 2386 2387 2388
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2389
	struct btrfs_key first_key;
2390
	int ret;
2391
	int parent_level;
2392 2393 2394

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2395 2396
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2397

2398
	tmp = find_extent_buffer(fs_info, blocknr);
2399
	if (tmp) {
2400
		/* first we do an atomic uptodate check */
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2415
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416 2417 2418
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2419
		}
2420 2421 2422
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2423 2424 2425 2426 2427
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2428 2429 2430
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2431
	 */
2432 2433 2434
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2435
	free_extent_buffer(tmp);
2436
	if (p->reada != READA_NONE)
2437
		reada_for_search(fs_info, p, level, slot, key->objectid);
2438

2439
	btrfs_release_path(p);
2440 2441

	ret = -EAGAIN;
2442 2443
	tmp = read_tree_block(fs_info, blocknr, 0, parent_level - 1,
			      &first_key);
2444
	if (!IS_ERR(tmp)) {
2445 2446 2447 2448 2449 2450
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2451
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2452
			ret = -EIO;
2453
		free_extent_buffer(tmp);
2454 2455
	} else {
		ret = PTR_ERR(tmp);
2456 2457
	}
	return ret;
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2472 2473
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2474
{
2475
	struct btrfs_fs_info *fs_info = root->fs_info;
2476
	int ret;
2477

2478
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2479
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2480 2481
		int sret;

2482 2483 2484 2485 2486 2487
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2488
		btrfs_set_path_blocking(p);
2489
		reada_for_balance(fs_info, p, level);
2490
		sret = split_node(trans, root, p, level);
2491
		btrfs_clear_path_blocking(p, NULL, 0);
2492 2493 2494 2495 2496 2497 2498 2499

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2500
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2501 2502
		int sret;

2503 2504 2505 2506 2507 2508
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2509
		btrfs_set_path_blocking(p);
2510
		reada_for_balance(fs_info, p, level);
2511
		sret = balance_level(trans, root, p, level);
2512
		btrfs_clear_path_blocking(p, NULL, 0);
2513 2514 2515 2516 2517 2518 2519

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2520
			btrfs_release_path(p);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2533
static void key_search_validate(struct extent_buffer *b,
2534
				const struct btrfs_key *key,
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2553
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2554 2555 2556
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2557
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2558 2559 2560 2561 2562 2563 2564 2565 2566
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2567
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568 2569 2570 2571 2572 2573
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2574 2575

	ASSERT(path);
2576
	ASSERT(found_key);
2577 2578 2579 2580 2581 2582

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2583
	if (ret < 0)
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2602
/*
2603 2604
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2605
 *
2606 2607 2608 2609 2610 2611 2612 2613
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2614
 *
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2626
 */
2627 2628 2629
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2630
{
2631
	struct btrfs_fs_info *fs_info = root->fs_info;
2632
	struct extent_buffer *b;
2633 2634
	int slot;
	int ret;
2635
	int err;
2636
	int level;
2637
	int lowest_unlock = 1;
2638 2639 2640
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2641
	u8 lowest_level = 0;
2642
	int min_write_lock_level;
2643
	int prev_cmp;
2644

2645
	lowest_level = p->lowest_level;
2646
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2647
	WARN_ON(p->nodes[0] != NULL);
2648
	BUG_ON(!cow && ins_len);
2649

2650
	if (ins_len < 0) {
2651
		lowest_unlock = 2;
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2669
	if (cow && (p->keep_locks || p->lowest_level))
2670 2671
		write_lock_level = BTRFS_MAX_LEVEL;

2672 2673
	min_write_lock_level = write_lock_level;

2674
again:
2675
	prev_cmp = -1;
2676 2677 2678 2679 2680
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2681
	if (p->search_commit_root) {
2682 2683 2684 2685
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2686
		if (p->need_commit_sem)
2687
			down_read(&fs_info->commit_root_sem);
2688 2689
		b = root->commit_root;
		extent_buffer_get(b);
2690
		level = btrfs_header_level(b);
2691
		if (p->need_commit_sem)
2692
			up_read(&fs_info->commit_root_sem);
2693
		if (!p->skip_locking)
2694
			btrfs_tree_read_lock(b);
2695
	} else {
2696
		if (p->skip_locking) {
2697
			b = btrfs_root_node(root);
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2716
	}
2717 2718 2719
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2720

2721
	while (b) {
2722
		level = btrfs_header_level(b);
2723 2724 2725 2726 2727

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2728
		if (cow) {
2729 2730
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2731 2732 2733 2734 2735
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2736 2737
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2738
				goto cow_done;
2739
			}
2740

2741 2742 2743 2744
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2745 2746 2747 2748
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2749 2750 2751 2752 2753
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2754
			btrfs_set_path_blocking(p);
2755 2756 2757 2758 2759 2760 2761
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2762 2763
			if (err) {
				ret = err;
2764
				goto done;
2765
			}
C
Chris Mason 已提交
2766
		}
2767
cow_done:
2768
		p->nodes[level] = b;
2769
		btrfs_clear_path_blocking(p, NULL, 0);
2770 2771 2772 2773 2774 2775 2776

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2777 2778 2779 2780
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2781
		 */
2782 2783 2784 2785 2786 2787 2788 2789
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2790

2791
		ret = key_search(b, key, level, &prev_cmp, &slot);
2792 2793
		if (ret < 0)
			goto done;
2794

2795
		if (level != 0) {
2796 2797 2798
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2799
				slot -= 1;
2800
			}
2801
			p->slots[level] = slot;
2802
			err = setup_nodes_for_search(trans, root, p, b, level,
2803
					     ins_len, &write_lock_level);
2804
			if (err == -EAGAIN)
2805
				goto again;
2806 2807
			if (err) {
				ret = err;
2808
				goto done;
2809
			}
2810 2811
			b = p->nodes[level];
			slot = p->slots[level];
2812

2813 2814 2815 2816 2817 2818
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2819
			if (slot == 0 && ins_len &&
2820 2821 2822 2823 2824 2825
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2826 2827
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2828

2829
			if (level == lowest_level) {
2830 2831
				if (dec)
					p->slots[level]++;
2832
				goto done;
2833
			}
2834

2835
			err = read_block_for_search(root, p, &b, level,
2836
						    slot, key);
2837
			if (err == -EAGAIN)
2838
				goto again;
2839 2840
			if (err) {
				ret = err;
2841
				goto done;
2842
			}
2843

2844
			if (!p->skip_locking) {
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2856
					err = btrfs_tree_read_lock_atomic(b);
2857 2858 2859 2860 2861 2862 2863
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2864
				}
2865
				p->nodes[level] = b;
2866
			}
2867 2868
		} else {
			p->slots[level] = slot;
2869
			if (ins_len > 0 &&
2870
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2871 2872 2873 2874 2875 2876
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2877
				btrfs_set_path_blocking(p);
2878 2879
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2880
				btrfs_clear_path_blocking(p, NULL, 0);
2881

2882 2883 2884
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2885 2886
					goto done;
				}
C
Chris Mason 已提交
2887
			}
2888
			if (!p->search_for_split)
2889 2890
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2891
			goto done;
2892 2893
		}
	}
2894 2895
	ret = 1;
done:
2896 2897 2898 2899
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2900 2901
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2902
	if (ret < 0 && !p->skip_release_on_error)
2903
		btrfs_release_path(p);
2904
	return ret;
2905 2906
}

J
Jan Schmidt 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2918
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2919 2920
			  struct btrfs_path *p, u64 time_seq)
{
2921
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2922 2923 2924 2925 2926 2927 2928
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2929
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2957
		/*
2958
		 * Since we can unwind ebs we want to do a real search every
2959 2960 2961
		 * time.
		 */
		prev_cmp = -1;
2962
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

2979
			err = read_block_for_search(root, p, &b, level,
2980
						    slot, key);
J
Jan Schmidt 已提交
2981 2982 2983 2984 2985 2986 2987 2988
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
2989
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
2990 2991 2992 2993 2994 2995
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
2996
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2997 2998 2999 3000
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3032 3033 3034
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3069 3070 3071 3072 3073
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3074 3075 3076
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3077
				return 0;
3078
			}
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3090 3091 3092 3093 3094 3095
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3096 3097 3098 3099 3100 3101
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3102
 *
C
Chris Mason 已提交
3103
 */
3104 3105
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3106
			   struct btrfs_disk_key *key, int level)
3107 3108
{
	int i;
3109
	struct extent_buffer *t;
3110
	int ret;
3111

C
Chris Mason 已提交
3112
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3113
		int tslot = path->slots[i];
3114

3115
		if (!path->nodes[i])
3116
			break;
3117
		t = path->nodes[i];
3118 3119 3120
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3121
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3122
		btrfs_mark_buffer_dirty(path->nodes[i]);
3123 3124 3125 3126 3127
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3128 3129 3130 3131 3132 3133
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3134 3135
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3136
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3146
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3147 3148 3149
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3150
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3151 3152 3153 3154 3155 3156
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3157
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3158 3159
}

C
Chris Mason 已提交
3160 3161
/*
 * try to push data from one node into the next node left in the
3162
 * tree.
C
Chris Mason 已提交
3163 3164 3165
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3166
 */
3167
static int push_node_left(struct btrfs_trans_handle *trans,
3168 3169
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3170
			  struct extent_buffer *src, int empty)
3171 3172
{
	int push_items = 0;
3173 3174
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3175
	int ret = 0;
3176

3177 3178
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3179
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3180 3181
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3182

3183
	if (!empty && src_nritems <= 8)
3184 3185
		return 1;

C
Chris Mason 已提交
3186
	if (push_items <= 0)
3187 3188
		return 1;

3189
	if (empty) {
3190
		push_items = min(src_nritems, push_items);
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3203

3204
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3205 3206
				   push_items);
	if (ret) {
3207
		btrfs_abort_transaction(trans, ret);
3208 3209
		return ret;
	}
3210 3211 3212
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3213
			   push_items * sizeof(struct btrfs_key_ptr));
3214

3215
	if (push_items < src_nritems) {
3216
		/*
3217 3218
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3219
		 */
3220 3221 3222 3223 3224 3225 3226 3227 3228
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3242
static int balance_node_right(struct btrfs_trans_handle *trans,
3243
			      struct btrfs_fs_info *fs_info,
3244 3245
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3246 3247 3248 3249 3250 3251 3252
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3253 3254 3255
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3256 3257
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3258
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3259
	if (push_items <= 0)
3260
		return 1;
3261

C
Chris Mason 已提交
3262
	if (src_nritems < 4)
3263
		return 1;
3264 3265 3266

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3267
	if (max_push >= src_nritems)
3268
		return 1;
Y
Yan 已提交
3269

3270 3271 3272
	if (max_push < push_items)
		push_items = max_push;

3273 3274
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3275 3276 3277 3278
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3279

3280
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3281 3282
				   src_nritems - push_items, push_items);
	if (ret) {
3283
		btrfs_abort_transaction(trans, ret);
3284 3285
		return ret;
	}
3286 3287 3288
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3289
			   push_items * sizeof(struct btrfs_key_ptr));
3290

3291 3292
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3293

3294 3295
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3296

C
Chris Mason 已提交
3297
	return ret;
3298 3299
}

C
Chris Mason 已提交
3300 3301 3302 3303
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3304 3305
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3306
 */
C
Chris Mason 已提交
3307
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3308
			   struct btrfs_root *root,
3309
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3310
{
3311
	struct btrfs_fs_info *fs_info = root->fs_info;
3312
	u64 lower_gen;
3313 3314
	struct extent_buffer *lower;
	struct extent_buffer *c;
3315
	struct extent_buffer *old;
3316
	struct btrfs_disk_key lower_key;
3317
	int ret;
C
Chris Mason 已提交
3318 3319 3320 3321

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3322 3323 3324 3325 3326 3327
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3328 3329
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3330 3331
	if (IS_ERR(c))
		return PTR_ERR(c);
3332

3333
	root_add_used(root, fs_info->nodesize);
3334

3335
	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3336 3337
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3338
	btrfs_set_header_bytenr(c, c->start);
3339
	btrfs_set_header_generation(c, trans->transid);
3340
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3341 3342
	btrfs_set_header_owner(c, root->root_key.objectid);

3343 3344
	write_extent_buffer_fsid(c, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3345

3346
	btrfs_set_node_key(c, &lower_key, 0);
3347
	btrfs_set_node_blockptr(c, 0, lower->start);
3348
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3349
	WARN_ON(lower_gen != trans->transid);
3350 3351

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3352

3353
	btrfs_mark_buffer_dirty(c);
3354

3355
	old = root->node;
3356 3357
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3358
	rcu_assign_pointer(root->node, c);
3359 3360 3361 3362

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3363
	add_root_to_dirty_list(root);
3364 3365
	extent_buffer_get(c);
	path->nodes[level] = c;
3366
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3367 3368 3369 3370
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3371 3372 3373
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3374
 *
C
Chris Mason 已提交
3375 3376 3377
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3378
static void insert_ptr(struct btrfs_trans_handle *trans,
3379
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3380
		       struct btrfs_disk_key *key, u64 bytenr,
3381
		       int slot, int level)
C
Chris Mason 已提交
3382
{
3383
	struct extent_buffer *lower;
C
Chris Mason 已提交
3384
	int nritems;
3385
	int ret;
C
Chris Mason 已提交
3386 3387

	BUG_ON(!path->nodes[level]);
3388
	btrfs_assert_tree_locked(path->nodes[level]);
3389 3390
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3391
	BUG_ON(slot > nritems);
3392
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3393
	if (slot != nritems) {
3394 3395
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3396
					nritems - slot);
3397 3398
			BUG_ON(ret < 0);
		}
3399 3400 3401
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3402
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3403
	}
3404
	if (level) {
3405 3406
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3407 3408
		BUG_ON(ret < 0);
	}
3409
	btrfs_set_node_key(lower, key, slot);
3410
	btrfs_set_node_blockptr(lower, slot, bytenr);
3411 3412
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3413 3414
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3415 3416
}

C
Chris Mason 已提交
3417 3418 3419 3420 3421 3422
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3423 3424
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3425
 */
3426 3427 3428
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3429
{
3430
	struct btrfs_fs_info *fs_info = root->fs_info;
3431 3432 3433
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3434
	int mid;
C
Chris Mason 已提交
3435
	int ret;
3436
	u32 c_nritems;
3437

3438
	c = path->nodes[level];
3439
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3440
	if (c == root->node) {
3441
		/*
3442 3443
		 * trying to split the root, lets make a new one
		 *
3444
		 * tree mod log: We don't log_removal old root in
3445 3446 3447 3448 3449
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3450
		 */
3451
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3452 3453
		if (ret)
			return ret;
3454
	} else {
3455
		ret = push_nodes_for_insert(trans, root, path, level);
3456 3457
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3458
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3459
			return 0;
3460 3461
		if (ret < 0)
			return ret;
3462
	}
3463

3464
	c_nritems = btrfs_header_nritems(c);
3465 3466
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3467

3468 3469
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3470 3471 3472
	if (IS_ERR(split))
		return PTR_ERR(split);

3473
	root_add_used(root, fs_info->nodesize);
3474

3475
	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3476
	btrfs_set_header_level(split, btrfs_header_level(c));
3477
	btrfs_set_header_bytenr(split, split->start);
3478
	btrfs_set_header_generation(split, trans->transid);
3479
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3480
	btrfs_set_header_owner(split, root->root_key.objectid);
3481 3482
	write_extent_buffer_fsid(split, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3483

3484
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3485
	if (ret) {
3486
		btrfs_abort_transaction(trans, ret);
3487 3488
		return ret;
	}
3489 3490 3491 3492 3493 3494
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3495 3496
	ret = 0;

3497 3498 3499
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3500
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3501
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3502

C
Chris Mason 已提交
3503
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3504
		path->slots[level] -= mid;
3505
		btrfs_tree_unlock(c);
3506 3507
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3508 3509
		path->slots[level + 1] += 1;
	} else {
3510
		btrfs_tree_unlock(split);
3511
		free_extent_buffer(split);
3512
	}
C
Chris Mason 已提交
3513
	return ret;
3514 3515
}

C
Chris Mason 已提交
3516 3517 3518 3519 3520
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3521
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3522
{
J
Josef Bacik 已提交
3523 3524 3525
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3526
	int data_len;
3527
	int nritems = btrfs_header_nritems(l);
3528
	int end = min(nritems, start + nr) - 1;
3529 3530 3531

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3532
	btrfs_init_map_token(&token);
3533 3534
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3535 3536 3537
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3538
	data_len += sizeof(struct btrfs_item) * nr;
3539
	WARN_ON(data_len < 0);
3540 3541 3542
	return data_len;
}

3543 3544 3545 3546 3547
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3548
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3549
				   struct extent_buffer *leaf)
3550
{
3551 3552
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3553 3554

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3555
	if (ret < 0) {
3556 3557 3558 3559 3560
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3561 3562
	}
	return ret;
3563 3564
}

3565 3566 3567 3568
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3569
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3570 3571 3572
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3573 3574
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3575
{
3576
	struct extent_buffer *left = path->nodes[0];
3577
	struct extent_buffer *upper = path->nodes[1];
3578
	struct btrfs_map_token token;
3579
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3580
	int slot;
3581
	u32 i;
C
Chris Mason 已提交
3582 3583
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3584
	struct btrfs_item *item;
3585
	u32 nr;
3586
	u32 right_nritems;
3587
	u32 data_end;
3588
	u32 this_item_size;
C
Chris Mason 已提交
3589

3590 3591
	btrfs_init_map_token(&token);

3592 3593 3594
	if (empty)
		nr = 0;
	else
3595
		nr = max_t(u32, 1, min_slot);
3596

Z
Zheng Yan 已提交
3597
	if (path->slots[0] >= left_nritems)
3598
		push_space += data_size;
Z
Zheng Yan 已提交
3599

3600
	slot = path->slots[1];
3601 3602
	i = left_nritems - 1;
	while (i >= nr) {
3603
		item = btrfs_item_nr(i);
3604

Z
Zheng Yan 已提交
3605 3606 3607 3608
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3609
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3610 3611 3612 3613 3614
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3615
		if (path->slots[0] == i)
3616
			push_space += data_size;
3617 3618 3619

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3620
			break;
Z
Zheng Yan 已提交
3621

C
Chris Mason 已提交
3622
		push_items++;
3623
		push_space += this_item_size + sizeof(*item);
3624 3625 3626
		if (i == 0)
			break;
		i--;
3627
	}
3628

3629 3630
	if (push_items == 0)
		goto out_unlock;
3631

J
Julia Lawall 已提交
3632
	WARN_ON(!empty && push_items == left_nritems);
3633

C
Chris Mason 已提交
3634
	/* push left to right */
3635
	right_nritems = btrfs_header_nritems(right);
3636

3637
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3638
	push_space -= leaf_data_end(fs_info, left);
3639

C
Chris Mason 已提交
3640
	/* make room in the right data area */
3641
	data_end = leaf_data_end(fs_info, right);
3642
	memmove_extent_buffer(right,
3643 3644
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3645
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3646

C
Chris Mason 已提交
3647
	/* copy from the left data area */
3648
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3649
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3650
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3651
		     push_space);
3652 3653 3654 3655 3656

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3657
	/* copy the items from left to right */
3658 3659 3660
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3661 3662

	/* update the item pointers */
3663
	right_nritems += push_items;
3664
	btrfs_set_header_nritems(right, right_nritems);
3665
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3666
	for (i = 0; i < right_nritems; i++) {
3667
		item = btrfs_item_nr(i);
3668 3669
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3670 3671
	}

3672
	left_nritems -= push_items;
3673
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3674

3675 3676
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3677
	else
3678
		clean_tree_block(fs_info, left);
3679

3680
	btrfs_mark_buffer_dirty(right);
3681

3682 3683
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3684
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3685

C
Chris Mason 已提交
3686
	/* then fixup the leaf pointer in the path */
3687 3688
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3689
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3690
			clean_tree_block(fs_info, path->nodes[0]);
3691
		btrfs_tree_unlock(path->nodes[0]);
3692 3693
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3694 3695
		path->slots[1] += 1;
	} else {
3696
		btrfs_tree_unlock(right);
3697
		free_extent_buffer(right);
C
Chris Mason 已提交
3698 3699
	}
	return 0;
3700 3701 3702 3703 3704

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3705
}
3706

3707 3708 3709 3710 3711 3712
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3713 3714 3715
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3716 3717
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3718 3719 3720
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3721
{
3722
	struct btrfs_fs_info *fs_info = root->fs_info;
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3741
	right = read_node_slot(fs_info, upper, slot + 1);
3742 3743 3744 3745 3746
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3747 3748
		return 1;

3749 3750 3751
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3752
	free_space = btrfs_leaf_free_space(fs_info, right);
3753 3754 3755 3756 3757 3758 3759 3760 3761
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3762
	free_space = btrfs_leaf_free_space(fs_info, right);
3763 3764 3765 3766 3767 3768 3769
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3783
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3784
				right, free_space, left_nritems, min_slot);
3785 3786 3787 3788 3789 3790
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3791 3792 3793
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3794 3795 3796 3797
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3798
 */
3799
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3800 3801
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3802 3803
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3804
{
3805 3806
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3807 3808 3809
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3810
	struct btrfs_item *item;
3811
	u32 old_left_nritems;
3812
	u32 nr;
C
Chris Mason 已提交
3813
	int ret = 0;
3814 3815
	u32 this_item_size;
	u32 old_left_item_size;
3816 3817 3818
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3819

3820
	if (empty)
3821
		nr = min(right_nritems, max_slot);
3822
	else
3823
		nr = min(right_nritems - 1, max_slot);
3824 3825

	for (i = 0; i < nr; i++) {
3826
		item = btrfs_item_nr(i);
3827

Z
Zheng Yan 已提交
3828 3829 3830 3831
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3832
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3833 3834 3835 3836 3837
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3838
		if (path->slots[0] == i)
3839
			push_space += data_size;
3840 3841 3842

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3843
			break;
3844

3845
		push_items++;
3846 3847 3848
		push_space += this_item_size + sizeof(*item);
	}

3849
	if (push_items == 0) {
3850 3851
		ret = 1;
		goto out;
3852
	}
3853
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3854

3855
	/* push data from right to left */
3856 3857 3858 3859 3860
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3861
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3862
		     btrfs_item_offset_nr(right, push_items - 1);
3863

3864
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3865
		     leaf_data_end(fs_info, left) - push_space,
3866
		     BTRFS_LEAF_DATA_OFFSET +
3867
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3868
		     push_space);
3869
	old_left_nritems = btrfs_header_nritems(left);
3870
	BUG_ON(old_left_nritems <= 0);
3871

3872
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3873
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3874
		u32 ioff;
3875

3876
		item = btrfs_item_nr(i);
3877

3878 3879
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3880
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3881
		      &token);
3882
	}
3883
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3884 3885

	/* fixup right node */
J
Julia Lawall 已提交
3886 3887
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3888
		       right_nritems);
3889 3890 3891

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3892
						  leaf_data_end(fs_info, right);
3893
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3894
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3895
				      BTRFS_LEAF_DATA_OFFSET +
3896
				      leaf_data_end(fs_info, right), push_space);
3897 3898

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3899 3900 3901
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3902
	}
3903 3904
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3905
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3906
	for (i = 0; i < right_nritems; i++) {
3907
		item = btrfs_item_nr(i);
3908

3909 3910 3911
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3912
	}
3913

3914
	btrfs_mark_buffer_dirty(left);
3915 3916
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3917
	else
3918
		clean_tree_block(fs_info, right);
3919

3920
	btrfs_item_key(right, &disk_key, 0);
3921
	fixup_low_keys(fs_info, path, &disk_key, 1);
3922 3923 3924 3925

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3926
		btrfs_tree_unlock(path->nodes[0]);
3927 3928
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3929 3930
		path->slots[1] -= 1;
	} else {
3931
		btrfs_tree_unlock(left);
3932
		free_extent_buffer(left);
3933 3934
		path->slots[0] -= push_items;
	}
3935
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3936
	return ret;
3937 3938 3939 3940
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3941 3942
}

3943 3944 3945
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3946 3947 3948 3949
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3950 3951
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3952 3953
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3954
{
3955
	struct btrfs_fs_info *fs_info = root->fs_info;
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3975
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3976 3977 3978 3979 3980
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3981 3982
		return 1;

3983 3984 3985
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3986
	free_space = btrfs_leaf_free_space(fs_info, left);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3997 3998
		if (ret == -ENOSPC)
			ret = 1;
3999 4000 4001
		goto out;
	}

4002
	free_space = btrfs_leaf_free_space(fs_info, left);
4003 4004 4005 4006 4007
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4008
	return __push_leaf_left(fs_info, path, min_data_size,
4009 4010
			       empty, left, free_space, right_nritems,
			       max_slot);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4021
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4022
				    struct btrfs_fs_info *fs_info,
4023 4024 4025 4026
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4027 4028 4029 4030 4031
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4032 4033 4034
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4035 4036 4037

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4038
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4039 4040 4041 4042 4043 4044

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4045 4046
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4047
		     leaf_data_end(fs_info, l), data_copy_size);
4048

4049
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4050 4051

	for (i = 0; i < nritems; i++) {
4052
		struct btrfs_item *item = btrfs_item_nr(i);
4053 4054
		u32 ioff;

4055 4056 4057
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4058 4059 4060 4061
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4062
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4063
		   path->slots[1] + 1, 1);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4098
	struct btrfs_fs_info *fs_info = root->fs_info;
4099 4100 4101 4102
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4103
	int space_needed = data_size;
4104 4105

	slot = path->slots[0];
4106
	if (slot < btrfs_header_nritems(path->nodes[0]))
4107
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4108 4109 4110 4111 4112

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4113
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4128
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4129 4130 4131 4132
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4133 4134 4135
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4136
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4148 4149 4150
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4151 4152
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4153
 */
4154 4155
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4156
			       const struct btrfs_key *ins_key,
4157 4158
			       struct btrfs_path *path, int data_size,
			       int extend)
4159
{
4160
	struct btrfs_disk_key disk_key;
4161
	struct extent_buffer *l;
4162
	u32 nritems;
4163 4164
	int mid;
	int slot;
4165
	struct extent_buffer *right;
4166
	struct btrfs_fs_info *fs_info = root->fs_info;
4167
	int ret = 0;
C
Chris Mason 已提交
4168
	int wret;
4169
	int split;
4170
	int num_doubles = 0;
4171
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4172

4173 4174 4175
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4176
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4177 4178
		return -EOVERFLOW;

C
Chris Mason 已提交
4179
	/* first try to make some room by pushing left and right */
4180
	if (data_size && path->nodes[1]) {
4181 4182 4183
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4184
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4185 4186 4187

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4188
		if (wret < 0)
C
Chris Mason 已提交
4189
			return wret;
4190
		if (wret) {
4191 4192 4193 4194
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4195 4196
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4197 4198 4199 4200
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4201

4202
		/* did the pushes work? */
4203
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4204
			return 0;
4205
	}
C
Chris Mason 已提交
4206

C
Chris Mason 已提交
4207
	if (!path->nodes[1]) {
4208
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4209 4210 4211
		if (ret)
			return ret;
	}
4212
again:
4213
	split = 1;
4214
	l = path->nodes[0];
4215
	slot = path->slots[0];
4216
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4217
	mid = (nritems + 1) / 2;
4218

4219 4220 4221
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4222
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4223 4224 4225 4226 4227 4228
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4229
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 4231
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4232 4233 4234 4235 4236 4237
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4238
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4239 4240 4241 4242 4243 4244 4245 4246
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4247
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4248 4249
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4250
					split = 2;
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4261 4262
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4263
	if (IS_ERR(right))
4264
		return PTR_ERR(right);
4265

4266
	root_add_used(root, fs_info->nodesize);
4267

4268
	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4269
	btrfs_set_header_bytenr(right, right->start);
4270
	btrfs_set_header_generation(right, trans->transid);
4271
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4272 4273
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4274 4275
	write_extent_buffer_fsid(right, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4276

4277 4278 4279
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4280 4281
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4282 4283 4284 4285 4286 4287 4288
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4289 4290
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4291 4292 4293 4294
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4295
			if (path->slots[1] == 0)
4296
				fixup_low_keys(fs_info, path, &disk_key, 1);
4297
		}
4298 4299 4300 4301 4302
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4303
		return ret;
4304
	}
C
Chris Mason 已提交
4305

4306
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4307

4308
	if (split == 2) {
4309 4310 4311
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4312
	}
4313

4314
	return 0;
4315 4316 4317 4318

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4319
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4320 4321
		return 0;
	goto again;
4322 4323
}

Y
Yan, Zheng 已提交
4324 4325 4326
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4327
{
4328
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4329
	struct btrfs_key key;
4330
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4331 4332 4333 4334
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4335 4336

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4337 4338 4339 4340 4341
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4342
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4343
		return 0;
4344 4345

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4346 4347 4348 4349 4350
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4351
	btrfs_release_path(path);
4352 4353

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4354 4355
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4356
	path->search_for_split = 0;
4357 4358
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4359 4360
	if (ret < 0)
		goto err;
4361

Y
Yan, Zheng 已提交
4362 4363
	ret = -EAGAIN;
	leaf = path->nodes[0];
4364 4365
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4366 4367
		goto err;

4368
	/* the leaf has  changed, it now has room.  return now */
4369
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4370 4371
		goto err;

Y
Yan, Zheng 已提交
4372 4373 4374 4375 4376
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4377 4378
	}

4379
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4380
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4381 4382
	if (ret)
		goto err;
4383

Y
Yan, Zheng 已提交
4384
	path->keep_locks = 0;
4385
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4386 4387 4388 4389 4390 4391
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4392
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4393
			       struct btrfs_path *path,
4394
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4407
	leaf = path->nodes[0];
4408
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4409

4410 4411
	btrfs_set_path_blocking(path);

4412
	item = btrfs_item_nr(path->slots[0]);
4413 4414 4415 4416
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4417 4418 4419
	if (!buf)
		return -ENOMEM;

4420 4421 4422
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4423
	slot = path->slots[0] + 1;
4424 4425 4426 4427
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4428 4429
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4430 4431 4432 4433 4434
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4435
	new_item = btrfs_item_nr(slot);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4457
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4458
	kfree(buf);
Y
Yan, Zheng 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4480
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4481 4482 4483 4484 4485 4486 4487 4488
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4489
	ret = split_item(root->fs_info, path, new_key, split_offset);
4490 4491 4492
	return ret;
}

Y
Yan, Zheng 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4504
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4518
	setup_items_for_insert(root, path, new_key, &item_size,
4519 4520
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4521 4522 4523 4524 4525 4526 4527 4528
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4529 4530 4531 4532 4533 4534
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4535 4536
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4537 4538
{
	int slot;
4539 4540
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4541 4542 4543 4544 4545 4546
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4547 4548 4549
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4550

4551
	leaf = path->nodes[0];
4552 4553 4554 4555
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4556
		return;
C
Chris Mason 已提交
4557

4558
	nritems = btrfs_header_nritems(leaf);
4559
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4560

4561
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4562

C
Chris Mason 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4573
		u32 ioff;
4574
		item = btrfs_item_nr(i);
4575

4576 4577 4578
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4579
	}
4580

C
Chris Mason 已提交
4581
	/* shift the data */
4582
	if (from_end) {
4583 4584
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4605
				      (unsigned long)fi,
4606
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4607 4608 4609
			}
		}

4610 4611
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 4613 4614 4615 4616 4617
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4618
			fixup_low_keys(fs_info, path, &disk_key, 1);
4619
	}
4620

4621
	item = btrfs_item_nr(slot);
4622 4623
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4624

4625
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4626
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4627
		BUG();
4628
	}
C
Chris Mason 已提交
4629 4630
}

C
Chris Mason 已提交
4631
/*
S
Stefan Behrens 已提交
4632
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4633
 */
4634
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4635
		       u32 data_size)
4636 4637
{
	int slot;
4638 4639
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4640 4641 4642 4643 4644
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4645 4646 4647
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4648

4649
	leaf = path->nodes[0];
4650

4651
	nritems = btrfs_header_nritems(leaf);
4652
	data_end = leaf_data_end(fs_info, leaf);
4653

4654
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4655
		btrfs_print_leaf(leaf);
4656
		BUG();
4657
	}
4658
	slot = path->slots[0];
4659
	old_data = btrfs_item_end_nr(leaf, slot);
4660 4661

	BUG_ON(slot < 0);
4662
	if (slot >= nritems) {
4663
		btrfs_print_leaf(leaf);
4664 4665
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4666 4667
		BUG_ON(1);
	}
4668 4669 4670 4671 4672 4673

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4674
		u32 ioff;
4675
		item = btrfs_item_nr(i);
4676

4677 4678 4679
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4680
	}
4681

4682
	/* shift the data */
4683 4684
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4685
		      data_end, old_data - data_end);
4686

4687
	data_end = old_data;
4688
	old_size = btrfs_item_size_nr(leaf, slot);
4689
	item = btrfs_item_nr(slot);
4690 4691
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4692

4693
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4694
		btrfs_print_leaf(leaf);
4695
		BUG();
4696
	}
4697 4698
}

C
Chris Mason 已提交
4699
/*
4700 4701 4702
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4703
 */
4704
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4705
			    const struct btrfs_key *cpu_key, u32 *data_size,
4706
			    u32 total_data, u32 total_size, int nr)
4707
{
4708
	struct btrfs_fs_info *fs_info = root->fs_info;
4709
	struct btrfs_item *item;
4710
	int i;
4711
	u32 nritems;
4712
	unsigned int data_end;
C
Chris Mason 已提交
4713
	struct btrfs_disk_key disk_key;
4714 4715
	struct extent_buffer *leaf;
	int slot;
4716 4717
	struct btrfs_map_token token;

4718 4719
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4720
		fixup_low_keys(fs_info, path, &disk_key, 1);
4721 4722 4723
	}
	btrfs_unlock_up_safe(path, 1);

4724
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4725

4726
	leaf = path->nodes[0];
4727
	slot = path->slots[0];
C
Chris Mason 已提交
4728

4729
	nritems = btrfs_header_nritems(leaf);
4730
	data_end = leaf_data_end(fs_info, leaf);
4731

4732
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4733
		btrfs_print_leaf(leaf);
4734
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4735
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4736
		BUG();
4737
	}
4738

4739
	if (slot != nritems) {
4740
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4741

4742
		if (old_data < data_end) {
4743
			btrfs_print_leaf(leaf);
4744
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4745
				   slot, old_data, data_end);
4746 4747
			BUG_ON(1);
		}
4748 4749 4750 4751
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4752
		for (i = slot; i < nritems; i++) {
4753
			u32 ioff;
4754

4755
			item = btrfs_item_nr(i);
4756 4757 4758
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4759
		}
4760
		/* shift the items */
4761
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4762
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4763
			      (nritems - slot) * sizeof(struct btrfs_item));
4764 4765

		/* shift the data */
4766 4767
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4768
			      data_end, old_data - data_end);
4769 4770
		data_end = old_data;
	}
4771

4772
	/* setup the item for the new data */
4773 4774 4775
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4776
		item = btrfs_item_nr(slot + i);
4777 4778
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4779
		data_end -= data_size[i];
4780
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4781
	}
4782

4783
	btrfs_set_header_nritems(leaf, nritems + nr);
4784
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4785

4786
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4787
		btrfs_print_leaf(leaf);
4788
		BUG();
4789
	}
4790 4791 4792 4793 4794 4795 4796 4797 4798
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4799
			    const struct btrfs_key *cpu_key, u32 *data_size,
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4816
		return ret;
4817 4818 4819 4820

	slot = path->slots[0];
	BUG_ON(slot < 0);

4821
	setup_items_for_insert(root, path, cpu_key, data_size,
4822
			       total_data, total_size, nr);
4823
	return 0;
4824 4825 4826 4827 4828 4829
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4830 4831 4832
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4833 4834
{
	int ret = 0;
C
Chris Mason 已提交
4835
	struct btrfs_path *path;
4836 4837
	struct extent_buffer *leaf;
	unsigned long ptr;
4838

C
Chris Mason 已提交
4839
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4840 4841
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4842
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4843
	if (!ret) {
4844 4845 4846 4847
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4848
	}
C
Chris Mason 已提交
4849
	btrfs_free_path(path);
C
Chris Mason 已提交
4850
	return ret;
4851 4852
}

C
Chris Mason 已提交
4853
/*
C
Chris Mason 已提交
4854
 * delete the pointer from a given node.
C
Chris Mason 已提交
4855
 *
C
Chris Mason 已提交
4856 4857
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4858
 */
4859 4860
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4861
{
4862
	struct btrfs_fs_info *fs_info = root->fs_info;
4863
	struct extent_buffer *parent = path->nodes[level];
4864
	u32 nritems;
4865
	int ret;
4866

4867
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4868
	if (slot != nritems - 1) {
4869 4870
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4871
					nritems - slot - 1);
4872 4873
			BUG_ON(ret < 0);
		}
4874 4875 4876
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4877 4878
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4879
	} else if (level) {
4880 4881
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4882
		BUG_ON(ret < 0);
4883
	}
4884

4885
	nritems--;
4886
	btrfs_set_header_nritems(parent, nritems);
4887
	if (nritems == 0 && parent == root->node) {
4888
		BUG_ON(btrfs_header_level(root->node) != 1);
4889
		/* just turn the root into a leaf and break */
4890
		btrfs_set_header_level(root->node, 0);
4891
	} else if (slot == 0) {
4892 4893 4894
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4895
		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4896
	}
C
Chris Mason 已提交
4897
	btrfs_mark_buffer_dirty(parent);
4898 4899
}

4900 4901
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4902
 * path->nodes[1].
4903 4904 4905 4906 4907 4908 4909
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4910 4911 4912 4913
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4914
{
4915
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4916
	del_ptr(root, path, 1, path->slots[1]);
4917

4918 4919 4920 4921 4922 4923
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4924 4925
	root_sub_used(root, leaf->len);

4926
	extent_buffer_get(leaf);
4927
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4928
	free_extent_buffer_stale(leaf);
4929
}
C
Chris Mason 已提交
4930 4931 4932 4933
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4934 4935
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4936
{
4937
	struct btrfs_fs_info *fs_info = root->fs_info;
4938 4939
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4940 4941
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4942 4943
	int ret = 0;
	int wret;
4944
	int i;
4945
	u32 nritems;
4946 4947 4948
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4949

4950
	leaf = path->nodes[0];
4951 4952 4953 4954 4955
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4956
	nritems = btrfs_header_nritems(leaf);
4957

4958
	if (slot + nr != nritems) {
4959
		int data_end = leaf_data_end(fs_info, leaf);
4960

4961
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4962
			      data_end + dsize,
4963
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4964
			      last_off - data_end);
4965

4966
		for (i = slot + nr; i < nritems; i++) {
4967
			u32 ioff;
4968

4969
			item = btrfs_item_nr(i);
4970 4971 4972
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4973
		}
4974

4975
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4977
			      sizeof(struct btrfs_item) *
4978
			      (nritems - slot - nr));
4979
	}
4980 4981
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4982

C
Chris Mason 已提交
4983
	/* delete the leaf if we've emptied it */
4984
	if (nritems == 0) {
4985 4986
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4987
		} else {
4988
			btrfs_set_path_blocking(path);
4989
			clean_tree_block(fs_info, leaf);
4990
			btrfs_del_leaf(trans, root, path, leaf);
4991
		}
4992
	} else {
4993
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4994
		if (slot == 0) {
4995 4996 4997
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4998
			fixup_low_keys(fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
4999 5000
		}

C
Chris Mason 已提交
5001
		/* delete the leaf if it is mostly empty */
5002
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5003 5004 5005 5006
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5007
			slot = path->slots[1];
5008 5009
			extent_buffer_get(leaf);

5010
			btrfs_set_path_blocking(path);
5011 5012
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5013
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5014
				ret = wret;
5015 5016 5017

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5018 5019
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5020
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5021 5022
					ret = wret;
			}
5023 5024

			if (btrfs_header_nritems(leaf) == 0) {
5025
				path->slots[1] = slot;
5026
				btrfs_del_leaf(trans, root, path, leaf);
5027
				free_extent_buffer(leaf);
5028
				ret = 0;
C
Chris Mason 已提交
5029
			} else {
5030 5031 5032 5033 5034 5035 5036
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5037
				free_extent_buffer(leaf);
5038
			}
5039
		} else {
5040
			btrfs_mark_buffer_dirty(leaf);
5041 5042
		}
	}
C
Chris Mason 已提交
5043
	return ret;
5044 5045
}

5046
/*
5047
 * search the tree again to find a leaf with lesser keys
5048 5049
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5050 5051 5052
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5053
 */
5054
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5055
{
5056 5057 5058
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5059

5060
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5061

5062
	if (key.offset > 0) {
5063
		key.offset--;
5064
	} else if (key.type > 0) {
5065
		key.type--;
5066 5067
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5068
		key.objectid--;
5069 5070 5071
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5072
		return 1;
5073
	}
5074

5075
	btrfs_release_path(path);
5076 5077 5078 5079 5080
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5092 5093
		return 0;
	return 1;
5094 5095
}

5096 5097
/*
 * A helper function to walk down the tree starting at min_key, and looking
5098 5099
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5100 5101 5102 5103 5104 5105 5106 5107
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5108 5109 5110 5111
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5112 5113 5114 5115
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116
			 struct btrfs_path *path,
5117 5118
			 u64 min_trans)
{
5119
	struct btrfs_fs_info *fs_info = root->fs_info;
5120 5121 5122
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5123
	int sret;
5124 5125 5126
	u32 nritems;
	int level;
	int ret = 1;
5127
	int keep_locks = path->keep_locks;
5128

5129
	path->keep_locks = 1;
5130
again:
5131
	cur = btrfs_read_lock_root_node(root);
5132
	level = btrfs_header_level(cur);
5133
	WARN_ON(path->nodes[level]);
5134
	path->nodes[level] = cur;
5135
	path->locks[level] = BTRFS_READ_LOCK;
5136 5137 5138 5139 5140

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5141
	while (1) {
5142 5143
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5144
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5145

5146 5147
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5148 5149
			if (slot >= nritems)
				goto find_next_key;
5150 5151 5152 5153 5154
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5155 5156
		if (sret && slot > 0)
			slot--;
5157
		/*
5158 5159
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5160
		 */
C
Chris Mason 已提交
5161
		while (slot < nritems) {
5162
			u64 gen;
5163

5164 5165 5166 5167 5168
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5169
			break;
5170
		}
5171
find_next_key:
5172 5173 5174 5175 5176
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5177
			path->slots[level] = slot;
5178
			btrfs_set_path_blocking(path);
5179
			sret = btrfs_find_next_key(root, path, min_key, level,
5180
						  min_trans);
5181
			if (sret == 0) {
5182
				btrfs_release_path(path);
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5195
		btrfs_set_path_blocking(path);
5196
		cur = read_node_slot(fs_info, cur, slot);
5197 5198 5199 5200
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5201

5202
		btrfs_tree_read_lock(cur);
5203

5204
		path->locks[level - 1] = BTRFS_READ_LOCK;
5205
		path->nodes[level - 1] = cur;
5206
		unlock_up(path, level, 1, 0, NULL);
5207
		btrfs_clear_path_blocking(path, NULL, 0);
5208 5209
	}
out:
5210 5211 5212 5213
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5214
		memcpy(min_key, &found_key, sizeof(found_key));
5215
	}
5216 5217 5218
	return ret;
}

5219
static int tree_move_down(struct btrfs_fs_info *fs_info,
5220
			   struct btrfs_path *path,
5221
			   int *level)
5222
{
5223 5224
	struct extent_buffer *eb;

5225
	BUG_ON(*level == 0);
5226
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5227 5228 5229 5230
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5231 5232
	path->slots[*level - 1] = 0;
	(*level)--;
5233
	return 0;
5234 5235
}

5236
static int tree_move_next_or_upnext(struct btrfs_path *path,
5237 5238 5239 5240 5241 5242 5243 5244
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5245
	while (path->slots[*level] >= nritems) {
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5266
static int tree_advance(struct btrfs_fs_info *fs_info,
5267 5268 5269 5270 5271 5272 5273 5274
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5275
		ret = tree_move_next_or_upnext(path, level, root_level);
5276
	} else {
5277
		ret = tree_move_down(fs_info, path, level);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5290
static int tree_compare_item(struct btrfs_path *left_path,
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5335
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5353 5354
	u64 left_gen;
	u64 right_gen;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5367
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5368
	if (!tmp_buf) {
5369 5370
		ret = -ENOMEM;
		goto out;
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5414
	down_read(&fs_info->commit_root_sem);
5415 5416 5417 5418 5419 5420 5421 5422 5423
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5424
	up_read(&fs_info->commit_root_sem);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5444
			ret = tree_advance(fs_info, left_path, &left_level,
5445 5446 5447
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5448
			if (ret == -1)
5449
				left_end_reached = ADVANCE;
5450 5451
			else if (ret < 0)
				goto out;
5452 5453 5454
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5455
			ret = tree_advance(fs_info, right_path, &right_level,
5456 5457 5458
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5459
			if (ret == -1)
5460
				right_end_reached = ADVANCE;
5461 5462
			else if (ret < 0)
				goto out;
5463 5464 5465 5466 5467 5468 5469 5470
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5471
				ret = changed_cb(left_path, right_path,
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5482
				ret = changed_cb(left_path, right_path,
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5496
				ret = changed_cb(left_path, right_path,
5497 5498 5499 5500 5501 5502 5503
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5504
				ret = changed_cb(left_path, right_path,
5505 5506 5507 5508 5509 5510 5511
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5512
				enum btrfs_compare_tree_result result;
5513

5514
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5515 5516
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5517
				if (ret)
5518
					result = BTRFS_COMPARE_TREE_CHANGED;
5519
				else
5520
					result = BTRFS_COMPARE_TREE_SAME;
5521
				ret = changed_cb(left_path, right_path,
5522
						 &left_key, result, ctx);
5523 5524
				if (ret < 0)
					goto out;
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5541 5542 5543 5544 5545 5546 5547 5548
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5570
	kvfree(tmp_buf);
5571 5572 5573
	return ret;
}

5574 5575 5576
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5577
 * tree based on the current path and the min_trans parameters.
5578 5579 5580 5581 5582 5583 5584
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5585
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5586
			struct btrfs_key *key, int level, u64 min_trans)
5587 5588 5589 5590
{
	int slot;
	struct extent_buffer *c;

5591
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5592
	while (level < BTRFS_MAX_LEVEL) {
5593 5594 5595 5596 5597
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5598
next:
5599
		if (slot >= btrfs_header_nritems(c)) {
5600 5601 5602 5603 5604
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5605
				return 1;
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5619
			btrfs_release_path(path);
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5632
		}
5633

5634 5635
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5636 5637 5638 5639 5640 5641 5642
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5643
			btrfs_node_key_to_cpu(c, key, slot);
5644
		}
5645 5646 5647 5648 5649
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5650
/*
5651
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5652 5653
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5654
 */
C
Chris Mason 已提交
5655
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5656 5657 5658 5659 5660 5661
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5662 5663
{
	int slot;
5664
	int level;
5665
	struct extent_buffer *c;
5666
	struct extent_buffer *next;
5667 5668 5669
	struct btrfs_key key;
	u32 nritems;
	int ret;
5670
	int old_spinning = path->leave_spinning;
5671
	int next_rw_lock = 0;
5672 5673

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5674
	if (nritems == 0)
5675 5676
		return 1;

5677 5678 5679 5680
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5681
	next_rw_lock = 0;
5682
	btrfs_release_path(path);
5683

5684
	path->keep_locks = 1;
5685
	path->leave_spinning = 1;
5686

J
Jan Schmidt 已提交
5687 5688 5689 5690
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5691 5692 5693 5694 5695
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5696
	nritems = btrfs_header_nritems(path->nodes[0]);
5697 5698 5699 5700 5701 5702
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5703
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5704 5705
		if (ret == 0)
			path->slots[0]++;
5706
		ret = 0;
5707 5708
		goto done;
	}
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5727

C
Chris Mason 已提交
5728
	while (level < BTRFS_MAX_LEVEL) {
5729 5730 5731 5732
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5733

5734 5735
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5736
		if (slot >= btrfs_header_nritems(c)) {
5737
			level++;
5738 5739 5740 5741
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5742 5743
			continue;
		}
5744

5745
		if (next) {
5746
			btrfs_tree_unlock_rw(next, next_rw_lock);
5747
			free_extent_buffer(next);
5748
		}
5749

5750
		next = c;
5751
		next_rw_lock = path->locks[level];
5752
		ret = read_block_for_search(root, path, &next, level,
5753
					    slot, &key);
5754 5755
		if (ret == -EAGAIN)
			goto again;
5756

5757
		if (ret < 0) {
5758
			btrfs_release_path(path);
5759 5760 5761
			goto done;
		}

5762
		if (!path->skip_locking) {
5763
			ret = btrfs_try_tree_read_lock(next);
5764 5765 5766 5767 5768 5769 5770 5771
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5772
				free_extent_buffer(next);
5773 5774 5775 5776
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5777 5778
			if (!ret) {
				btrfs_set_path_blocking(path);
5779
				btrfs_tree_read_lock(next);
5780
				btrfs_clear_path_blocking(path, next,
5781
							  BTRFS_READ_LOCK);
5782
			}
5783
			next_rw_lock = BTRFS_READ_LOCK;
5784
		}
5785 5786 5787
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5788
	while (1) {
5789 5790
		level--;
		c = path->nodes[level];
5791
		if (path->locks[level])
5792
			btrfs_tree_unlock_rw(c, path->locks[level]);
5793

5794
		free_extent_buffer(c);
5795 5796
		path->nodes[level] = next;
		path->slots[level] = 0;
5797
		if (!path->skip_locking)
5798
			path->locks[level] = next_rw_lock;
5799 5800
		if (!level)
			break;
5801

5802
		ret = read_block_for_search(root, path, &next, level,
5803
					    0, &key);
5804 5805 5806
		if (ret == -EAGAIN)
			goto again;

5807
		if (ret < 0) {
5808
			btrfs_release_path(path);
5809 5810 5811
			goto done;
		}

5812
		if (!path->skip_locking) {
5813
			ret = btrfs_try_tree_read_lock(next);
5814 5815
			if (!ret) {
				btrfs_set_path_blocking(path);
5816
				btrfs_tree_read_lock(next);
5817
				btrfs_clear_path_blocking(path, next,
5818 5819
							  BTRFS_READ_LOCK);
			}
5820
			next_rw_lock = BTRFS_READ_LOCK;
5821
		}
5822
	}
5823
	ret = 0;
5824
done:
5825
	unlock_up(path, 0, 1, 0, NULL);
5826 5827 5828 5829 5830
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5831
}
5832

5833 5834 5835 5836 5837 5838
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5839 5840 5841 5842 5843 5844
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5845
	u32 nritems;
5846 5847
	int ret;

C
Chris Mason 已提交
5848
	while (1) {
5849
		if (path->slots[0] == 0) {
5850
			btrfs_set_path_blocking(path);
5851 5852 5853 5854 5855 5856 5857
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5858 5859 5860 5861 5862 5863
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5864
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5865 5866
		if (found_key.objectid < min_objectid)
			break;
5867 5868
		if (found_key.type == type)
			return 0;
5869 5870 5871
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5872 5873 5874
	}
	return 1;
}
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}